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ABSTRACT

Viral transneuronal tracing methods effectively label synaptically connected neurons in a
time-dependent manner. However, the modeling of viral vectors has been largely absent. An
objective of this article is to motivate and initiate a basis for computational modeling of viral
labeling and the questions that can be investigated through modeling of pseudorabies virus
(PRV) virion progression in a neural circuit. In particular, a mathematical model is de-
veloped for quantitative analysis of PRV infection. Probability expressions are presented to
evaluate the progression of viral labeling along the neural circuit. The analysis brings forth
various parameters, the numerical values of which must be attained through future ex-
periments. This is the first computational model for PRV viral labeling of a neural circuit.

Keywords: probabilistic modeling, pseudorabies virus, viral tracing.

1. INTRODUCTION

Vertebrate nervous systems are collections of specialized cells termed neurons. Neurons transmit

information through a combination of electrical and chemical signals that propagate between neurons at

points of contact termed synapses. Neurons function by forming many connections to transmit a wide array of

information. These connections link neurons together into circuits. A goal of modern neuroanatomy is to

define the circuits that correlate with brain function and processing. The use of viral tracers to define the

organization of projection pathways of neurons has proven to be integral to mapping the functional orga-

nization of the nervous system. Classical approaches to define projection patterns of neurons exploit vesicular

transport. Such staples of circuit analysis include molecules that are taken up by axons and transported back

to the cell soma (retrograde labeling), or are incorporated into neuronal somata and transported through axons

to label axonal terminal fields (anterograde labeling). The extensive application of such tracers has produced

a massive database establishing regional associations among distributed populations of neurons.

However, the inability of these molecules to cross synapses has hindered efforts to define systems that

function collectively through their synaptic connections to accomplish specific functions. The introduction

of viruses for circuit analysis has filled this void. Neurotropic viruses can cause widespread pathology in

the nervous system by virtue of their ability to spread through neural circuitry. Neuroanatomists in col-

laboration with virologists have exploited this ability to define polysynaptic connections in the brain. The

success of this approach has emerged from concerted efforts to identify strains of virus with reduced
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virulence that retain the ability to infect and spread within neural circuitry. A concise description of the

importance of viral trafficking in neurons is provided in Enquist (2012). Viral tracing of neural circuitry has

become a powerful tool for neuroscientists with its advancement benefiting numerous contemporary

neuroscience research projects. The ability of neurotropic viruses to replicate and pass through synaptic

connections has provided a polysynaptic perspective on the organization of a variety of neural circuits.

The Bartha strain of pseudorabies virus (PRV), a swine alpha herpesvirus, was identified on the basis of

these features, and is extensively used for circuit analysis. Bartha was originally developed as a vaccine strain,

and subsequent analysis identified deletions and mutations in the viral genome causal for the reduction in

virulence. Proof of principle through such studies has led to the widespread use of Bartha for circuit

definition, and has also stimulated the production of Bartha recombinants that constitutively or conditionally

express reporters that facilitate neuronal labeling. Mechanistic studies have demonstrated that transneuronal

transport of Bartha restricts labeling to the retrograde direction between synaptically connected neurons.

Recombinant viruses with well-documented deletions and mutations have proven to be important in

defining the mechanisms of viral spread that contribute to viral disease. The comprehension of viral traf-

ficking and its effects within a neural circuit will provide fundamental knowledge toward the development of

methods to block neuronal invasion and spread, as well as provide insight into neural circuit organization.

This work introduces a three-stage model for the propagation of PRV in a neural circuit consisting of multiple

neurons. Stage 1 models the capacity for viral particles to engage in receptor-mediated infection of axons.

Stage 2 models the establishment of infection and transmission of infectious virus across synaptic contacts.

Stage 3 models the progression of infection between synaptically connected neurons, which results in second-

order infection (SOI) and subsequent higher order infection (HOI). Our attention is restricted to PRV Bartha

due to its popularity and utility for transneuronal tracing. More specifically, PRV Bartha and its recombinants

infect synaptically connected circuits through retrograde transneuronal passage, either through peripherally

projecting axons of somatic and autonomic neurons or after direct injection into the brain.

2. MODEL FORMULATION

An impetus for this work was provided through a figure in Card and Enquist (2012) reproduced herein

and referred to as the model neural circuit for studying viral uptake with axonal transport capabilities. The

neural circuit model in Figure 1 illustrates the virus replicating at a primary neuron, proceeding through

retrograde transmission to infect a secondary neuron in synaptic contact, and subsequently maturing as a

HOI. We shall analytically model the likelihood of a HOI occurring by considering how the most crucial

variables in Figure 1 can influence the progression of the infection through a circuit. Figures 1–3 present a

tantamount representation of the neural circuit and will facilitate the probabilistic modeling of infectious

viral spread. It is the goal of this work to present a first-principles approach for the quantitative depiction of

such a complex process. The three-stage scheme introduced in Figures 2 and 3 shall be expanded upon and

referenced throughout this work. The presented model will be based upon a tissue architecture dominated

by a high density of axons (Card et al., 1999).

