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ABSTRACT

Electron tomography (ET) is an important technique for studying the three-dimensional
structures of the biological ultrastructure. Recently, ET has reached sub-nanometer reso-
lution for investigating the native and conformational dynamics of macromolecular com-
plexes by combining with the sub-tomogram averaging approach. Due to the limited
sampling angles, ET reconstruction typically suffers from the ‘‘missing wedge’’ problem.
Using a validation procedure, iterative compressed-sensing optimized nonuniform fast
Fourier transform (NUFFT) reconstruction (ICON) demonstrates its power in restoring
validated missing information for a low-signal-to-noise ratio biological ET dataset. However,
the huge computational demand has become a bottleneck for the application of ICON. In
this work, we implemented a parallel acceleration technology ICON-many integrated core
(MIC) on Xeon Phi cards to address the huge computational demand of ICON. During this
step, we parallelize the element-wise matrix operations and use the efficient summation of a
matrix to reduce the cost of matrix computation. We also developed parallel versions of
NUFFT on MIC to achieve a high acceleration of ICON by using more efficient fast Fourier
transform (FFT) calculation. We then proposed a hybrid task allocation strategy (two-level
load balancing) to improve the overall performance of ICON-MIC by making full use of the
idle resources on Tianhe-2 supercomputer. Experimental results using two different datasets
show that ICON-MIC has high accuracy in biological specimens under different noise levels
and a significant acceleration, up to 13.3 · , compared with the CPU version. Further, ICON-
MIC has good scalability efficiency and overall performance on Tianhe-2 supercomputer.
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1. INTRODUCTION

Electron tomography (ET) is an important technique for studying the three-dimensional (3D)

structures of the biological ultrastructure (Fridman et al., 2012; Lu�cić et al., 2013). Recently, to address

the low signal-to-noise ratio (SNR) of biological samples, a new route called sub-tomogram averaging is

proposed (Castaño-Dez et al., 2012). Combined with the sub-tomogram averaging approach, ET has reached

sub-nanometer resolution for investigating the native and conformational dynamics of macromolecular

complexes (Bharat et al., 2015). In ET, a series of two-dimensional (2D) projection micrographs (tilt series)

are taken in different orientations by rotating the sample around a single fixed axis (Y-axis). Then, the

micrographs are used to reconstruct the 3D density of the ultrastructure based on the projection slice theorem

(Mersereau and Oppenheim, 1974). The tilt angle of ET is limited within a range of -70� to 70� to ensure that

a reasonable number of electrons can pass through and form reliable images. The absence of the high tilt

angles will cause the ‘‘missing wedge’’ problem (Penczek et al., 1995). Traditional ET reconstruction

methods, such as weighted back projection (WBP) (Radermacher, 2007), SIRT (Gilbert, 1972), and INFR

(Chen and Förster, 2014), often suffer from the ‘‘missing wedge’’ problem and reconstruct 3D tomograms

with ray artifacts. Such ‘‘missing wedge’’ artifacts will seriously hinder the reconstruction interpretation,

especially for in situ specimens that are embedded in crowded environments (Kovacik et al., 2014).

In recent years, the topic of solving the ‘‘missing wedge’’ problem in ET has been widely discussed, and

many algorithms have been proposed. The dual-axis and conical tomography (Lanzavecchia et al., 2005;

Arslan et al., 2006) have been proposed to compensate for the ‘‘missing wedge’’ artifacts, which rotate the

sample along two vertical or different tilt axes to collect multiple tomography data. These approaches cannot

prevent the radiation damage problem and leave a conical area in which information cannot be measured.

Other algorithms try to apply prior constraints to the reconstructed tomogram to restore the ‘‘missing’’

information, such as FIRT (Chen et al., 2016) and DART (Batenburg and Sijbers, 2011). The prior constraints

include density smoothness and density localness. In addition, compressed sensing (CS) ET has been used to

solve the reconstruction problem as an underdetermined problem based on a theoretical framework called

‘‘compressed sensing’’ (Donoho, 2006), and it demonstrated some success for data with a high SNR [e.g.,

material science data (Goris et al., 2012; Leary et al., 2013; Saghi et al., 2016)]. To address a case with a low

SNR (e.g., biological cryo-ET data), Deng et al. (2016) proposed iterative compressed-sensing optimized

nonuniform fast Fourier transform (NUFFT) reconstruction (ICON) by combining CS and NUFFT. Ex-

perimental results of ICON for different datasets showed that the algorithm can restore the missing infor-

mation and measure the fidelity of the information restoration by using a validation procedure.

