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Trajectory of asteroid 2017 SB20 within the CRTBP
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Abstract. Regular monitoring the trajectory of asteroids to a future time is a necessity, because the variety
of known probably unsafe near-Earth asteroids are increasing. The analysis is perform to avoid any incident or
whether they would have a further future threat to the Earth or not. Recently a new Near Earth Asteroid (2017
SB20) has been observed to cross the Earth orbit. In view of this we obtain the trajectory of Asteroid in the
circular restricted three body problem with radiation pressure and oblateness. We examine nature of Asteroid’s
orbit with Lyapunov Characteristic Exponents (LCEs) over a finite intervals of time. LCE of the system confirms
that the motion of asteroid is chaotic in nature. With the effect of radiation pressure and oblateness the length
of curve varies in both the planes. Oblateness factor is found to be more perturbative than radiation pressure. To
see the precision of result obtain from numerical integration we show the error propagation and the numerical
stability is assured around the singularity by applying regularized equations of motion for precise long-term
study.
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1. Introduction

In recent years, the study of Near Earth Objects (NEOs)
is a most celebrated problem among the researchers.
NEOs may be an asteroid or comet whose trajectory
intersects the orbit of the Earth. The importance arises
as Near Earth Asteroids (NEAs) are of very small size
that fly by near the Earth and has the potential to collide
or a close approach to the Earth that they may rep-
resent a potential impact threat. It is well known that
the motions of most of the bodies including the NEOs
in the planetary system are basically of chaotic nature
(Knežević 1996). Recent papers on different aspects and
motions of small bodies including NEAs or comets such
as Morais & Namouni (2013) studied the motions of an
asteroids which is an retrograde resonance with Jupiter
and Saturn. Galushina et al. (2017) studied the dynam-
ics of an asteroids - companions to Venus.

Nowadays small bodies mission are under concept
studies of space agencies such as the National Aero-
nautics and Space Administration (NASA), European
Space Agency (ESA) and Japan Aerospace Exploration
Agency (JAXA). Over the many years several dynam-
ical systems consisting of two body, few bodies or

n-body problem have been investigated and proposed
in order to understand and explain the orbital behavior
of realistic celestial systems. Among the n-body prob-
lem the simplest and most extensively studied model is
the restricted three-body problem (RTBP) (Szebehely
1967). To obtain the approximate solution for the sets of
equations numerical techniques are being used. Abouel-
magd et al. (2014) has applied Lie-Series to integrate
the system of equations in the Earth–Moon system.

Lyapunov Characteristic Exponents (LCEs) is a basic
technique, to understand the behavior of a dynamical
system (Benettin et al. 1980; Wolf et al. 1985; Skokos
2010). The chaotic or regular nature of an orbit is indi-
cated by the value of maximal LCE. It measures the rate
of exponential divergence of perturbed initial conditions
with respect to each other, in terms of some convenient
metrics in the phase space of state vectors Kneževic &
Ninkovic (2005). The nature of orbit is regular if the
LCE is always zero. The larger the value of LCE, the
greater the rate of exponential divergence which indi-
cates the chaotic nature of orbits for long intervals of
time.

In this paper, we consider the Sun–Earth–Asteroid
system with radiation pressure and oblateness. We
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choose 2017 SB20 asteroid as an infinitesimal mass as
it was close approached to the Earth on October 11,
2017. The initial conditions for the numerical integra-
tion of the model are taken from JPL on a particular
epoch of close approach of asteroid 2017 SB20. We
obtain trajectories in the physical as well as in reg-
ularized plane using Levi-Civita transformation. The
LCE confirms that the motions are of chaotic nature
in both the planes. Oblateness coefficient considered
in the model and has a significant impact compared
to the radiation pressure on the traced trajectory of
NEOs. To check the accuracy of the computations use
the error propagation which is obtained under control
in case of physical plane whereas in regularized plane
the error increases with time. It confirms that the reg-
ularized equations are useful for numerical integration
when the infinitesimal mass is nearer to the primaries.
Otherwise the trajectory computed using the governing
equations of motion throughout the computation than
trajectories will continue after singularity, because the
Runge-Kutta integrator jump above the singularity point
which affects the accuracy of the results. So the regu-
larized equations should be used near singularities.

The paper is organized as follows: In Section 2
we formulate a dynamical model in the planar circu-
lar restricted three-body planetary system accounting
radiation pressure of the bigger primary (the Sun) and
oblateness of the Earth. Section 3 describes the LC-
regularization of the dynamical model. In Section 4, we
provide the numerical propagation of local error of the
system during computations. Section 5 concludes the
research work.