The mathematically oriented analysis in this work will be of greater practical value if the results are

eventually validated by experimental data. The experimental paradigm of stereotactic injection of virus into the

rat striatum can test the predictive capabilities of the presented analysis. As in our analysis, the rat striatum has a

tissue architecture with high axon density and defined synaptic contacts for HOI. In addition, the outcome of the

mathematical model can be applied to other experimental paradigms and provide additional interpretation of

many neuroanatomical tracing studies. The focus of this mathematical framework is the analysis of virion

uptake, and transmission between primary and secondary neurons. We believe that directing our analysis at a

system with a larger depth of knowledge will enhance the model formulation. New studies are being performed

with multiple viruses to differentially label neurons based on the directional spread of infection. As more studies

are published, their findings will continue to inform our mathematical models of PRV neuroinvasion.

3. STAGE 1: AXONAL INVASION

It is assumed that 1 million PRV particles (i.e., virions) are injected and exposed to axon terminals at the

injection site. PRV entry requires specific receptors, and we shall assume a uniform distribution of the
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receptors on all axon terminals. PRV virions are large (*200 nm in diameter), and their movement by

diffusion in the extracellular space is rather limited. Also, interactions of the membrane proteins on the

virion envelope with extracellular matrix proteins such as heparan sulfate proteoglycan further limit the

extent of extracellular movement.

3.1. Parameters associated with receptor-mediated infection

The ith receptor will mediate an infection with a probability denoted by P[Ri = I], where i = 1‚ 2‚ . . . ‚ R.

We propose the following relationship:

P[Ri = I] = W(aie
- di=�d + bi + ci + xi)‚ (1)

where di represents the distance from the ith receptor to the point of injection and �d denotes the

mean receptor distance to the point of injection for the close vicinity surrounding the injection area.

FIG. 2. An analytical model of PRV progression along the first two stages—axonal invasion and transneuronal

passage—of a neural circuit with a single axon and a single neuron.

FIG. 1. A depiction of retrograde PRV progression along three stages in a neural circuit as advocated in Card and

Enquist (2012). PRV, pseudorabies virus.
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The five parameters that affect the likelihood of the i th receptor mediating an infection are described

as follows:

� ai represents the contribution of the proximity of the receptor to the point of injection,
� bi denotes the contribution of the affinity of the axon terminal,
� ci expresses the contribution of the affinity of glia,
� xi represents the contribution of the affinity of extracellular matrix, and
� W describes the anatomical impact on the likelihood of infection.

We specify 0 � ai + bi + ci + xi � 1 with ai‚ bi‚ ci‚ xi 2 [0‚ 1] as free parameters, which must be de-

termined empirically. The aforementioned inequality for the sum of the four free parameters must

be obeyed to assure that Equation (1) is a probability. The precise quantitative relationship between ai,

bi, ci, xi, and P[Ri = I] is not precisely known with Equation (1) being a proposition. An important

receptor for PRV in rodent neurons is nectin 1, a cellular adhesion molecule (Takai and Nakanishi,

2003). The efficiency of binding of PRV virions to nectin 1 in tissue for the ith receptor has been

modeled in Equation (1) through the parameter bi. It has been empirically determined in works, such

as Card et al. (1999), that the affinity of axon terminals dominates two of the aforementioned variables

as far as influence on the likelihood of a receptor mediating infection, in other words, bi@ci and bi@xi.

In light of this discussion, we posit that the probability of receptor-mediated infection can be ap-

proximated as

P[Ri = I] � W(aie
- di=�d + bi)‚ (2)

which also serves as a good approximation to Equation (1) for the case of the rat striatum (Card et al.,

1999). It is important to note that affinity within the context of the above parameters refers to the strength of

coupling between viral glycoproteins and the nectin adhesion molecule. The outcome of the prospective

interactions would lead to the fusion of the virion envelope with the plasma membrane of the target cell, or

result in binding the virion to the extracellular matrix.

The parameter W 2 [0‚ 1] in Equations (1) and (2) reflects the likelihood of infection based on the

anatomical region that is injected. A scenario of W � 0 indicates that receptor-mediated infection will

occur with very low likelihood; while W = 1 indicates that an infection will occur with high likelihood. An

example of W � 1 is injection to the kidney. The kidney is a parenchymal organ with low extracellular

fluid volume and high packing density of cells permissive to infection. The fact that the axonal plexus is

sparse within this tissue (at least compared with axonal density within the brain) is not particularly relevant

since the kidney cells will become infected and produce infectious progeny that will amplify the amount of

infected virus. Thus, even if an axon terminal is not infected by the initial inoculum it is likely to be

infected by the progeny virus produced by the kidney. Conversely, an example of W � 0 is injection to the

spleen. The open circulation of the vasculature in the spleen immediately dilutes (and removes) virions

from the site of injection to reduce the likelihood of local infection compared with the kidney. This is

supported by the need to inject much higher quantities of virus into the spleen to achieve a productive

infection of the neuronal innervation.

Thus, to obtain infections of kidney circuits, a viral injection containing only a fraction of the con-

centration of virus necessary to infect spleen circuits will be sufficient (Cano et al., 2001; Cano et al., 2004).

