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REVIEW

Minimal residual disease in prostate 
cancer patients after primary treatment: 
theoretical considerations, evidence 
and possible use in clinical management
Nigel P. Murray*

Abstract 

Minimal residual disease is that not detected by conventional imaging studies and clinically the patient remains 
disease free. However, with time these dormant cells will awaken and disease progression occurs, resulting in clinically 
and radiological detectable metastatic disease. This review addresses the concept of tumor cell dissemination from 
the primary tumor, the micrometastatic niche and tumor cell survival and finally the clinical utility of detecting and 
characterizing these tumor cells in order to guide management decisions in treating patients with prostate cancer.
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Background
With the worlds demographic changes and aging popu-
lation prostate cancer has become the most common 
non-skin cancer in developed countries, 1,094,916 new 
cases were diagnosed and 307,481 deaths were reported 
worldwide in 2012 [1]. The natural history of untreated 
prostate cancer is one of evolution to a metastatic dis-
ease, especially disseminating to bone, over a variable 
time period. With advent of prostate cancer screening 
using the prostate specific antigen (PSA) there has been 
a migration to earlier stage cancers localized to the pros-
tate gland [2]. Radical prostatectomy (RP) is a standard 
treatment option for these patients; however, 4–32% of 
these men with eventually relapse following radical pros-
tatectomy (RP) [3–5]. In patients who achieve a PSA 
nadir of < 0.01 ng/ml post-surgery the failure of curative 
surgery is hard to explain. Although the peak time to 
relapse is 2 years, the majority will do so within 5 years 
[6, 7] but many patients remain clinically disease free for 
years until there is an increase in the serum PSA or overt 

metastasis are detected. One in five men have disease 
recurrence after 5 years and one in twenty after 10 years 
[6, 7].

Although an erroneous pathological classification of 
the tumor; in terms of either the cancer penetrating the 
prostate capsule (pT3) or an anatomically incorrect dis-
section plane (unrevealed positive margin), which left 
behind microscopic amounts of PC which subsequently 
progressed may explain some cases, this is not the case 
in the majority. The presence of sub-clinical microme-
tastasis (mM) not detected by conventional imaging is a 
more logical explanation of these cases. A positive bone 
scan has been reported in between 6 and 9% of patients 
with biochemical failure; however most of these studies 
are more than 15  years old, with median PSA levels of 
over 5 ng/ml [8, 9]. Similarly CT scanning fared little bet-
ter with a detection frequency of 14% [8]. Since 2013 the 
use of Gallium-68-prostate specific membrane antigen 
(68Ga-PMSA) position emission tomography/computed 
tomography (PET/CT) has changed clinical practice and 
is incorporated in the Australian guidelines for prostate 
cancer restaging after biochemical failure [10]. It has a 
specificity of over 98% for prostate tissue; however the 
sensitivity is dependent on PSA levels. With PSA levels 
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between 0.05 and 0.09 ng/ml 8% of patients had a positive 
PET/CT; 23% in the range 0.10–0.19 ng/ml and rising to 
58% of patients with a PSA level of 0.20–0.29 ng/ml [11]. 
The 50% positive detection rate in patients with a PSA 
of 0.2–0.5  ng/ml is similar across differing studies [12, 
13]. However, a systemic review of 37 published studies 
found a positive scan rate of 11–75% in patients with a 
PSA level of < 0.5  ng/ml [14]. Importantly this resulted 
in significant changes in the management of patients, in 
terms of local versus systemic rescue therapy in 29–87% 
of patients [14]. Limitations of the test include the 10% 
of prostate cancers that do not express PMSA [15] and 
nonspecific labeling of lymph nodes, especially those 
with follicular hyperplasia [16, 17]. However, with these 
advances there are more patients with “less indemonstra-
ble minimal residual disease”.

Although new techniques are detecting smaller micro-
metastasis, there is a limit to image resolution, the unde-
tected microscopic foci not removed by curative surgery 
are termed minimal residual disease (MRD) previously 
called micrometastatic disease. Minimal residual dis-
ease was first used to describe patients with hematologi-
cal malignancies in complete clinical and hematological 
remission post bone marrow transplant yet using molec-
ular techniques such as polymerase chain reaction had 
small numbers of leukemic cells detected in bone mar-
row. The term has been used increasingly in patients with 
solid tumors, especially breast cancer [18–20]. Minimal 
residual disease encompasses residual tumor cells which 
can persist locally as cancer stem cells, in the circulation 
as circulating tumor cells and in distant organs such as 
bone marrow as disseminated tumor cells or microme-
tastasis, the three faces of minimal residual disease [21].

The following databases were systemically searched 
during January 2018; Pubmed, Medline, SCOPUS, Web 
of Science, no language restriction, date restriction or 
publication status restriction were used. The reference 
lists of all included articles were hand checked for addi-
tional relevant articles not identified in the database 
searches. Full text articles were retrieved for any articles 
deemed potentially eligible.

Primary dissemination
The metastatic process by which cancer cells dissemi-
nate from the primary tumor, survive in the circulation, 
implant in distant tissues, survive and grow is multistage 
and complex. To explain the presence of treatment failure 
in men with pathologically organ confined prostate can-
cer dissemination of tumor cells must be an early event, 
prior to treatment.