Although ICON has demonstrated its power in restoring validated missing information for a low SNR

biological ET dataset, the huge computational demand becomes a bottleneck for its wider application. As

high-performance computing platforms are becoming increasingly popular, to improve the efficiency of the

program and shorten its running time, many ET reconstruction algorithms have been ported to a hetero-

geneous system containing acceleration units [e.g., graphics processing units (Palenstijn et al., 2011), many

integrated core (MIC) units (Dahmen et al., 2016)]. Further, to realize the real-time ET reconstruction

process, it is essential to make full use of super computing resources such as Tianhe-2 (Liao et al., 2014),

which is one of the top 5 supercomputers in the world.

In this work, we implemented a parallel acceleration technology ICON-MIC on Xeon Phi cards to

address the huge computational demand of ICON. During this step, we parallelize the element-wise matrix

operations and use the efficient summation of a matrix to reduce the matrix computation cost. By using a

more efficient MKL fast Fourier transform (FFT) (Wang et al., 2014) calculation, we developed parallel

versions of NUFFT to achieve high ICON acceleration. The NUFFT library has not previously existed on

MIC. We then proposed a hybrid task allocation strategy, two-level load balancing (TLLB), to improve the

overall performance of ICON-MIC by making full use of the idle resources on the Tianhe-2 supercomputer.

We used two different ET datasets, including a resin embedded dataset and a cryo-ET dataset, to test

ICON-MIC. The experimental results show that ICON-MIC has high reconstruction accuracy and can well

restore missing information under different noise levels. Further, ICON-MIC exhibits significant acceler-

ation factors compared with the CPU version ICON (ICON-CPU) and has good weak and strong scal-

ability. In addition, ICON-MIC has good overall performance and can make good use of the supercomputer

resources by using the TLLB. ICON-MIC has also been developed into software packages, which can be

downloaded from the homepage of the authors as follows: http://ear.ict.ac.cn.
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2. RELATED WORK

2.1. Iterative compressed-sensing optimized NUFFT reconstruction

ICON is an iterative reconstruction algorithm based on the theoretical framework of ‘‘compressed

sensing,’’ and its complete workflow can be divided into four steps: ‘‘Pre-processing,’’ ‘‘Gray value

adjustment,’’ ‘‘Reconstruction and pseudo-missing-validation,’’ and ‘‘Verification filtering’’ (Deng et al.,

2016). A series of tests showed that ‘‘Reconstruction and pseudo-missing-validation’’ accounts for at least

95% of the execution time of ICON. Thus, the major task for accelerating ICON is paralleling this step

effectively on MIC. The parallelization of ‘‘reconstruction’’ and ‘‘pseudo-missing-validation’’ is similar,

and only ‘‘reconstruction’’ is discussed in this article. The major steps of ICON ‘‘reconstruction’’ can be

briefly described as follows.

Step 1. Fidelity preservation step using the steepest descent method (Goldstein, 1965).

r = AhWAxk - AhWf (1)

a =
rT r

rTAhWAr
(2)

yk + 1 = xk + a � r (3)

where xk is the 2D reconstructed image of the kth iteration. A is the projection operation, and is defined

as a nonuniform Fourier sampling matrix, that performs a Fourier transform on the noninteger grid

points. Ah stands for the conjugate transpose of A. W follows the description of INFR (Chen and Förster,

2014) and contains the weights that account for the nonuniform sampling in the Fourier space (similar to

the ramp filtering in WBP). f is the Fourier transform of the acquired projections. r is the residual. a is the

coefficient used to control the updating step. yk+1 is the intermediate updating result of the (k + 1)th

iteration.

Step 2. Prior sparsity restriction step.

xk + 1 = H(yk + 1) = 0 ‚ if yk + 1 < 0

yk + 1‚ if yk + 1 � 0

�
(4)

where yk+1 is the intermediate updating result of the (k + 1)th iteration. H($) is a logic function. xk+1is the 2D

reconstructed slice of the (k + 1)th iteration.