2. Dynamical model

We consider the Sun, the Earth, and an infinitesimal
mass i.e. an Asteroid (2017 SB20) in the planar circular
restricted three-body problem (CRTBP). We consider
the bigger primary, as a source of radiation and smaller
primary as oblate spheroid. Both the primaries are mov-
ing in the circular orbits under the gravitational influ-
ence of each other around the common center of mass.
The infinitesimal body is moving in the plane defined
by two moving bodies without disturbing their motions.
Since the Sun is a source of radiation, the resultant force
of the Sun on the infinitesimal mass is obtained using
the solar data as (Martyusheva et al. 2015). The con-
stant values of the Sun used in calculation of radiation
pressure are solar mass (M� = 1.989×1030 kg); radius
(R� = 695700 km); luminosity (L� = 3.86×1026 W);
solar constant (S� = 1.372 × 103 W m−2) and Radius

of the Earth ( r = 6371 km) and velocity of light
(c = 2.998 × 105 km s−1).

This force acts straight along heliocentric line-vector
of asteroid and adversely to the Sun gravitation:

F = Fgrav
� (1 − β), (1)

where

β =
(

Frad�
Fgrav

�

)
=
(

L�
4πc

)
1

G M�
A

m
, (2)

is the radiation factor, Frad� = L�
4πr2c

A, Fgrav
� = G M�m

r2

and m is the mass of an asteroid. Now following the
assumption of restricted three-body problem in the
rotating system, the equations of motion in the rotat-
ing coordinate system, in non-dimensional form, can
be written as Tiwary & Kushvah (2015):

ẍ − 2n ẏ = ∂U

∂x
, (3)

ÿ + 2nẋ = ∂U
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, (4)
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2

, (5)

where U is the pseudo-potential, μ = 3.00351 × 10−6

is the mass parameter for the Sun–Earth system, n =√
1 + 3A2

2 is the perturbed mean motion, A2 = 0.0034
is the oblateness coefficient of the Earth and r1 and r2 are
the position vectors of the infinitesimal mass from the
larger and smaller primaries, respectively. The explicit
formulation and discussions of n and A2 can be referred
in Srivastava et al. (2017).

Now, we discuss the dynamics of the Asteroid (2017
SB20) in the frame of CRTBP which fly by the Earth
harmlessly on October 11, 2017 at 8.9 times distance
to the Moon, at a speed of 7.2 km/s. The initial data for
position and velocity are taken from the JPL website
(on October 11, 2017). We transform the orbital data
obtained from the webpage in the frame of CRTBP and
obtain the initial conditions to integrate the equations
of motion.

x0 = 0.994641225299951,

y0 = 1.920100100283277 × 10−2,

ẋ0 = −0.1931500636749737,

ẏ0 = −0.1095432875923946.

(6)

The trajectory of the Asteroid on Integrating equa-
tions (3-4) with the above initial values for a time span
of 45 years we obtain the trajectory of the asteroid (as
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Figure 1. Trajectory of an Asteroid 2017 SB20 in the cir-
cular restricted three body problem with time span upto 45
years.

Figure 2. Trajectory of the Asteroid 2017 SB20.

depicted in Fig. 1). Here we consider small time scale to
analyze the differences in the trajectories obtain in phys-
ical and regularized plane. In Fig. 1, the curves with
black colour depicts the trajectory in classical model
and blue curve shows the trajectory with the effect of
radiation pressure (β = 5×10−7) and oblateness of the
Earth (A2 = 0.0034). The nature of trajectory remains
same but the length of curve increases with perturba-
tion. In Fig. 2 the trajectory for longer time span of
3000 years are also shown which proves that the motion
is of chaotic nature. It also shows that the motion of the
asteroid is bounded as we see in the zero-velocity curve
(ZVC). We show the effect of radiation pressure in tabu-
lar form (Table 1). The radiation pressure of an asteroid
depends on the ratio of its area and mass

( A
m

)
. To see

the influence of radiation pressure, we choose the value
of β from 1 × 10−9 to 5 × 10−7 (Martyusheva et al.
2015). With the increasing value of radiation pressure
the length of trajectory covered in the same duration is
decreasing. The chaotic nature of orbits are confirmed
on computation of LCE using the method well described
in Wolf et al. (1985). We show the maximum LCE in
Fig. 3 in which frame labels (a) is for classical case and
(b) is for model with perturbation respectively. We use
following initial values for the computation of trajectory
and LCE. Different colours in the figures indicate the
maximal Lyaponov exponents values. With the effect

Table 1. Effect of radiation pressure and
oblateness on the trajectory in the physical plane
for 45 years.