In the case of the rat striatum, it was shown in Card et al. (1999) that the zone of viral uptake was confined

FIG. 3. A model for PRV progression along the HOI stage of a

neural circuit. The second-order neuron is depicted with a single

axon connecting it to the transneuronal passage stage of a first-

order neuron. HOI, higher order infection.
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to a maximum radius within the range 0 � maxfdig � 1500lm of the cannula after injection of 100 nL of

the highest concentration of virus. Very similar empirical findings were reported in Jasmin et al. (1997).

A sensible choice for the mean of this parameter would be E[ maxfdig] = 500lm.

Although values for several of the parameters that determine P[Ri = I] have been discussed above,

unfortunately, at the present time no empirical data exist for the probability of receptor-mediated infection.

A viral reporter protein can be used to categorize a cell body as infected/noninfected once viral capsids are

transported within axons to the cell body. However, it is practically impossible to have a complete tally of

the total number of uninfected receptors. While the empirical determination of P[Ri = I] may not be

possible at the present time, the above analysis has discussed a means for analytical estimation of the

probability of receptor-mediated infection by analytically stating its most prominent factors. For instance,

Equation (2) implies the importance of performing experiments to determine a function (which may be

obtained through a regression analysis) that maps nectin, or the properties of nectin, to the quantity bi for a

specific receptor.

3.2. Statistical modeling of receptor-mediated infection

The number of virions in the injected volume that bind to receptors is a random variable. It is suspected

that many of the particles are simply bound to the extracellular matrix and do not bind to a receptor (Spear,

1993; Trybala et al., 1998; Pomeranz et al., 2005). The amount of particles that overcome the intrinsic host

barriers to infection depends crucially on where an injection is made (e.g., into a muscle, a visceral organ,

or the brain). We consider R receptors and define the R-dimensional vector v with its components having a

Bernoulli distribution, where v(i) denotes whether the ith receptor mediates an infection (v(i) = 1) or not

(v(i) = 0). Consequently, a random variable r will have the following physical interpretation r =
PR

i = 1 v(i)

and a binomial distribution. An important variable of the axonal invasion stage shown in Figure 2 is

quantified through

B = f (v‚ c) = vT c‚ (3)

where B represents the number of entered capsids. The vector c 2 RR in Equation (3) represents weights

that model the superposition of the viral capsids present on the R receptors at the beginning of an axon,

while the process of retrograde transport to the neuronal cell body takes place. Equation (3) subsumes a

linearized model for the combining. Unfortunately, in vivo data do not exist for the quantity B discussed

above, and the empirical methods using in vitro studies have not been deemed relevant because of the

inability to satisfactorily model the environment of the neuropil. Accordingly, attainment of experimental

data for B is an avenue that we would like to motivate.

Despite the paucity of empirical data for a crucial parameter, analytical modeling can yield headway and

insight into the progression of the viral tracer. For instance, the assumption of a homogeneous likelihood

for receptor-mediated infection through P[Ri = I] = P[R = I] = P allows for a preliminary analysis of the

number of entered capsids B as a function of the likelihood of receptor-mediated infection. Such a scenario

yields the discrete probability distribution:

P[B = b jc] = P vT c = b jc
� �

=

PR b =
PR

i = 1 c(i)

P(1 - P)R - 1 b 2 S1

P2(1 - P)R - 2 b 2 S2

..

. ..
.

Pj(1 - P)R - j b 2 Sj

..

. ..
.

PR - 1(1 - P) b 2 SR - 1

(1 - P)R b = 0

0 otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

‚ (4)

where we have conditioned on the vector c, j denotes the number of receptor-mediated infections, and Sj

denotes the set of all possible sums of j c(i) terms. For example, the set S3 = fc(a) + c(b) + c(c) : a 6¼ b 6¼ cg
will have R(R - 1)(R - 2) elements accounting for all of the sums of possible combinations of three tuples.

Unfortunately, empirical data on the distribution of the weights c(i) are also lacking. It is logical to presume
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that c(i) � 0 since a combination of infections cannot decrease the likelihood of capsids entering an axon

terminal. The case of c(i) = 1 8 i leads to B having a binomial distribution given by

P[B = b] = R

b

� �
Pb(1 - P)R - b for b = 0‚ 1‚ . . . ‚ R: (5)

The above constitutes the simplest circumstance from an analytical perspective, and shall be referred to

as being the result of receptor weighting distribution-1 (RWD-1).

Alternatively, the specific case of c(i) being mutually independent for i = 1‚ 2‚ . . . ‚ R and uniformly

distributed on the interval [0‚ 1] also allows for the direct evaluation of P B = b½ �. We shall refer to such a

possibility as RWD-2. To derive P[B = b] under RWD-2, we first condition on the vector v, and observe that

consequently B = cT v will be a sum of independent uniform random variables. Since the components of v

can only be 0 or 1, B will have an Irwin–Hall distribution ( Johnson et al., 1995) with a probability density

function (pdf) given by

fBjv(b) =
1

(r - 1)!

