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Abstract. Quantum processors are potentially superior to their classical counterparts for many computational
tasks including factorisation. Circuit methods as well as adiabatic methods have already been proposed and imple-
mented for finding the factors of a given composite number. The main challenge in scaling it to larger numbers is the
unavailability of large number of qubits. Here, we propose a hybrid scheme that involves both classical and quantum
computation, based on the previous work of Peng et al, Phys. Rev. Lett. 101(22), 220405 (2008), which reduces
the number of qubits required for factorisation. The classical part involves setting up and partially simplifying
a set of bit-wise factoring equations and the quantum part involves solving these coupled equations using a
quantum adiabatic process. We demonstrate the hybrid scheme by factoring 551 using a 3-qubit NMR quantum
register.
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1. Introduction

Multiplying two large numbers is an easy task, but the
other way, i.e. to find the prime factors of a large number,
is very difficult. In fact, there is no known classical algo-
rithm to factor a number with polynomial resources. For
many present cryptographic techniques, such as Rivest–
Shamir–Adelman (RSA), this fact forms the basis for
ensuring secure communication [1].

Peter Shor [2,3] in his milestone paper introduced
a quantum algorithm to factorise numbers with poly-
nomial complexity. Since then, several experimental
architectures, including NMR [4], photonic systems [5]
and trapped ions [6], have been used to demonstrate
Shor’s algorithm by factoring small numbers. Factoring
larger numbers has been hindered by the unavailabil-
ity of a quantum register with large number of qubits.
As the size of the quantum register increases, one has
to encounter the challenges of increased complexity of
qubit-selective quantum controls, decreased coherence
times and difficulty in quantum measurements. More-
over, it is also believed that the quantum processors

may only be as efficient as their classical counterparts
in certain computational tasks [7]. In this context, it is
practical and may even be advantageous to look for a
hybrid processor which can reduce the burden on the
quantum processor without compromising the overall
efficiency of computation.

In this work, we provide such an example by
describing a hybrid procedure that uses both classi-
cal and quantum routines. We describe factorisation of
large numbers using two stages: (i) construction and
simplification of bit-wise factoring equations using a
classical processor and (ii) solving the bit-wise factor-
ing equations using an adiabatic quantum processor. The
adiabatic quantum factorisation was previously used to
factor 21 [8] and 143 [9] using 3 and 4 qubits, respec-
tively. The hybrid method allows significant reduction in
the number of qubits, and hence the complexity of quan-
tum operations. Here, we describe the factorisation of
551 using only 3 qubits as an example. It can be noted
that 551 is not the only number or the highest number
that can be factorised using 3 qubits, as shown later.
Moreover, we experimentally demonstrate the adiabatic
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solution of bit-wise factoring equations using a 3-qubit
NMR system.

In the next section, we describe the theoretical aspects
of the hybrid procedure for factorisation. In §3 we
describe the NMR experiments to factor 551, and finally
we conclude in §4.

2. Theory

Let n be an ln-bit biprime which is to be factored into
its two prime factors p and q, i.e. n = p × q. We can
encode the factors on two quantum registers with l p and
lq qubits. In binary form, the composite number and its
factors are

n =
ln−1∑

i=0

2i ni , p =
l p−1∑

j=0

2 jp j and q =
lq−1∑

k=0

2kqk .

(1)

Except for the cases where one of the factors p or q is
2, all biprimes n are odd and hence the least significant
bit of n, p and q are 1, i.e. p0 = q0 = 1. The most
significant bits can also be set to 1 by construction, i.e.
plp−1 = qlq−1 = 1.

We set up the bit-wise multiplication table and each
column of the table gives rise to a factoring equation.
An example for the said multiplication table is shown
in table 1 for the composite number N = 551 (ln =
10) with factors p = 29 (l p = 5) and q = 19 (lq =
5) following the prescription in [9]. Here, the first row
indicates the bit places and the subsequent two rows
(having bit variables p1 to p3 and q1 to q3) represent
the two factors. The remaining rows indicate bit-wise
products as well as the carry bits (ci j ) from one column
to another as indicated in the table. In the following, we

discuss how factoring can be achieved using a hybrid
computer with lesser number of qubits.

2.1 Bit-wise factoring equations

It can be seen that there are two possible cases regarding
the bit lengths of the factors: Case A: ln = l p + lq and
Case B: ln = l p + lq − 1. Without loss of generality,
assuming q < p, one can show that lq ≤ �ln/2� ≤ l p,
where �·� is the ceiling function. Therefore, depending
on the bit size ln of the composite number, one may try
various possibilities for the bit sizes of factors, and there
can be at most �ln/2� of them. Typically, in cryptosys-
tems which rely on the difficulty of prime factorisation,
l p and lq are chosen to be comparable, else the factor-
ing could be rendered easier. In the following, we set up
the factoring equations for general l p and lq and then
eventually focus on the case where l p = lq = �ln/2�.