β A2 Length of trajectory (au)

0 0.0000 18.28639554
0 0.0034 19.08977951
1 × 10−9 0.0000 18.28639549
1 × 10−9 0.0034 19.08977950
5 × 10−9 0.0000 18.28639527
5 × 10−9 0.0034 19.08977946
1 × 10−8 0.0000 18.28639500
1 × 10−8 0.0034 19.08977941
5 × 10−8 0.0000 18.28639283
5 × 10−8 0.0034 19.08977900
1 × 10−7 0.0000 18.28639011
1 × 10−7 0.0034 19.08977848
5 × 10−7 0.0000 18.28636840
5 × 10−7 0.0034 19.08977435

(a)

(b)

Figure 3. Lyapunov exponents (a) in classical model (b)
with perturbation.

of radiation pressure and oblateness the chaotic val-
ues increases, corresponding values are indicated in the
figures.

3. Levi-Civita regularization

In this section, Levi-Civita (LC) regularization is
applied on the dynamical model discussed in Section 2
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This regularization is important during numerical com-
putation of trajectory when it is close proximity to the
primaries. Indeed, a collision between any two objects is
marked by the fact that their distance becomes zero. The
problem of singularities plays an important role under
conceptual, computational and physical aspects. During
close encounters the velocity of small body increases
and to compensate for the infinite increase of the veloc-
ity during close approaches the regularization theory
is introduced. In this regard Levi-Civita regularization
was first time introduced for removing the collisions
in the two body problem Levi-Civita (1904). Later on
many researchers (Érdi 2004; Celletti et al. 2011; Lega
et al. 2011; Roman & Szücs-Csillik 2014) applied this
transformation to the restricted three-body problem by
translating the origin of the coordinate system to one
of the primaries. It is based on suitable change of coor-
dinates with the introduction of fictitious time (Celletti
et al. 2011).

The regularization methods play important role in
the analytic treatment of collision trajectories applied
for the long term studies of the motion of the celestial
bodies (Waldvogel 2006; Celletti et al. 2011; Roman &
Szücs-Csillik 2012).

For the regularization of the governing equations
(3–4) of CRTBP we consider the location of primaries
at (−μ, 0) and (1−μ, 0). Here we apply the transforma-
tions around the smaller primaries with radiation effect
in the model. The major orbital perturbations of the
infinitesimal mass in CRTBP occurs when it encounters
around the smaller primary. The change of coordinates
for removing the singularities around the Earth are intro-
duced by the parametric coordinates (u, v) through the
expression

x = u2 − v2 + 1 − μ, (7)

y = 2uv. (8)

We define regularized time s in the regularized plane
which is related to the ordinary time t through the
expression

dt = Rds, (9)

R = u2 + v2 =
√

(x − 1 + μ)2 + y2 (10)

The dynamical model given in equation (3–4) are trans-
formed by considering the above transformations. In
this regard thoroughly explanation of the transformation
from the governing equations of motion to the regular-
ized equations of motion may be seen in Celletti et al.
(2011). We obtain the regularized equations of motion
including the radiation pressure term (β) and oblateness
coefficient (A2) as

u′′ =
[

1

R

(
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2
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4R2

)
+ R

2

(
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1
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(
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1

)]
v − 2n Ru′, (12)

where the ′ symbol denotes the differentiation with
respect to regularized time s and r1 =√

(u2 − v2 + 1)2 + (2uv)2. The initial conditions given
in physical plane are accordingly transformed in the
regularized plane using the transformation formulation
(Lega et al. 2011). If x < 1−μ, then the values of trans-

formed coordinates are u = y
2v

and v =
√

R−(x−1+μ)
2 ,

or if x ≥ 1 − μ, then u =
√

R+(x−1+μ)
2 and v = y

2u .

The velocity component transforms as u′ = 1
2 (uẋ +v ẏ)

and v′ = 1
2 (u ẏ − v ẋ).

u0 = 0.0853761907344269,

v0 = 0.1124493892129707,

u′
0 = −0.0144042462294134,

v′
0 = 0.006183609035766365.

(13)

The trajectories of an asteroid in the regularized plane
for shorter and longer period are shown in Figs. 4 and
5 respectively. The black and blue curves, show the
trajectories of the asteroid within regularized CRTBP
classical model and with perturbations respectively.
With the inclusion of oblateness, the trajectory deviates
when it comes near to the Earth. From these trajectories,
we observe that the nature of motions of an infinitesi-
mal mass remains same as in the physical plane. The
trajectory depicted in Fig. 5 resembles with the zero
velocity curve in regularized case (Szebehely 1967).