Pºbß
k = 0 ( - 1)k

�
r

k

�
(b - k)r - 1 for r = 1‚ 2‚ . . . ‚ R and b � r

0 otherwise

(
‚ (6)

where º:ß denotes the floor function and, as discussed above, r =
PR

i = 1 v(i). It is noteworthy that in Equation

(6), the case of r = 0 would occur only if v(i) = 08 i—which occurs with probability (1 - P)R—and corre-

sponds to none of the receptors mediating an infection. In the case of r = 0, the infection would simply not

progress any further along the axon, and the axon in question would not make a viral contribution to the

ensuing stage. From Equation (6), it can be noted that it is sufficient to condition on r rather than the vector

v (i.e., fBjv(b) = fBjr(b)), accordingly the unconditioning is performed as

fB(b) =
XR

s = 1

fBjr = s(b)P[r = s]

=
PR

s = 1

R

s

� �
Ps(1 - P)R - s

(s - 1)!

P minfºbß‚ sg
k = 0 ( - 1)k

s

k

� �
(b - k)s - 1 for 0 � b � R‚

0 otherwise

8<
:

(7)

where we have used the fact that r has a binomial distribution. It can be noticed that Equation (7) is a

mixture distribution where
PR

s = 0 P[r = s] = 1 with the discrete component r = 0 excluded from the sum-

mation in Equation (7) because it is the singular case of B = 0 with probability 1 since no receptors would

exist. Since B is a discrete random variable we calculate its probability mass function (pmf) by discretizing

the above pdf as follows:

P[B = b] =
Z b + 1

b

fB(y)dy

=
XR

s = 1

R

s

� �
Ps(1 - P)R - s

(s - 1)!

Z b + 1

b

Xminfºyß‚ sg

k = 0

( - 1)k
s

k

� �
(y - k)s - 1dy for b = 0‚ 1‚ . . . ‚ R:

(8)

The above expression is studied through the simulation results shown in Figure 4. The results in Figure 4

confirm that the number of entered capsids follows a binomial distribution in the case of RWD-1. For the

scenario of RWD-2, Figure 4 illustrates that the probability distributions maintain the concave shape

associated with a binomial distribution. It is apparent that if binomial curves were fit to the distributions

obtained for the assumption of RWD-1 and RWD-2, the former would have a noticeably higher mean. The

results show a more important implication that the number of entered capsids seen with an assumption of

RWD-1 may have first-order stochastic dominance (Wolfstetter, 1993) over the number of entered capsids

seen with an assumption of RWD-2. This is expected since with RWD-1: E[c(i)] = 1=2 while with RWD-2:

E[c(i)] = 1. In fact, a difference of factor of 2 is observed in the probability of the number of entered capsids

when comparing RWD-1 and RWD-2 in Figure 4. As expected, for both RWD-1 and RWD-2, an increase

in the number of receptors (R) results in an increase in the likelihood of a higher number of entered capsids.

Interestingly, Figure 4 illustrates that the number of capsids is much more sensitive to P than to R. In
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general, there is not a global answer as to whether RWD-1 or RWD-2 is the more appropriate means of

modeling the entered capsids, rather we expect that this will be dependent on the properties of the

considered axon terminal.

3.3. Transport of capsids within an axon

The transport of the PRV capsids from the axon terminal shall be quantitatively modeled by the mapping

of B to B0 in Figure 2. The random variable B0 will quantify the number of viral capsids that exhibit motion

during a time period of T1, which is typically on the order of several minutes. We assume independence and

homogeneity among the viral capsids by designating PT1
as the probability that each viral capsid exhibits

motion during T1 seconds. The number of active capsids B0 will have a binomial distribution conditioned on

the event B = b leading to

P[B0 = xjB = b] = b

x

� �
Px

T1
(1 - PT1

)b - x for x = 0‚ 1‚ . . . ‚ b: (9)

For the most general analysis, the probability P[B0 = x] may be obtained by unconditioning the above

expression using Equation (4). For an assumption of RWD-1, it is possible to utilize Equation (5) to

uncondition upon the event B = b; doing so and subsequent algebra yields the probability

P[B0 = x] =
R!

x!

PT1

1 - PT1

� �x

1 - Pð ÞR
XR

b = x

1

(b - x)!(R - b)!

P(1 - PT1
)

1 - P

� �b

for x = 0‚ 1‚ . . . ‚ R: (10)

Alternatively, under the assumption of RWD-2, the use of Equation (8) in conjunction with Equation (9)

will result in the following probability:

P[B0 = x] =
XR

b = x

b

x

� �
Px

T1
(1 - PT1

)b - xP[B = b]

=
XR

b = x

b

x

� �
Px

T1
(1 - PT1

)b - x
XR

s = 1

R

s

� �
Ps(1 - P)R - s

(s - 1)!