Circulating tumor cells (CTCs) were first described 
in 1869 by Ashworth [22] although only in the last few 
decades methods have been developed to detect these 

cells, defined as primary (pre-treatment) or second-
ary (post curative therapy) circulating prostate cells 
(CPCs).

Tumor cells are thought to enter the circulation pas-
sively, actively or both [23], as single cells, in clusters, in 
strands or in single files of cells.

Passive entry into the circulation occurs as a result of 
primary tumor growth, mechanical forces or friction 
which causes the cells to enter the circulation. Little is 
known about passive entry into the circulation, it has 
been postulated that cancers induce new blood vessel 
formation by the secretion of vascular endothelial growth 
factor (VEGF), this process of angiogenesis often results 
in leaky vessels as a consequence of weak interconnec-
tions of the endothelial cells and intercellular openings 
[24]. The endothelial cells do not form a normal mon-
olayer and as such do not have a normal barrier function 
[25]. Thus with tumor growth, single or clusters of can-
cer cells may be pushed through these leaky intercellular 
openings and enter the circulation. This leakiness may 
be enhanced by the secretion of inflammatory media-
tors and the migration of leukocytes through the vessel 
wall [26]. The secretion of inflammatory cytokines which 
increase these endothelial openings [27] is one explica-
tion why epithelial cells may be detected in non-malig-
nant disease [28, 29].

Passive dissemination may also occur as a result of 
tumor manipulation, either during surgery [30, 31], 
seed implantation during brachytherapy [32] and pros-
tate biopsy [33]. Tumor cells may be passively moved 
through micro-tracks created by other tumor cells that 
are actively migrating into the circulation, as a result of 
proteolysis [34].

Active dissemination of tumor cells requires specific 
phenotypic characteristics which confer the ability to 
the tumor cell to detach from the surrounding cells, 
survive free of them, migrate towards the blood vessels 
where they cross the capillary endothelial wall to enter 
the circulation. Epithelial cells are anchored to other 
cells via adhesion molecules such as cadherins, clau-
dins and plakoglobin. Normal epithelial cells show plas-
ticity and undergo dynamic and reversible transitions 
between epithelial and mesenchymal cell phenotypes 
[35]. This epithelial to mesenchymal transition (EMT) 
is seen during embryogenesis, wound healing and tis-
sue regeneration [36]. Cancer cells exhibit a decreased 
expression of anchor proteins such as E-cadherin [37–39] 
and beta-catenin [37], a loss of cytokeratins and EpCAM 
(epithelial cell adhesion molecule) [40–42] with upregu-
lation of mesenchymal markers such as vimentin, N- and 
O-cadherins [43, 44]. E-cadherin is a calcium depend-
ent cell–cell adhesion molecule, essential in maintaining 
the cellular polarity and architecture; its dysregulation 
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modulates various signaling mechanisms including Wnt 
[45], RhoGTPase [46] and NF-kB pathway [47].

Single cells have been shown to exhibit these EMT 
changes while cell clusters detected in the blood only 
show a partial EMT, permitting them to enter the circu-
lation while retaining some of the cell-to-cell interaction 
profiles of epithelial cells [48]. EMT can be initiated by 
paracrine signaling of TGF-Beta, WnT, platelet derived 
growth factors and interleukin 6 [35, 49] which in turn 
trigger the activation of the transcription factors Snail, 
Twist and Zeb thus maintaining the phenotype of a mes-
enchymal cell in an autocrine fashion [35].

There are also changes in matrix metalloproteinase 
(MMP) expression, especially MMP-2. These zinc con-
taining endopeptidases are activated in situ and degrade 
the extra-cellular matrix, facilitating cell migration 
and invasion. Increased MMP-2 expression has been 
reported in primary prostate cancer and associated with 
an increasing Gleason score and pathological stage [33, 
50, 51].

Not all cancer cells that actively migrate to the blood 
show EMT characteristics, centrosome amplification has 
been reported to induce cancer invasion [52]. In these 
cells cellular adhesion is reported to be decreased down-
stream of Rac-1 by an increased Arp2/3 dependent actin 
polymerization [52].

Survival in the circulation and implantation 
in distant tissues
In order to implant at distant sites, CPCs must survive 
in the circulation, it has been suggested that only 0. 01% 
of CTCs can produce a single bony metastasis [53, 54], 
and injected CPCs obtained from men with castrate 
resistant prostate cancer may fail to produce metasta-
sis when injected in immune compromised mice [55]. 
Sheer stresses found in the blood decrease the number of 
CTCs, however it has been reported that cells that have 
undergone EMT are more resistant than epithelial cells 
[56]. They resist anchorage dependent cell death, anoikis, 
which may be due to over-expression of anti-apototic 
proteins such as Bcl-2 [57] or suppression of caspase 
associated death via the activation of tropomyosin related 
kinase B [58].

Escape from the immune system may be direct, 
increased CD47 expression, an anti-phagocytic signal 
expressed on cancer cells prevents macrophage and den-
dritic cell attachment and the expression of pro-phago-
cytic calreticulin is decreased [59]. Furthermore, myeloid 
derived suppressor cells facilitate cancer cell survival by 
adhering to the CPCs [60]. In addition, CPCs become 
coated by platelets, transferring MHC class I antigens 
to the tumor cell surface. This coating of phenotypic 
normality disrupts the normal recognition of tumor 

cells by NK and T cell mediated immunity and as such 
improves tumor cell survival [61]. This platelet coating 
also enhances binding of the tumor cell to the endothelial 
lining of vessels at distant sites, enhancing invasion [62].