The operations of these two steps are classified into the following three types: a. element-wise matrix

operations; b. matrix summation; and c. the NUFFT and the adjoint NUFFT. For each type of operation, a

parallelization strategy is proposed in section 3.

2.2. Nonuniform FFT

First, we give a brief description of NUFFT. Given the Fourier coefficients f̂k 2 C‚ k 2 IN and

IN = fk = ktð Þt = 0‚ ...‚ d - 1 2 Zd : - Nt

2
� kt <

Nt

2
‚ t = 0‚ . . . ‚ d - 1g as input, NUFFT tries to evaluate the fol-

lowing trigonometric polynomial efficiently at the reciprocal points xt 2 [ - 1
2

‚ 1
2

)‚ t = 0‚ . . . ‚ M - 1:

fj = f (xj) =
X
k2IN

f̂ke - 2pikxj ‚ j = 0‚ : . . . ‚ M - 1 (5)

Correspondingly, the adjoint NUFFT tries to evaluate Equation (6) at the frequencies k:

ĥk =
XM - 1

j - 0

fie
2pikxj (6)

NFFT3.0 (Keiner et al., 2009) is a successful and widely used open source C library for NUFFT and

adjoint NUFFT. However, to our knowledge, no corresponding library on MIC is available yet. Thus, we

paralleled the NUFFT and the adjoint NUFFT based on the algorithms described in NFFT3.0 and the

algorithm of 2D NUFFT is displayed in Algorithm 1 for deep analysis.
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Algorithm 1: NUFFT

Input: M‚ N = N1‚ N2f g‚ r = r1‚ r2f g‚ m‚ xj 2 - 1
2
‚ 1

2

� �2
‚ j = 0‚ . . . ‚ M - 1‚ f̂k 2 C‚ k 2 IN

n 5 rN = {n1, n2} = {r1 N1, r2N2}

1: For k ˛ IN compute

ĝk = f̂ k

jInjck(~u)

ck ~uð Þ = û k1ð Þû k2ð Þ
2: For I ˛ In compute by 2-variate FFT

gl =
P

k2IN

ĝke - 2pik(n - 1� l)

3: For j = 0, . . . ,M-1 compute

fl =
P

l2In‚ m xjð Þ
gl

~w xj - n - 1 � l
� �

In‚ m xj

� �
= l 2 In : n� xj - m1 � l � n� xj + m1
� �

~w xð Þ= u x1ð Þu x2ð Þ

u xð Þ and û kð Þ are the window functions. In this work, the (dilated) Gaussian window functions [Eqs. (7)

and (8)] are used.

u xð Þ = pbð Þ - 1
2e - nxð Þ2

b

�
b =

2r
2r - 1

m

p

	
(7)

û kð Þ = 1

n
e - b pk

nð Þ
2

(8)

where x is a component of the reciprocal points x. k is a component of the frequencies k. r is a component

of the oversampling factors r with r > 1. n is one component of n 5 rN. m 2 N and m ! n. In this work,

r = 2 and m = 6.

NUFFT operations can be classified into the following three types: (1) element-wise matrix operations,

(2) 2D FFT, and (3) window function calculations.

3. ACCELERATION OF ICON USING MIC COPROCESSORS

3.1. Parallel element-wise matrix operations

In ET reconstruction, the matrix size is usually larger than the number of processing units on MIC, so an

appropriate number of processing units (threads) must be selected to balance the control and computing

resources. According to experiments on the Xeon Phi 31SP card, if the thread number is close or equal to

228 (57 cores with 4 hardware threads in each core), having all of the threads participate in the computation

will cause performance degradation. Thus, 200 threads are used when parallelizing the element-wise

operations, and a matrix is divided into 200 parts, in which each part is assigned to one thread for

calculation. Experiments show that the matrices constituting large arrays in ICON have high allocation

costs when using 4 KB pages. To reduce the allocation cost, 2 MB pages are used in offload mode, which

also reduces the TLB misses and page faults. The 512-bit vector processing unit (VPU) (Duran and Klemm,

2012) is used on each core, which means that 16 single-precision or 8 double-precision operations can be

executed in one instance to achieve a high computational throughput for element-wise matrix operations.