·
Z b + 1

b

Xminfºbß‚ sg

k = 0

( - 1)k
s

k

� �
(y - k)s - 1dy for x = 0‚ 1‚ . . . ‚ R:

(11)

A quantitative study of B0 is necessary since it is the variable that determines whether the PRV advances

from stage 1 to the nucleus of the neuron. The simulation results of Figures 5 and 6 illustrate that, in

FIG. 4. Probability distribution for the number of entered capsids at the axonal invasion stage as a function of the

number of receptors (R) and the probability of a receptor-mediated infection (P). The scenario of RWD-1 (left plot) is

considered by computing Equation (5), whereas the scenario of RWD-2 (right plot) is evaluated by computing Equation

(8) with a step size of bstep = 10 - 5 used for the numerical integration. RWD-2, receptor weighting distribution-2.
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general, the likelihood of capsids exhibiting motion during a time period of T1 at the axonal invasion stage

decreases with an increasing number of prospective capsids. For a given number of capsids, the probability

of motion during the aforementioned time period generally increases with an increase in the number of

receptors when comparing R = 200 versus R = 100. With respect to the impact of the RWD, the simulation

results indicate that the probability of capsid motion is generally higher for RWD-1 than for RWD-2.

Although Figures 5 and 6 confirm that P[B0 = x] decreases with decreasing values of P and PT1
, it is only for

the scenario of RWD-2 that P has a more pronounced affect than PT1
.

3.4. Considering a multiple-axon axonal invasion stage

The number of axon terminals connected to a neuron is a variable listed in the transneuronal passage

stage of Figure 1. We shall denote this variable by N and consider the case of N = 2 in Figure 7. For the rat

FIG. 5. Probability distribution for the number of viral capsids that exhibit motion at the axon during a time period of

T1 when the axonal invasion stage consists of R = 100 receptors. P[B0 = x] is computed as a function of the probability of

a receptor-mediated infection (P), and the probability of a viral capsid exhibiting motion during T1 seconds at the

axonal invasion stage (PT1
). The scenario of RWD-1 (left plot) is considered by computing Equation (10), whereas the

scenario of RWD-2 (right plot) was evaluated by computing Equation (11).

FIG. 6. Probability distribution for the number of viral capsids that exhibit motion at the axon during a time period of

T1 when the axonal invasion stage consists of R = 200 receptors. P[B0 = x] is computed as a function of the probability of

a receptor-mediated infection (P), and the probability of a viral capsid exhibiting motion during T1 seconds at the

axonal invasion stage (PT1
). The scenario of RWD-1 (left plot) is considered by computing Equation (10), whereas the

scenario of RWD-2 (right plot) was evaluated by computing Equation (11).
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striatum, N shall be determined by the terminal field density. Three general classes of neurons were

discovered in Card et al. (1999), those that have dense, sparse, or moderate numbers of projections to the

striatum. This signifies three different sets of values for N, although from a modeling perspective, the

consideration of N > 2 shall follow readily from our analysis. The presence of two axons requires con-

sideration of two variables B1 and B2 from the axonal invasion stage. Accordingly, Equation (3) is gen-

eralized to

Bi = f (vi‚ ci) = vT
i ci for i = 1‚ 2 (12)

to consider the number of entered capsids from two axons. Equation (12) includes an implicit assumption

that each axon is an independent unit capable of conveying an infection into the nucleus of a neuron. In the

transneuronal passage stage of Figure 7, the conditional probability distributions of B01 and B02 are obtained

from Equation (9). Subsequently, we initially assume that each axon will contribute equally to the pro-

gression of the infection through a summation of the form B0 = B01 + B02.

4. STAGE 2: TRANSNEURONAL PASSAGE

The production of progeny virus is essential for the subsequent transneuronal passage of PRV between

neurons. The transneuronal passage stage in Figure 1 encompasses the nucleus as well as a number of

other crucial components such as the cell body. Since PRV is a DNA virus, its replication will occur in

the nucleus of a neuron (Card et al., 1993). More specifically, the PRV DNA is packaged, and the capsid

is assembled in the cell nucleus with the envelopment taking place in the cytoplasm. A threshold

operation for the number of capsids entering the cell body of the first infected neuron shall be re-

presented as

s(j) = / for j = 1‚ 2‚ . . . ‚ 1000 if B0 > G
0 for j = 1‚ 2‚ . . . ‚ 1000 if B0 � G

�
‚ (13)

where s(j) denotes the virulence level of the jth particle, / denotes a positive constant, and G 2 [1‚ 10]

represents the minimum number of viral capsids necessary to commence viral replication in the neuron’s

nucleus. The probability of PRV replication is calculated according to

FIG. 7. An analytical model of PRV progression along the first two stages of the neural circuit consisting of a single

neuron that has multiple (i.e., two) potentially infected axons.
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P[s(j) = /] = 1 - P[B0 � G] = 1 -
XG
x = 0

P[B0 = x]‚ (14)

where the probability of B0 = 0‚ 1‚ . . . ‚G viral capsids exhibiting motion during time period T1 given by

either Equation (10) or (11) depends on the nature of the superposition of the viral capsids at the receptors

of an axon. The derivations above warrant quantitative investigation. Figure 8 examines the probability of

PRV replication by computing Equation (14) for RWD-1 and RWD-2. The results implicate the G value as

the most crucial of the considered parameters on the likelihood of virus replication. It is also noteworthy

that for RWD-1, the likelihood of virus replication increases with increasing values for P or PT1
, while such

a relationship is not observed with RWD-2.