Figure 4. Trajectory of an Asteroid 2017 SB20 in the regu-
larized plane with time span upto 45 years.
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Figure 5. Trajectory of an Asteroid 2017 SB20 in the reg-
ularized plane for longer time span of 3000 years.

Table 2. Effect of radiation pressure and oblate-
ness on the trajectory in the regularized plane for
65 years.

β A2 Length of trajectory (au)

0 0.0000 9.473535081
0 0.0034 10.10390607
1 × 10−9 0.0000 9.473535022
1 × 10−9 0.0034 10.10390622
5 × 10−9 0.0000 9.473534788
5 × 10−9 0.0034 10.10390681
1 × 10−8 0.0000 9.473534494
1 × 10−8 0.0034 10.10390756
5 × 10−8 0.0000 9.473532148
5 × 10−8 0.0034 10.10391350
1 × 10−7 0.0000 9.473529215
1 × 10−7 0.0034 10.10392094
5 × 10−7 0.0000 9.473505755
5 × 10−7 0.0034 10.10398039

With the effect of radiation factor and oblateness the
length of curve varies (as shown in Table 2), in the
regularized case the length of curve decreases with the
increase of radiation pressure whereas in case of oblate-
ness it increases. In this case we found that the time
taken to reach at the same place as in physical plane
is more (65 years) due to stretching of time in regu-
larized case. The motion will be slowed down near the
singularities.

The LCE computed using the regularized equations
of motion confirms that these equations are only useful
during close encounters. Fig. 6 shows Lyapunov expo-
nents without perturbation in frame (a) whereas frame
(b) is with perturbation effect taken into consideration.
The value of maximum Lyapunov exponents increases
from the physical plane. With the perturbation effect the
chaoticity increases in regularized case.

(a)

(b)

Figure 6. Lyapunov exponents using regularized equations
of motion (a) without perturbation, (b) with perturbation.

Figure 7. Error propagation in physical plane.

4. Error propagation

Error propagation of numerical integration for the gov-
erning equations of motion are of order 10−11 (Fig. 7)
whereas in case of regularized equations of motion it
increases as distance between infinitesimal mass and
primaries are increase due to time span. In the first
frame of Fig. 8 for short time the local error are approxi-
mately of order 10−12 but for time greater than 30 years
error propagation increases as shown in second frame
of Fig. 8. For time grater than 38 years it appeared large
which could be due to floating point round of error. The
order of error also confirms that near singularities it
preferable to use regularized equations of motion which
gives the precise trajectory.
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Figure 8. Error propagation in regularized plane.

5. Conclusions

In this work, we have examined the dynamics of a Near
Earth Asteroid (2017 SB20) as an infinitesimal mass
in the frame of circular restricted three body prob-
lem (CRTBP) in physical and regularized planes. We
have numerically integrated the equations of motion and
obtain the trajectory of asteroid in both the planes. We
have found that the nature of orbits remains same in
both the cases. The structure of the motion resembles
with the zero velocity curve for longer time duration
it cannot cross the energy level. Lyapunov exponents
confirms the chaotic nature of orbits. With the effect
of radiation pressure the trajectory traced by infinites-
imal mass in both the planes reduces, whereas in case
of oblateness coefficient the length of curves decreases
in physical plane but increases in regularized plane.
Overall from this study it is found that for the motion
of NEOs the oblateness coefficient is more dominant
as compare to radiation pressure. From LCE it con-
firms that the chaoticity in regularized case is more than
that of the physical plane. Also the chaoticity increases
with perturbation effects. We conclude through the error
propagation of numerical integration that we cannot use
the regularized equations of motion for long time as
error increases. The regularized equations of motion can
only be used when the infinitesimal mass is very nearer

to the primary. This study may be further implied for the
numerical integration of long term evolution of similar
Asteroids trajectory.
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Observatory, Cluj-Napoca, Romania, for her discussion
and suggestion for significant improvement and modi-
fication of the manuscript during the Research Summer
School on “Satellite Dynamics and Space Missions:
Theory and Applications of Celestial Mechanics” held
at San Martino al Cimino (VT), Italy during August 28
– September 2, 2017.

References

Abouelmagd E. I., Guirao J. L. G., Mostafa, A. 2014, Ap&SS,
354, 369

Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. 1980,
Meccanica, 15, 9

Celletti A., Stefanelli L., Lega E., Froeschlé C. 2011, Celest
Mech Dyn Astron, 109, 265

Érdi B. 2004, Celest Mech Dyn Astron, 90, 35
Galushina T. Y., Skripnichenko P. V., Titarenko E. Y. 2017,

Rus Phys J, 59, 1401
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