The pre‑micrometastatic niche and CTC homing
In 1889 Paget reported that the process of metastasis did 
not appear to occur by chance and suggested the “seed 
and soil” hypothesis [63]. Thus the seed (CTC) aris-
ing from a specific tumor shows a strong preference for 
the soil of specific metastatic sites, in the case of pros-
tate cancer cells bone [64, 65]. Tumor cells may express 
parathyroid hormone related peptide (PTHrP) [66], 
chemokine CXCL 12 receptors, such as CXC chemokine 
receptor type 7 [67] or type 4 [68]. CXCL 12 is produced 
predominately by a diversity of bone marrow stromal 
cells, the cancer cells homing into the bone marrow by a 
CXL 12 gradient. In the bone marrow microenvironment 
there is a dynamic balance between stem cells, progeni-
tor cells, mature immune cells and supporting stromal 
cells, this has been termed the metastatic niche [69, 70]. 
It is thought that there are two primary niches; the osteo-
blastic niche comprised of hematopoietic stem cells and 
the perivascular niche comprised of mesenchymal stem 
cells [70, 71]. In addition trophic factors, cytokines and 
chemokines act as bone marrow stromal mediators in 
the bone marrow niche. CXCL 12, integrins, osteopon-
tin, vascular cell adhesion molecule-1 (VCAM-1), trans-
forming growth factor beta (TGF-beta) and the receptor 
activator of nuclear factor kappa-b ligand (RANKL) are 
have been reported to influence the metastatic niche 
specificity for tumor type [69, 72]. Cell to cell adhesion is 
crucial for the initial seeding to the bone marrow niche. 
The expression on the surface of CTCs of integrin αvβ3 
promotes the adherence to the extracellular matrix, via 
osteopontin, fibronectin, vitronectin and thrombospon-
din [73]. CTCs have also been shown to express α4β1 
integrin which binds to the intercellular adhesion mol-
ecule-1 (ICAM-1) and VCAM-1 expressed by bone mar-
row and vascular cells [73]. Annexin II a protein that 
mediates the adhesion of hematopoietic stems to osteo-
blasts has also been reported in prostate cancer seeding 
to bone marrow [74]. Recent studies report that CTCs 
locate to the perivascular niche where endothelial cells, 
CXCL 12 abundant reticular (CAR) cells and mesenchy-
mal stem cells regulate the implanting tumor cells [75]. 
Inversely there is a subpopulation of mesenchymal stem 
cells which carry endothelial and pericyte markers which 
suppress the homing of CTCs to bone marrow [76]. 
CPCs home in the niche via a SDF-1 cytokine gradient, 
SDF-1 is expressed in vascular “hot-spots” correspond-
ing to regions in the bone that attract circulating tumor 
cells. The SDF-1/CXCR-4 interaction is pivotal for the 
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recognition and binding to permissive vasculature [77]. 
The role of tumor suppression genes/proteins is also 
involved, CD82 expression on CPCs, the product of the 
tumor suppressor gene KAI1, impedes adhesion of the 
tumor cell to endothelial cells by inhibiting crosstalk with 
the Duffy antigen receptor [78]. The presence of CPCs 
that express CD82 is associated with low grade prostate 
cancer and the absence of bone marrow micrometastasis 
[79].

Cancer cell implantation and survival
Although mechanical entrapment may be one mecha-
nism by which CTCs lodge in distant sites it is insuf-
ficient [80], tumor cells must adhere to the vascular 
endothelium and extravasation by an active process. 
The initial attachment is via selectins, the presentation 
of selectin ligands is thought to be crucial to extravasa-
tion, especially E-selectin [81]. This results in morpho-
logical changes in the tumor cells, reorganization of the 
cytoskeleton and tyrosine phosphorylation [82]. This 
suggests that downstream signaling effects occur as a 
result of cellular adhesion. The expression of selectin 
ligands varies with tissue type and thus may influence 
the site of cancer cell colonization and explain in part 
organotropism [83]. This initial adhesion via selectins is 
reinforced by other adhesion molecules, the expression 
of immunoglobulin cell adhesion molecules ICAM and 
VCAM have been implicated in this role [84].

Once implanted, the biochemical signature of the 
niche will determine the fate of the cancer cell and it is 
thought to be the rate limiting step of metastasis [85]. 
In order to implant it is postulated that the tumor cells 
undergo a process opposite to the initial EMT, that of the 
mesenchyme epithelial transition (MET). It is suggested 
that there is re-expression of epithelial markers and 
down regulation of mesenchyme markers, which permits 
tumor cell adhesion and colonization in the new environ-
ment. The evidence for MET is more limited that EMT; it 
has been shown that E-cadherin expression is increased 
with respect to the primary tumor [86] and its re-expres-
sion may allow the cancer cell to survive in the target 
tissue [87]. The expression of E-cadherin in metastatic 
tissues may be found in patients with E-cadherin negative 
primary tumors [86]. Down regulation of E-cadherin in 
invasive cancer is due to promoter methylation and tran-
scriptional repression and regulated by epigenetic mech-
anisms [88]. Re-expression of E-cadherin is not a random 
process; studies using breast cancer cell metastatic 
models in liver suggest that E-cadherin is directly regu-
lated by the hepatocytes [89]. The methylation of a CpG 
island proximal to the E-cadherin transcription start site 
is inversely related to E-cadherin expression [90]. This is 
not the result of global hypo-methylation but specifically 