Replication of viral genomes and assembly of progeny virions produce an average of 1000 particles per

neuron as discussed in Equation (13). A subset of those particles, J, will successfully transmit to an uninfected

neuron as part of the HOI stage of viral spread. This biological process is modeled through the s! w
transition block in the transneuronal passage stage of Figure 2. The biological implication of such operation

and its resultant J-component vector w are discussed as follows: The s! w operation will map the virulence

level / > 0 of the viral particles into a rate kJ for a Poisson variate. The specifics of this presumably

nonlinear mapping will be determined in a future study by using experimental data from works such as

Kobiler et al. (2010). Note that the virulence level / will be 0 if B0 � G, and in such a scenario a rate of 0 will

be assigned signifying the passage of no viral particles from the cell body to the uninfected neuron.

The J particles in the cell body of the infected neuron will be modeled through a J-dimensional vector w,

with J having a Poisson distribution with rate kJ . It shall be assumed that kJ@1000, and thus

P[J < 1000] � 1. In Kobiler et al. (2010), it was discovered that the average number of viral genomes that

are expressed or replicated per cell (i.e., E[J]) lies between four and seven irrespective of the multiplicity of

infection. Although the finding was for non-neuronal cells, the same authors have recently shown that the

result also holds for neurons (Taylor et al., 2012). From Figure 5 of Kobiler et al. (2010), we posit that

E[J] = kJ = 5. The 1000 - J particles that do not proceed from the infected neuron are referred to as

defective particles (McLauchlan and Rixon, 1992; Szildgyi and Berriman, 1994). Defective particles are

incapable of propagating infection, and are either removed by phagocytic microglia and macrophages, or

spread to another cell such as an astrocyte. The two possibilities are analytically identical, because in both

cases the defective particles will not affect the progression of the PRV through the circuit. At this point, we

shall have

P[J = j jB0 > G] = kj
J exp ( - kJ)=j! j = 0‚ 1‚ 2‚ . . .

0 otherwise

�
‚ (15)

where kJ = 5; the above probability shall be referred to as P[J = j jFOI] to highlight the fact that the quantity

is contingent on the occurrence of a first-order infection (FOI).

FIG. 8. The probability of PRV replication is computed through Equation (14). The scenario of RWD-1 (left plot)

was considered by using the B0 values obtained from Equation (10), whereas the scenario of RWD-2 (right plot) was

considered by using the B0 values obtained from Equation (11).
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In Figure 2, the function g( � ) shall model an operation on the J particles before the entrance of the virus

into an axon of a downstream neuron, and the metric D will quantify the number of capsids entering an

axon. We restrict the function g(:) to a linear summation through D = g(w‚ h) = wT h by introducing the

vector h 2 RJ , which contains weights that will model the superposition of the particles at the cell body of

the infected neuron. Recent empirical evidence from works such as Taylor et al. (2012) indicates that the J

particles are identical. Hence, we shall consider a scenario of the particles being identical and weighted

equally in the combining operation through the assignment h = w = [1‚ 1‚ . . . ‚ 1]. Consequently, the

number of capsids entering the axon will be determined through a counting operation as

D = g(w‚ h) = wT h = J: (16)

The above analysis serves as a sensible initial account for a rather complex process, and will lead to

P[J = jjFOI] = P[D = jjFOI], with the latter denoting the probability distribution for the number of capsids

entering an axon for a prospective HOI.

4.1. Considering a multiple-neuron transneuronal passage stage

To present a realistic view of the virus progression along a neural circuit, multiple neurons will need to

be considered. This section contains analysis corresponding to Figure 9, which considers the transneuronal

passage stage of the neural circuit being comprised of multiple neurons. The inputs to the transneuronal

passage stage in Figure 9 maintain the same structure as that introduced in Figure 7 with the contributions

from various axons summing together to provide an aggregate number of active capsids. The output of the

transneuronal passage stage will be a sequence D1‚ D2‚ . . . ‚ Dq, with q denoting the number of neurons in

the transneuronal passage stage that project to downstream neurons to beget a HOI. Subsequently, each of the

q outputs would be processed by a HOI stage whose operation shall be discussed in Section 5, Stage 3: HOI.

5. STAGE 3: HOI

The progression of PRV infection in a neural circuit involves virion transmission to synaptically con-

nected cells, which leads to a HOI. The analysis and quantification of such a progression will be presented

FIG. 9. A model for PRV progression along the first two stages of the neural circuit with multiple neurons. The above

depicts two neurons with the second neuron containing two potentially infected presynaptic axons.
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in the final stage of the model motivated by Figure 1. The infection of ancillary cells such as astrocytes that

do not form synaptic connections to other cells will not be deemed relevant within the context of deter-

mining an infection or the spread of PRV. Figure 3 depicts a model for the SOI stage shown in Figure 1. In

Figure 3, the metric D0 represents the number of capsids that exhibit motion during a time period of T2.