3.2. NUFFT and adjoint NUFFT parallelization

As mentioned in section 2.2, there are three classes of operations in NUFFT and adjoint NUFFT. The

parallelization strategy of the element-wise matrix operations in NUFFT and adjoint NUFFT is the same as

the strategy described in section 3.1.

The experimental results show that the calculation of FFT operations accounts for *80% of the total

operating time for ICON, so Intel MKL FFT is used to achieve significant acceleration. Intel MKL FFT is a

specially designed FFT library for MIC, and the following three methods are used for Intel MKL FFT: The

first method uses the FFTW3 interface, which has good portability; the second method uses the FFT

interface by Intel for memory alignment; and the third method also uses the FFT interface by Intel but

changes the multidimensional data layout in the coprocessor memory (More, 2013). The performance of

these three methods is tested by using a 2D forward and backward complex to complex FFT by repeating
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the test 100 times on a Xeon Phi 31SP coprocessor of Tianhe-2. In the following test, the compiler-assisted

offload is used to manage the functions and the data that are offloaded. The test data scale is 8192 · 8192,

and the data are stored in complex form, in which each element takes 8 bytes. The performance com-

parisons are shown in Figure 1.

The first method uses the FFTW3 interface directly, and the performance is normal. The second method

uses the FFT by Intel, which is more suitable for the SIMD architecture of Xeon Phi cards and uses memory

alignment to improve performance. The cache line size on Xeon Phi cards is 64 bytes, so the algorithm-

performing column FFT will have poor cache associativity through cache re-usage when the matrix element

distance from one row to the next is a multiple of 64. Unfortunately, because of the camera characteristics

in ET, the scale of the input image using ICON is always a multiple of 64. Thus, the data layout in the

coprocessor memory must be changed by using the third FFT method to obtain better performance when

the NUFFT is running in parallel.

FIG. 1. Performance comparison of main FFT

methods. FFT, fast Fourier transform.

FIG. 2. NFFT precomputing using data persistence. MIC, many integrated core; NUFFT, nonuniform fast Fourier transform.
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When calculating the window functions, since ICON is an iterative algorithm, NUFFT and adjoint

NUFFT will be repeated many times. To decrease the calculation and memory transfer time, the data

persistence technology shown in Figure 2 is used, in which the window functions are precomputed and

stored in the device memory.

A resin-embedded ET dataset with an MDCK cell section (see section 4.1 for detail) is used to test the

performance of parallel NUFFTs on MIC compared with NFFT3.0. NFFT3.0 ran on one core (thread) of an

Intel� Xeon� CPU E5-2620 v2 @ 2.1 GHz (6 cores per CPU), and parallel NUFFTs ran on a Xeon Phi

31SP coprocessor of Tianhe-2. The test datasets include image sizes of 512 · 512, 1k · 1k, 2k · 2k, and

4k · 4k. The experimental results show that parallel NUFFTs are 10 times faster than the library NFFT3.0,

as illustrated in Figure 3.

3.3. Efficient summation of a matrix

Commonly, CPU programs will execute the summation by using a single thread. However, for MIC, the

computational capability of one thread is too weak to sum an entire matrix in a reasonable time.

An OpenMP reduction clause is usually used to avoid executing the summation on one core of MIC.

However, it cannot take advantage of the 512-bit vector-processing unit on MIC. An array notation is used

as part of Intel Cilk Plus (Robison, 2012) to help the compiler with vectorization and achieve the efficient

utilization of all available processing resources. The three summation strategies mentioned earlier were

compared, and the result is shown in Figure 4. The strategy using Intel Cilk Plus reduction with VPU is the

most efficient.

3.4. Extend ICON-MIC on multiple Xeon Phi cards on Tianhe-2

To further satisfy the large amount of computational requirements, the ICON-MIC is extended to

multiple Xeon Phi cards on Tianhe-2. To make ICON-MIC compatible with the architecture of Tianhe-2,

we proposed a hybrid task allocation model named TLLB that takes advantage of the message passing

interface. Considering the exclusivity of one node on Tianhe-2 and the fact that idle CPU cores also have

good computing capability, the idle CPU cores involved in the computation are utilized to make full use of

the idle resources on one node. The TTLB, which is a heterogeneous computing framework, combines the

static allocation (for the level on the Xeon Phi cards and idle CPU cores) with dynamic allocation (for the

level on the CPU nodes), as described in Figure 5.