at the E-cadherin promoter site [89]. Re-expression sec-
ondary to hypo-methylation in prostate cancer cell mod-
els has also been shown to be driven by lung parenchymal 
cells [91]. Thus regulation of E-cadherin expression is not 
a result of gene loss or mutation, this epigenetic regula-
tion allows for an increased phenotypic plasticity and 
influenced by factors in the microenvironment. Inhibi-
tion of Epithelial Growth Factor receptor signaling causes 
re-expression of E-cadherin in cultured prostate cancer 
cells [92] via the transcription factors Snail [93] and/
or Slug [94] is one described mechanism, the second 
being by direct interaction at the promoter site or via the 
transcriptional factors Snail, Slug and Twist [95]. While 
Laminin-1, a component of the extra-cellular matrix, 
induces E-cadherin expression in 3 dimensional cultured 
breast cancer cells by inhibiting DNA methyltransferase 
1 and reversing promoter methylation status [96].

However the MET is only partial, re-expression of 
E-Cadherin does not completely suppress the expression 
of the mesenchymal markers Vimentin and FSP1 [97], 
thus retain abilities for trans-endothelial migration [84].

Tumor-stromal cell interactions are important; in occu-
pying the hematopoietic stem cell (HSC) niche tumor 
cells interact with bone marrow osteoblasts. The bind-
ing of tumor cells to bone marrow osteoblasts induces 
TANK binding kinase 1 (TBK1) expression that leads to 
inhibition of mTOR signaling and cell cycle arrest. Vari-
ous cytokines and chemokines produced by osteoblasts 
determine the proliferative activity of the implanted 
tumor cell.

Growth arrest specific gene 6 (GAS6) is a growth fac-
tor that regulates cell cycling of HSCs and is expressed 
by osteoblasts, it acts as a ligand for the AXL, TYRO3 
and MERTK family of tyrosine kinase receptors [98] 
inhibiting tumor cell proliferation through G1 cell cycle 
arrest and S cell cycle phase delay [99]. GAS6 overex-
pression activates MERTK via phosphorylation leading 
to a decreased p-ERK/p-p38 and increased cell cycle 
inhibitors/dormancy associated transcription factors 
p27, NR2F1, SOX2 and NANOG [100]. In the presence 
of GAS6 there is an increased AXL/TYRO3 receptor 
ratio that increases growth arrest, changes in this ratio 
of receptor expression changes the cells ability to enter 
or exit dormant or proliferative states [101]. GAS6 binds 
to the TAM receptor Axl on prostate cancer tumor cells 
which in turn induces expression of TGF-β1 and β2, this 
stimulates paracrine secretion (from osteoblasts) and 
autocrine secretion (from tumor cells) and leads to tumor 
cell dormancy through up-regulation of p27 an ubiqui-
tous cell cycle inhibitor [102].

Thus GAS 6 appears to be important in tumor cells 
remaining dormant in the bone marrow niche and thus 
viable for extended periods. There is also evidence that 
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GAS6 increases the number of prostate cancer cells with 
a stem cell phenotype, which is CD133 positive/CD44 
positive, within the bone marrow [103]. Cancer stem cells 
(CSCs) are proposed to be stem like cells found in tumors 
and possess the capability to self-renew and differentiate 
into new diverse tumor cells. They represent a subpopu-
lation of tumor cells that express specific surface antigens 
and possess mesenchymal phenotypes. The hematopoi-
etic niche has the molecular mechanisms to regulate 
stem cell quiescence and self-renewal. Using murine 
models of human metastasis, it has been shown that of 
prostate cancer tumor cells recovered from bone marrow 
was significantly enriched for CSCs [104]. The expression 
of CD133 and CD44 was used to identify CSCs, increases 
in cytokine levels in bone marrow after intra-cardiac 
injection of tumor cells quickly returns to basal levels, 
using BrdU labeling CSCs had a lower proliferation rate 
compared with non-stem cell tumor cells, nor was there 
evidence that there was selective homing of CSCs or 
increased survival in the circulation [104]. It was further 
shown that direct cell-to-cell contact of prostate cancer 
cells and osteoblasts causes a significant shift from non-
CSCs to CSCs [104]. GAS6 regulates part of the conver-
sion of tumor cells into stem cells via its receptor Mer 
that activates the mTOR signaling pathway following 
cell to cell contact [104]. Furthermore, GAS6 inhibits the 
cleavage of caspase-3 and PARP to prevent apoptosis of 
the tumor cell [99]. When tumor cells are cultured with 
GAS6-null osteoblasts the conversion to CSCs is signifi-
cantly diminished, and in mice models CSCs are found 
in much higher numbers in endothelial bone surfaces 
expressing GAS6 [104]. These changes to form CSCs 
are seen only in bone marrow and not in lung or spleen 
[104] and as such the bone marrow plays an important 
role in the accumulation of self-renewing, slowly prolif-
erating CSCs. The growth of CSCs in the bone marrow 
depends on the GAS6 pathway, not only its expression in 
osteoblasts but also in prostate cells [101]. Consistently 
when prostate cancer cells reach the bone marrow Axl 
expression in prostate cells and GAS6 expression in oste-
oblasts both increase simultaneously [105]. The implica-
tion is that stromal cell-tumor cell contact converts the 
implanted tumor cells into cancer stem cells, which have 
the capability to self-renew and are resistant to chemo 
and radiotherapy.