Such capsids would have stemmed from the D capsids that entered the cell body of an infected neuron at a

prior transneuronal stage. The derivation of the statistical properties of D0 is similar to the analysis for B0 in

Section 3.3. Namely, the number of active capsids will have a binomial distribution conditioned on the

event D = y through

P[D0 = xjD = y] = y

x

� �
Px

T2
(1 - PT2

)y - x for x = 0‚ 1‚ . . . ‚ y‚ (17)

where y is a positive integer. At the nucleus of the second-order neuron, a threshold operation similar to the

operation in the nucleus of the primary neuron is modeled through

s(j) = / for j = 1‚ 2‚ . . . ‚ 1000 if D0 > G2

0 for j = 1‚ 2‚ . . . ‚ 1000 if D0 � G2

�
‚ (18)

where G2 2 [1‚ 10] represents the minimum number of viral capsids necessary to commence viral repli-

cation. The probability of PRV replication in the second-order neuron’s nucleus is calculated according to

P[s(j) = /] = 1 - P[D0 � G2] = 1 -
XG2

x = 0

P[D0 = x]

= 1 -
XG2

x = 0

X1
y = x

P[D0 = xjD = y]P[D = y]

 !

= 1 -
XG2

x = 0

X1
y = x

y

x

� �
Px

T2
(1 - PT2

)y - xky
J exp ( - kJ)=y!

 !
:

(19)

In the above expression, the probability P[D = yjFOI] given by Equation (15) is used in place of P[D = y]

because a SOI can only be considered if a FOI has occurred. The probability of a SOI is thus expressed as

P[SOI] = (1 - P[B0 � G])(1 - P[D0 � G2])‚ (20)

where the above expression contains the constituent probabilities provided by Equations (19) and (14). The

above expression unifies the analysis undertaken for the three-stage model and provides a concise means to

estimate the likelihood of a SOI. We consider the axons synapsing onto a neuron as the only location where

virus particles can propagate from an infected presynaptic neuron to an uninfected postsynaptic neuron.

FIG. 10. A depiction of PRV progression along the HOI

stage of the neural circuit. One m + 1th-order neuron is shown

with two axons connecting it to the transneuronal passage

stage of what could be either a single or two distinct mth-order

infected neurons.
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Accordingly, the case of multiple infected axons conveying the infection to an uninfected neuron would be

modeled through the superposition D0 = D1
0 + D2

0
. This is modeled through the HOI stage shown in Fig-

ure 10. Computing the probability of HOI beyond the second order would encompass repeating the

functionality presented in Figure 3 for each subsequent stage of downstream neurons. For instance, the

probability of a third-order infection would be expressed as

P[TOI] = (1 - P[B0 � G])(1 - P[D0 � G2])P[s(j) = /]

= (1 - P[B0 � G])(1 - P[D0 � G2])(1 - P[D00 � G3])

= P[SOI](1 - P[D00 � G3]):

(21)

It should be evident that the progression of a HOI along the neural circuit is governed by a Markov

process, more specifically a birth process. The above expression presents a recursive relationship

for evaluating the HOI probabilities, with each HOI stage being characterized by a kJ , T, PT, and G
value.

PRV particles are frequently referred to as self-amplifying in the sense that when a particle replicates in

the cell nucleus, it results in the multiplicative affect of begetting *1000 particles. The presented model

accounts for this effect in the transneuronal passage and HOI stages. In addition, PRV is often referred to as

a sparse labeler because not all of the neurons in a neural circuit are ultimately labeled by this tracer. The

sparsity occurs because of several limiting factors: First, at the initial site of infection a limited number of

axon terminals take up the virus. Since there is an estimate of only 1000 particles per neuron, and there may

be 10,000 synapses per neuron, it may be impossible to infect all synapses. The second limiting factor is the

all-or-nothing thresholding operation in the nucleus of the higher order neuron. A third limiting factor is

antiviral response, namely interferon signaling has been shown to prevent more extensive spread from sites

of primary replication (Mikloska and Cunningham, 2001; Rosato and Leib, 2015).

6. CONCLUSIONS AND FUTURE WORK

This work proposes a three-stage architecture to analytically model the progression of PRV Bartha from

the axonal invasion stage to transneuronal passage and a HOI. Our analysis commenced by translating a

diagram for the ingress of PRV through a peripheral or intracerebral injection and the retrograde transport

to neurons into a three-stage schematic. The subsequent computational analyses have been based on

operations posited to occur according to the virology literature. At each stage of the model, several

parameters and quantitative operations were identified as being important in the behavior of the virus

progression. The proposed operations are subject to change as additional experiments are performed

yielding new datasets. As more empirical data become available, increasingly precise numerical values for

the variables discussed in Table 1 can be incorporated into the presented model to predict the probability of

HOI and spread of the injected PRV.