In ET, the reconstruction of a 3D volume can be divided into a series of similar tasks. Each node on

Tianhe-2 has three Xeon Phi cards and idle CPU cores, so we perform precomputation to estimate the

computing capability and assign different weights to the Xeon Phi cards and CPU cores to achieve load

balancing. Then, we separate all tasks into a series of task subsets. Each subset contains a series of similar

tasks, and the exact number of tasks depends on the weight and the entire number of tasks. During

reconstruction, each node will dynamically request one task subset after the previous task subset is finished.

Within one node, each task will be statically assigned to Xeon Phi cards and idle CPU cores according to

their weight.

FIG. 3. The speedups of parallel NUFFTs

compared with NFFT3.0.
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4. RESULTS AND DISCUSSION

4.1. Resin-embedded ET dataset

The resin-embedded ET dataset is an MDCK cell section. The tilt angles of the dataset originally ranged

from -68� to +68�, with a 1� increment. To verify the ability of ICON to restore missing information, every

two projections are extracted from the original dataset to generate a new tilt series with a 2� increment for

the experiments. The tilt series are aligned using atomalign (Han et al., 2014). The original image size is

4k · 4k, with a pixel size of 0.72 nm.

4.2. Cryo-ET dataset

The Cryo-ET dataset contains the mitochondria of mice hepatic cells. The data set is recorded by the

China National Key Laboratory of Biomacromolecules and was collected by the FEI company’s

production-Tecnai 20. The tilt angles of the dataset originally ranged from -52� to +59�, with a 1�
increment. The tilt series are also aligned using atomalign (Han et al., 2014). The original image size is

2k · 2k, with a pixel size of 0.4 nm.

FIG. 5. TLLB for ICON on Tihanhe-2. TLLB, two-level load balancing.

FIG. 4. Summation of a matrix. VPU, vector processing unit.
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4.3. Reconstruction precision

The reconstruction precision of ICON-MIC on the resin-embedded ET dataset is investigated by using the

pseudo-missing-validation procedure (Deng et al., 2016). Here, the minimum tilt (the -0.29� tilt) projection

was excluded as the omit projection (‘‘ground truth’’), as shown in Figure 6a. The reconstructed tomograms

FIG. 7. The comparison of time consumption of

ICON-CPU and ICON-MIC.

FIG. 6. Evaluate ICON-MIC by the pseudo-missing-validation procedure. (a, e) The omit projection (‘‘Ground

truth’’); (b–d, f–h) The re-projections of the omit tomograms reconstructed by WBP, ICON-CPU, and ICON-MIC,

respectively; (i, j) The pseudo-missing-validation FRCs of WBP, ICON-CPU, and ICON-MIC. FRC, Fourier ring

correlation; WBP, weighted back projection.
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are then projected again at -0.29�. The re-projections of ICONs (Fig. 6c, d) are identical to each other, and the

NCCs between each are 1. The re-projections of ICONs present clearer, more detailed structures and are more

similar to the ‘‘ground truth’’ compared with WBP (Fig. 6b). Such visual assessments are further verified

quantitatively by comparing the Fourier ring correlation (FRC) curves between the re-projections and the

‘‘ground truth.’’ The FRCs of ICONs coincide with each other, and they are better than that of WBP (Fig. 6i).

The coincident FRCs of ICONs further demonstrate the accuracy of ICON-MIC from the perspective of

restoring missing information.

We further investigated ICON-MIC by using the noisier Cryo-ET dataset. The same pseudo-missing-

validation procedure was conducted. We re-project the reconstructed tomograms at 0�. Even with a higher

noise level, the improvement of ICON-MIC is also obvious (Fig. 6h, j), which demonstrates the applica-

bility of ICON-MIC on different types of datasets under different noise levels.