It has also been reported that the microenvironment 
also decreases the expression of matrix metalloprotein-
ase-2 (MMP-2). CPCs have been shown to express mem-
brane MMP-2; tumor cells detected in bone marrow 
aspirates may also express MMP-2; however, on implant-
ing in bone marrow the micrometastasis from low grade 
tumors and surrounding stromal cells are negative for 
MMP-2 expression, while in higher-grade cancers the 

micrometastasis retain MMP-2 expression [106, 107]. 
MMP-2 is important in the ability of cells to disseminate 
and in the activation of MMP-9 which leads to neovas-
cularization [106]. The authors suggested that stromal 
Tissue Inhibitor of Metalloproteinase-2 might be respon-
sible for this finding. Decreased MMP-2 expression 
together with increased epithelial cell marker expres-
sion by tumor cells decreases their ability to further 
disseminate.

In order to grow, the tumor cells need space within 
the micrometastatic niche. The Receptor Activator of 
Nuclear Factor Kappa B-Ligand (RANKL) is expressed 
by osteoblasts and stromal cells within the bone mar-
row. RANKL activates osteoclastogenesis that leads to 
bone reabsorption and creates space for the tumor cells. 
Osteoclastogenesis causes demineralization and the 
release of tumor growth stimulating factors from the 
extracellular matrix [108]. RANKL released from local 
osteoblasts stimulates the expression of interleukin 6 
(IL-6) in the tumor cells. IL-6 activates three major sign-
aling pathways, the Janus tyrosine family kinase (JAK) 
signal transducer and activator of transcription (STAT) 
pathway, the ERK1/2 and MAPK pathway and the PI3-K 
pathway. These signaling pathways regulate apoptosis 
and thus cell survival and cellular proliferation and play 
a key role in bone metastasis [109]. The secretion of IL-6 
from tumor cells induces bone turnover and enhances 
osteoclastogenesis and osteoblast differentiation [110] 
which in turn leads to production of IL-6 by osteoblasts 
and further stimulates tumor cell proliferation in a par-
acrine fashion [111]. The IL-6 expressed by tumor cells 
stimulates the expression of RANKL and increases tumor 
cell sensitivity to its effects [112]. The inhibition of IL-6 
production with tocilizumab decreases skeletal tumor 
growth, serum RANKL levels and RANK expression in 
animal models [112].

Escaping from dormancy
Little is known on how cells escape from dormancy, 
many hypotheses have been proposed on how tumor cells 
are maintained in a dormant or indolent state before the 
emergence of overt metastasis. The lack of angiogenesis, 
immune surveillance by T-cells, balanced proliferation 
and apoptosis have all been proposed [113]. The majority 
of patients have tumor cells negative for Ki-67, a marker 
for cellular proliferation [114], although the fraction of 
Ki-67 positive cells in higher in more aggressive cancers 
[115]. More recently there is experimental evidence using 
mouse models that aberrant unregulated expression 
of the vascular cell adhesion molecule-1 (VCAM-1) is 
involved in the progression from indolent to overt metas-
tasis [116]. It is thought to recruit pre-osteoclasts to the 
bone marrow micrometastasis and promotes signal flow 
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through the P13K-Akt pathway and possibly depend-
ent on an intact NFκB pathway [117]. More recently the 
identification of microRNAs (miRs) as regulators of the 
transcriptome are involved in this process. Sixteen miRs 
were found to be highly expressed in dormant tumors, 
down-regulation of these dormancy associated miRs 
was correlated to the switch to a fast growing angio-
genic phenotype [117]. miR-580 and miR-190 expression 
was shown to be inversely reverted to disease stage. It is 
thought that loss of dormancy associated miRs switches 
tumor cells to a stage of exponential growth [117]. Two 
important targets of miR-580 and miR-190 are the EphA5 
and Angiomotin genes, both are expressed in dormant 
tumors, are inversely related to tumor stage and down 
regulated during the angiogenic switch [118]. The circu-
lating protein products of these two genes, EphA5 and 
angiostatin, respectively, are correlated with the tumor 
dormancy phase [118].

Once free from dormancy, there is tumor growth and 
the appearance of clinical and radiological evidence of 
metastasis.

Changing the soil selects the seed—Paget revisited
Micrometastatic growth is seen in clinical practice as an 
increase in serum PSA after curative therapy and before 
any imaging studies show evidence of metastatic disease 
and is defined as biochemical failure.

First line treatment is with androgen deprivation 
therapy (ADT) which can be achieved by bilateral orchi-
ectomy (surgical castration) or more frequently a lute-
inizing hormone-releasing hormone (LHRH) agonist 
or antagonist (medical castration) which appear to be 
equally effective [119]. Treatment success is reflected in 
a decreasing serum PSA, but after a variable time period 
the serum PSA increases although the serum testoster-
one remains at castrate levels (< 50 ng/dl) and defined as 
castrate resistant prostate cancer.

A fundamental question is whether the ADT resistant 
tumor cells are a result of clonal selection or clonal evolu-
tion as a result of genetic instability or both. In the case 
of clonal selection, the phenotypic and genotypic charac-
teristics should be present in at least a subgroup of tumor 
cells in the primary tumor: The use of ADT gives this cells 
a selective advantage permitting them to proliferate and 
form metastasis. With clonal evolution the tumor cells 
may not be present in the primary tumor, but with time 
the genotype has evolved to an ADT resistant phenotype. 
There are few clinical reports of sequential changes with 
time, the majority are in animal models, or comparing 
ADT sensitive and resistant tumors after ADT.