A second objective of the modeling is to identify parameters whose numerical values should be deter-

mined by virologist through future experimentation. Efforts to quantitatively model the progression of the

injected viral tracer in neural circuits remain absent from the literature. Quantitative methods for estimating

the likelihood of the virus replicating at a primary neuron and the probability of a HOI in a neural circuit

should complement empirical research. In stage 1, modeling receptor engagement and uptake of injected

virus identified an absence of information related to receptor density and accessibility. In stage 2, modeling

the establishment and progression of infection within the primary neuron identified the necessity of having

information about how frequently viral infection does not elicit productive viral replication. Similarly, for

stage 3 the modeling of SOI and HOI required knowledge of progeny virion competency. Similar to the

scenario with stage 2, it is not known how often a viral particle is not capable of propagating infection. The

only means to attain values for such variables is through experimental methods that provide empirical

assessments on different aspects of viral spread in the nervous system.

While limited, various research groups have attempted to quantify the transmission of herpesviruses

[reviewed in Herr et al. (2017)]. A great deal of work has analyzed the efficiency of viral particle

transport in the nervous system. Two studies have even quantified the timing and efficiency of viral

particle transport in in vivo neuronal infections (LaVail et al., 2003; Granstedt et al., 2013). Similarly,

extensive work has quantified the capacity of cells to be coinfected by multiple herpesviruses. By

MODELING OF PRV INFECTION IN A NEURAL CIRCUIT 1243

D
ow

nl
oa

de
d 

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y 
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



studying the distribution of fluorescent protein expressing viruses, Kobiler et al. (2010) found that a

maximal level of coinfection, approximating eight viral genomes, can be supported by infected cells.

Further, the distribution of fluorescent protein coexpression could be modeled as a Poisson-based dis-

tribution of viral replication. Works such as Kobiler et al. (2010) have considered parametric estimation

of a parameter discussed in our model by assuming a Poisson distribution and finding maximum-

likelihood (ML) estimates of the average number of viral genomes expressed per cell (i.e., E[J]).

Unfortunately, ML estimation cannot be applied when virtually nothing is known (or presumed) about

the underlying distribution. This presents a challenge from the statistical point of view, and the utility of

methods such as Geman and Hwang (1982) should be investigated.

In fact, decisions must be made as whether to consider a nonparametric technique, or to speculate

probability distributions for the parameters without much a priori information and then derive ML esti-

mates. The second alternative, while probably simpler, has the drawback of fitting to an underlying

distribution that may not be completely accurate in representing the virology. The studies mentioned above

have already been implemented in in vitro models of viral spread (Taylor et al., 2012), identifying potential

restrictions to second-order coinfection that can inform the mathematical models detailed in stages 2 and 3.

In fact, work in progress has extended these coinfection experiments to map the neurotropic spread within

an in vivo circuit (Herr and Thornburg, 2018). While the information derived from the aforementioned

studies cannot define the variables needed to refine the mathematical models, they do provide insight into

future experimental designs. Such experiments will be challenging to conduct; therefore, it is important to

have justifying rationale behind their significance.

Table 1. A Litany of the Parameters Discussed in the Presented Model

Parameter

Representative

values Description

ai TBD Contribution of the proximity of the receptor to the point of injection in determining

a receptor-mediated infection.

bi TBD Contribution of the affinity of the axon terminal to a receptor-mediated infection.

ci TBD Contribution of the affinity of glia to a receptor-mediated infection.

xi TBD Contribution of the affinity of extracellular matrix to determining a receptor-mediated

infection.

W [0‚ 1] Anatomical indication of the likelihood of infection.

di (0‚ 1500]lm Distance from the ith receptor to the point of injection at the axonal invasion stage.
�d (0‚ 1500]lm Mean receptor distance to the point of injection for the close vicinity surrounding

the injection area.

T1 A few seconds Considered time window over which viral capsids exhibit motion after entering

the axon of a primary neuron.

T2 > 10 hours Considered time window over which viral capsids exhibit motion after proceeding from

an infected primary neuron to a subsequent (i.e., second-order) neuron.

PTi
[0,1] i = 1: probability of a viral capsid exhibiting motion during T1 seconds at the axonal

invasion stage. i = 2: probability of a viral capsid exhibiting motion during

T2 seconds at the axonal invasion stage of a second-order neuron.

G [1‚ 10] The minimum number of viral capsids necessary to commence the replication of an

infection in a neuron’s nucleus.

E[J] [4,7] The mean number of viral genomes that are expressed or replicated per cell.

R @1 Number of receptors entering an axon.

P[Ri = I] [0,1] Probability of receptor-mediated infection at the axonal invasion stage.

f (x‚ y) xT y Operation performed by the axonal invasion stage on the receptor outputs to determine

the number of entered capsids.

g(x‚ y) xT y Operation performed at the cell body of an infected neuron on the J particles entering

the cell body in arriving at the number of viral capsids that enter the axon

of a downstream neuron.

The represented values have been determined from rat striatum data reported in Card et al. (1999), and the operations f ( � ‚ � ) and

g( � ‚ � ) were posited as an initial account. The range of T1 and T2 values was gathered from Granstedt et al. (2013) and Antinone and

Smith (2010). Values for several of the introduced parameters are currently unknown and warrant empirical measurement TBD.

TBD: to be determined.
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