4.4. Speedup

The acceleration of ICON-MIC is evaluated by comparing the running time required to reconstruct one

slice for 200 iterations. A resin-embedded ET dataset of an MDCK cell section is constructed with image

sizes of 512 · 512, 1k · 1k, 2k · 2k, and 4k · 4k. ICON-CPU runs on one core (thread) of an Intel Xeon

CPU E5-2620 v2 @ 2.1 GHz, ICON-MIC with one Xeon Phi 31SP coprocessor of Tianhe-2. The accel-

eration of ICON-MIC improves when the slice size increases (Fig. 7 and Table 1). The maximum speed of

ICON-MIC is 13.3 · for reconstructing a 4k · 4k slice. With efficient acceleration, the reconstruction time

of one 4k · 4k slice is reduced from hours to minutes.

4.5. Scalability and overall performance on Tianhe-2 supercomputer

We first tested the weak and strong scalability of ICON-MIC on Tianhe-2 supercomputer. Then, we

evaluated how the execution time varied with the number of processors.

In the weak scalability test, we fixed the number of tasks assigned to one processor. We tested the weak

scalability with image sizes of 1024 · 1024 and 2048 · 2048. We gradually increased the number of Xeon

Phi cards from 3 to 48. As the nodes gradually increased, the total number of images being processed also

increased. The execution time shown in Figure 8 increased from 875 to 900 seconds, which indicated that

the developed parallelization strategy is good for weak scalability.

FIG. 8. Weak scalability results on

Tianhe-2.

Table 1. The Speedups of ICON-MIC Compared with ICON-CPU

Image size 512 · 512 1024 · 1024 2048 · 2048 4096 · 4096

ICON-MIC 5.2 · 9.4 · 10.9 · 13.3 ·

ICON, iterative compressed-sensing optimized NUFFT reconstruction; MIC, many integrated core.
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In the strong scalability test, we fixed the total number of tasks in all nodes. We tested the strong

scalability with image sizes of 1024 · 1024 and the total number of reconstruct slice is 48, which was equal

to the highest number of Xeon Phi cards. We only increased the number of Xeon Phi cards from 3 to 48.

From Figure 9, we can observe that the parallel efficiency decreased to 92 percent when using 12 Xeon Phi

cards and decreased further to 83 percent when using 48 Xeon Phi cards. The observed degradation of the

strong scalability efficiency is acceptable.

We then tested the overall performance of the ICON-MIC on Tianhe-2 supercomputer. We use three

groups of data, including the image sizes of 512 · 512, 1024 · 1024, and 2048 · 2048. The number of

reconstruct slice is equal to 512. We use 10 nodes, which include 30 Xeon Phi cards, and we take advantage

of TLLB task allocation by using 12 threads on one idle CPU of each node. From Figure 10, we can

FIG. 10. Overall performance on Tianhe-2.

FIG. 9. Strong scalability results on Tianhe-2.
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observe that after using the TLLB task allocation, we can further reduce the time consumption of ICON-

MIC by making full use of the whole available computing resource on Tianhe-2.

5. CONCLUSION

In this work, we analyze the iterative framework of ICON and classify the operations of ICON’s major

steps into three types. Accordingly, we design parallelization strategies for ICON to generate a parallel

program, ICON-MIC. We parallelize the element-wise matrix operations and use the efficient summation

of a matrix to reduce the matrix computation cost. We also develop a parallel version of NUFFT and an

adjoint NUFFT on MIC by using a more efficient calculation of FFT. To satisfy the vast computation

requirements and consider the exclusivity of one node on the Tianhe-2 supercomputer, we propose a hybrid

task allocation strategy to improve the scalability and overall performance.

We test ICON-MIC on two different datasets, including a resin-embedded ET dataset of an MDCK cell

section and a cryo-ET dataset, which contains data on mitochondria of mice hepatic cells. By the pseudo-

missing-validation procedure, the FRC curves show that ICON-MIC has reasonable numerical accuracy

and can well restore miss information on both high and low SNR specimens. The experimental results also

show that ICON-MIC has good acceleration, reaching 13.3 · for ICON-MIC in reconstructing one 4k · 4k

slice, and ICON-MIC has good weak and strong scalability efficiency. The experimental results indicate

that ICON-MIC can use the heterogeneous computational resources of the Tianhe-2 supercomputer ef-

fectively and has good overall performance.
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