In animal models ADT causes EMT with increases 
in the expression of N-cadherin, Zeb1, Twist 1 and 
Slug and decreases in E-cadherin. Although the tumors 

diminished in size, the surviving tumor cells had 
increased “stemness” and activated TGF-beta both at 
mRNA and protein expression levels, as well as N-cad-
herin and vimentin and decreased E-cadherin [120]. 
These changes have been observed in human prostate 
cancer tissue [121]. Zeb 1 appears to mediate andro-
gen deprivation induced EMT via a bidirectional nega-
tive feedback loop with ADT and its inhibitor miR-200b 
decreases [120]. Over expression of Zeb 1 is sufficient 
to switch cells from a non-cancer stem cell to a cancer 
stem cell status and required for maintaining tumor cells 
in a stem cell state [122]. These cancer stem cells express 
the CD133 membrane protein as well as CD44. As to the 
question of the origin of these cells, it has been reported 
that the basal cells of prostate contain a subpopulation of 
androgen independent epithelial stems cells [123], fur-
thermore it has been reported that prostate cancers con-
tain both androgen dependent and independent tumor 
cells. The selective pressure of ADT causes clonal expan-
sion of the androgen insensitive cells altering their rela-
tive frequency and leads to the development of castrate 
resistance [124]. Hormone free cell cultures obtained 
from early stage prostate cancer specimens showed that 
colonies of androgen independent cells grow in 70% of 
cases, supporting the hypothesis that clonal selection 
may be a key mechanism in castrate resistant prostate 
cancer [125].

In the clinical, the expression of HER-2 has been asso-
ciated with resistance to ADT. Prostate cancer and bone 
marrow micrometastasis contained both HER-2 posi-
tive and negative cells, that the risk of treatment failure 
was similar in patients with HER-2 positive and nega-
tive micrometastasis. However, after starting ADT there 
was selection of HER-2 expressing cells, HER-2 negative 
cells being eradicated and these men had a higher risk 
of progressing to castrate resistant prostate cancer and a 
shorter time to treatment failure with ADT [126, 127].

Mechanisms of androgen resistance
Patients treated with androgen/androgen receptor (AR) 
directed therapies, including abiraterone and enzaluta-
mide have tumor cells with a molecular signature consist-
ent with continued “addiction” to AR. These cells acquire 
or possessed molecular alterations in the AR axis. The AR 
gene is frequently amplified or mutated (62%) and less 
frequently there is amplification of the androgen recep-
tor (< 1%). In primary prostate cancer specimens there 
are numerous reports of recurrent somatic mutations, 
copy number alterations and oncogenic structural DNA 
arrangements [128–130]. These include point mutations 
in SPOP, FOXA1, TP53, copy number alterations involv-
ing Myc, PTEN, CHD1 and transformation specific (ETS) 
fusions of which some have prognostic significance [131]. 
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The combination of Myc activation and PTEN loss are 
sufficient to create genomic instability and lethal meta-
static prostate cancer [132]. In men with castrate resist-
ant prostate cancer genomic studies showed a high 
frequency of AR pathway alterations; this suggests that 
the tumor cells remain dependent of AR signaling for 
viability. In metastatic castrate resistant prostate cancer 
there is frequently over-expression of both full length AR 
(AR-FL) and AR variants (AR-V). AR-Vs are alternatively 
spliced isoforms of the AR mRNA, and lack the ligand 
binding domain, which is the intended target of all exist-
ing androgen/AR directed therapies. AR-Vs can activate 
AR signaling in the absence of androgens or the AR-FL. 
The levels of expression of AR-Vs are increased in castrate 
resistant prostate cancer, in response to AR blockade and 
associated with disease progression [133]. AR-V7 is the 
more frequently found variant and often co-expressed 
with AR-FL, the levels of nuclear AR-Vs required to drive 
an androgen-independent transciptome remains unclear. 
The levels of AR-V mRNA and protein expression rela-
tive to AR-FL varies within normal and malignant pros-
tate tissues [133], CPCs [134] and prostate cancer cell 
lines [133]. The mechanism to achieve AR-V is unknown, 
rearrangements of the AR gene and/or changes in splic-
ing dynamics have been suggested. AR-Vs not only acti-
vate transcription of AR regulated target genes such as 
PSA, HK2, TMPRSS2 and NK-X3-I [135] but also genes 
associated with the regulation of the cell cycle [136]. 
Over-expression of AR-V7 has been shown to be asso-
ciated with higher levels of SNAIL, TWIST, N-cadherin 
and ZEB1 without affecting E-cadherin expression, with 
the suggestion that over-expression of AR-V s produces 
a partial EMT [137]. Similarly, the expression of AR-V3 
was higher in Gleason 7–9 primary tumors, was shown 
to involved in inducing stem cell markers such as Nanog 
and Lin28B and EMT markers, and finally the use of 
enzalutamide led to increased AR-V3 expression [137].

As such it would seem that in the primary tumor can-
cer stem cells are present and disseminate, whether there 
is clonal selection or clonal evolution or both, and the 
relative importance of either remains unknown.

Circulating tumor cell and micrometastasis 
detection
The first reports of bone marrow micrometastasis in 
men with prostate cancer used bone marrow aspiration 
samples, differential gel centrifugation to enrich tumor 
cells and immunocytochemistry with anti-cytokeratin 
antibodies to detect tumor cells [138]. The frequency 
of tumor cell detection depends on the method used, 
immunocytochemistry or RT-PCR and the marker, 
PSA, PMSA or cytokeratins. Detection of PSA mRNA 
using RT-PCR was not associated with the results of 

immunocytochemistry [139], is limited by the illegiti-
mate transcription of tumor associated or epithelial 
specific genes in hematopoietic cells and the deficient 
expression of the marker gene in tumor cells [140]. Both 
immunocytochemistry and RT-PCR have similar specifi-
cities (PSA mRNA versus anti-PSA) but RT-PCR has a 
tenfold increased sensitivity at detecting micrometastasis 
[141].

It has been suggested that cells detected in bone mar-
row aspirates may not represent true “micrometastasis” 
but rather are prostate cells circulating in the bone mar-
row compartment, explaining the expression of similar 
phenotypic markers, as CPCs. “True” micrometastasis 
were those detected in biopsy specimens. The low con-
cordance between prostate cells detected in bone mar-
row aspirates with those detected in biopsies for patients 
with Gleason 5, 6 and 7 suggests there is a difference in 
their physiological/oncological role. In high grade Glea-
son 8 and 9 there is good concordance between the 
results of the two methods of sampling. There are no 
studies of in  vivo tumor cell rheology in the bone mar-
row. However, there are in  vivo optical imaging studies 
in laboratory animals demonstrating the mechanisms of 
tumor cell attachment to the endostium that are simi-
lar to stem cell engraftment [142, 143]. Topological and 
chronological patterns of stem cell seeding have shown 
that most cells drift within the bone marrow space and 
then are gradually found close to the endosteal surface. 
The center of the bone marrow space seems to be the 
site of proliferation of the transplanted cells and not at 
the endosteal surface [144]. Further data has shown that 
the adherent cells are viable, whereas cells in transit con-
tain a percentage of dead or dying cells [145]. Thus cells 
anchored to the endothelial surface may not be detected 
in bone marrow aspirates and thus explain partially why 
aspirate negative patients may relapse in the bone, or 
inversely why bone marrow aspirate negative patients go 
on to development bony metastasis. In high grade cancer 
the interchange between attached and in transit may be 
sufficiently high so as the results of aspirate and biopsy 
are concordant [106].

There are a number of techniques that have been devel-
oped for the detection of circulating tumor cells, which 
has hindered the comparison of different studies and the 
consensus of defining these cells. Each method has dif-
fering advantages and disadvantages and has been exten-
sively reviewed [118, 146]. In summary because of the 
rarity of these cells, enrichment methods are used to con-
centrate CPCs. Density gradient centrifugation separates 
a layer of mononuclear blood cells and CPCs from other 
blood cells, it is a simple fast process but tumor cells may 
be lost during the process, as they sediment to the gran-
ulocyte fraction or when present as clusters sediment 
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to the bottom of the tube. Due to the size differences 
between CPCs and normal blood cells filtration has been 
used as a method to enrich CPCs from whole blood. 
The OncoQuick® system uses a porous barrier above 
the density gradient while the Screencell® cyto, ISET® 
and Metacell® are three commercially available filtration 
systems. CPCs are isolated on the filter and then subse-
quently stained. The filter based systems do not detect 
CPCs smaller than 8  µm, and the filter may become 
clogged during the process [118, 147]. Leukapheresis of 
large blood volumes has been reported to detect CTCs in 
up to 90% of non-metastatic breast cancer patients, the 
authors also reported that in healthy controls there was 
a high background of cytokeratin positive CD45 positive 
cells due to false positive staining of leukocytes [148]. 
The FDA approved CellSearch® system uses immuno-
magnetic selection of CTCs with anti-EpCAM (positive 
selection) while there are methods using depletion of 
CD45 positive (leukocytes) (negative selection). In high 
risk prostate cancer patients CPCs were detected in 37% 
of patients using CellSearch®, 55% with Cellcollector®, 
and 59% with Epispot® [149]. The use of specific antibod-
ies such as EpCAM to enrich CPCs results in the loss of 
CPCs which have undergone EMT.

Clinical evidence and possible uses
Studies reported that the presence of micrometasta-
sis was associated with tumor stage and Gleason score 
[150–152], however other reports did not confirm this 
finding [139, 153, 154]. Furthermore samples taken after 
radical prostatectomy or radiotherapy had a lower fre-
quency of micrometastatic detection [153, 155, 156] and 
that these cells were cytogenetically aberrant [157]. The 
inference of these findings is either local removal of the 
primary tumor decreases or eliminates micrometastatic 
disease, that is to say that the micrometastasis is depend-
ent on a factor produced by the primary tumor in order 
to survive or the method of detection in some way is defi-
cient or the interpretation of what the test is detecting. 
Using bone marrow aspirate and biopsy samples it was 
shown that there was no difference in the frequency of 
micrometastasis detected pre-treatment but there was 
a significant difference post-treatment, there was a sig-
nificant reduction in “micrometastasis” detected in bone 
marrow aspirates [158]. Phenotypic classification of cir-
culating prostate cells, and cells detected in bone marrow 
aspirates were similar but differed from the phenotypic 
characteristics of prostate cells detected in bone marrow 
biopsies with respect to CD82 and MMP-2 [106].

The detection of prostate cells in bone marrow aspi-
rate samples as a prognostic marker has given conflict-
ing results; this may be in part due to a short follow up 
time. Some studies have reported no association with 

biochemical failure [159, 160], whereas others have 
reported a higher rate of failure when detected in post-
treatment samples [156, 161].

There is more evidence for the prognostic role of sec-
ondary circulating prostate cells that is those detected 
after curative therapy. In patients with non-metastatic 
disease the presence of secondary CPCs is associated 
with early relapse [162–165]. Their presence was associ-
ated with a shorter PSA doubling time and shorter time 
to treatment failure [166]. EpCAM based detection sys-
tems failed to show an association with prognosis [167, 
168] in men with localized prostate cancer. In contrast 
using telomerase based technology [169] or RT-PCR 
[170] an association as an independent prognostic factor 
was reported.

More recently, it has been reported that men CPC 
positive have a higher risk of early treatment failure, 
whereas those with only bone marrow micrometastasis 
have an identical failure rate to men negative for CPCs 
and micrometastasis up to 5 years of follow-up, after this 
time there is increasing failure in this group. This sug-
gests that there are two types of minimal residual disease, 
one associated with a more aggressive outcome, that is 
CPC positive, and one showing features of dormancy and 
later treatment failure [171].

As a guide to treatment options
Standard recommendations include the following; in men 
with positive surgical margins radiotherapy is suggested 
as adjuvant therapy to eradicate local foci of tumor left 
behind at surgery. At the time of biochemical failure, sal-
vage radiotherapy or androgen deprivation therapies are 
alternatives. The use of PSA kinetics, time to relapse, PSA 
doubling time and Gleason score have all been proposed 
to define local or systemic failure. However, in this group 
of patients 67% were found to have bone marrow micro-
metastasis. In comparison with the anterior parameters, 
there was no association with micrometastatic disease. 
The detection of bone marrow micrometastasis implies 
the presence of systemic relapse and such systemic treat-
ment [172]. First line ADT treatment is with a LHRH 
agonist or antogonist, there is normally a decrease in the 
serum PSA for a period of 3–5  years. Thereafter resist-
ance to ADT develops with an increasing PSA and tes-
tosterone levels < 50 ng/dl, second line hormonal therapy 
using newer agents such as aberiterone or enzulatamide 
are used, and finally if failure continues the use of taxa-
nes. This may be accompanied by the appearance of bone 
metastasis in imaging studies.

It has been shown that ADT can eliminate bone mar-
row micrometastasis in approximately 80% of patients 
[173, 174]. Further studies reported that micrometastatic 
cells expressing HER-2 were resistant to ADT and were 
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selected in an androgen-deprived environment [125]. 
Thus although serum PSA decreased with ADT, a popula-
tion of resistant cells were selected which later produced 
PSA failure. In contrast treatment with diethylstilbestrol 
eliminated both positive and negative expressing HER-2 
cells, possibly by stimulating beta estrogen receptor and 
blocking HER-2 stimulation of the androgen receptor 
(AR) downstream [125]. The AR antagonist bicalutamide 
is effective in treating prostate cancer, irrespective of 
HER-2 expression levels [175]. The expression of HER-2 
was similar in CPCs and bone marrow micrometastasis 
[125]. Thus the expression of HER-2 could be used to 
select the better treatment option. Continued AR activ-
ity in resistant cancer has been linked to the expression 
of a number of truncated but constitutively active AR 
isoforms. One such variant is AR-v7; classifying patients 
as CPC negative, and CPC positive AR-v7 negative and 
positive it was possible to determine three prognostic 
subgroups, CPC negative having the best prognosis, CPC 
positive AR-v7 positive the worst [176]. The frequency of 
CPCs expressing mRNA for AR-v7 increases with succes-
sive endocrine therapies [177], overall survival was supe-
rior with the use of taxanes in these positive patients. The 
expression of AR-v7 in CPCs is associated with resistance 
to abiraterone and enzalutamide but not resistance to 
cabazitaxal [178]. Using single cell immunofluorescence 
analysis, CPCs were predominately AR-on (AR activity 
positive) pre ADT, first line ADT produced a switch from 
AR-on to AR-off (AR activity negative) CPCs, whereas 
variable expression was seen after second line ADT. The 
presence of AR-mixed or increasing AR-on expressing 
CPCs while being treated with abiraterone was associ-
ated with a decreased survival [179]. Thus the possibil-
ity of determining the best treatment options using CPC 
phenotypic expression seems possible, as well as detect-
ing resistance to treatment before detectable disease 
progression.

What is important is that CPC detection is method 
dependent, and as such there is no consensus on the best 
approach for their detection. Those methods relying on 
specific markers will not detect CPCs lacking the deter-
mined marker and this may be stage dependent and on 
the presence of EMT and MET.

Conclusions
with advancing technology and single cell gene analysis 
the use of liquid biopsies of CPCs may be useful in the 
classification of patients, assess the risk of treatment 
failure in specific patients and which treatments may be 
more appropriate. In combination with the analysis of 
micrometastatic cells found in bone marrow, it may be 
possible to tailor treatment to eliminate these residual 

cells or maintain this cell population in a dormant state 
on an individual patient basis.
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