First, it is important to note that not all the bits of the
two factors contribute to i th bit of n. As n = pq,

ln−1∑

i=0

2i ni =
lq−1∑

k=0

l p−1∑

j=0

2 j+k p jqk . (2)

Reshuffling the sum on the right-hand side to collect
terms with the same power of 2, we have

ln−1∑

i=0

2i ni =
l p+lq−2∑

m=0

2m
βm∑

k=αm

pm−kqk, (3)

where αm = max(0,m − l p + 1) and βm = min
(m, lq − 1).

At every order m the sum
∑

pm−kqk can be broken
up into a binary residue along with a carry variable (not
necessarily binary) which adds to the terms in the next
order m+1. By the same token, the mth order will have

Table 1. Bit-wise multiplication table for n = 551 = pq with ln = 10, l p = lq = 5.
ci j is the carry bit from column i to column j .

B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

p = 1 p3 p2 p1 1
q = 1 q3 q2 q1 1
R0 1 p3 p2 p1 1
R1 q1 p3q1 p2q1 p1q1 q1
R2 q2 p3q2 p2q2 p1q2 q2
R3 q3 p3q3 p2q3 p1q3 q3
R4 1 p3 p2 p1 1

8 → 9 7 → 8 6 → 7 5 → 6 4 → 5 3 → 4 2 → 3 1 → 2
Carry c89 c78 c67 c56 c45 c34 c23 c12

7 → 9 6 → 8 5 → 7 4 → 6 3 → 5 2 → 4
c79 c68 c57 c46 c35 c24

551 1 0 0 0 1 0 0 1 1 1
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Table 2. Bit-wise multiplication table for n = 551 = pq. Ci are the cumulative carries
from column i − 1 to column i .

B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

p = 1 p3 p2 p1 1
q = 1 q3 q2 q1 1
R0 1 p3 p2 p1 1
R1 q1 p3q1 p2q1 p1q1 q1
R2 q2 p3q2 p2q2 p1q2 q2
R3 q3 p3q3 p2q3 p1q3 q3
R4 1 p3 p2 p1 1

8 → 9 7 → 8 6 → 7 5 → 6 4 → 5 3 → 4 2 → 3 1 → 2 0 → 1
Carry C9 C8 C7 C6 C5 C4 C3 C2 C1 0
551 1 0 0 0 1 0 0 1 1 1

an ‘incoming’ carry variable Cm from the (m − 1)th
order. Thus, the factoring stands as

βm∑

k=αm

pm−kqk + Cm = nm + 2Cm+1 (4)

for 0 ≤ m ≤ l p + lq − 2. The advantage is that unlike
in the prescription in [9] the factoring equations in (4)
only couple adjacent orders, i.e. the mth equation gets
connected only to the (m−1)th and (m+1)th equations.
The trade-off is that these ‘cumulative’ carry variables
Cm will, in general, take values in the set of non-negative
integers.

The next step is, using the elements (R j , Bi )of table 1,
to form a new table, i.e., table 2. Here each cell has three
elements: first element s ji denotes least significant bit
of the sum of the elements of cell ( j − 1, i) the second
element is the bit-wise product (R j , Bi ) of table 1 and
the third element c ji is the carry from the cell ( j, i −1).
As each cell has only three bits, the carry is always a
single bit and is always from the cell in the right. This is
an advantage of table 2 over table 1 in keeping track of
the carry. From these definitions it is clear that adding a
cell leads to a sum and a carry, i.e.,

s ji + pi− j q j + c ji = s j+1,i + 2c j,i+1. (5)

Adding the cells column-wise, we obtain

βi∑

j=αi

(s ji − s j+1,i ) +
βi∑

j=αi

pi− j q j +
βi∑

j=αi

c ji

=
βi∑

j=αi

2c j,i+1.

As the first term is nothing but sαi ,i − sβi+1,i , and as
sβi+1,i = ni ,

sαi ,i +
βi∑

j=αi

pi− j q j +
βi∑

j=αi

c ji = ni + 2
βi∑

j=αi

c j,i+1.

(6)

It can be proved that

sαi ,i +
βi∑

j=αi

c ji =
βi−1∑

j=αi−1

c ji = Ci (say). (7)

Note that C0 ≡ 0 because the first column cannot have
an ‘incoming’ carry. Furthermore, substituting (4) into
(3) we get

ln−1∑

i=0

2i ni =
l p+lq−2∑

m=0

2mnm + 2l p+lq−1Clp+lq−1

from which we can conclude that

Clp+lq−1

=
{
nln−1 = 1 for Case A: ln = l p + lq ,
0 for Case B: ln = l p + lq − 1.

From the structure of the factoring equations it is
possible to readily assign values to some of the Ci ,
namely C1 and Clp+lq−2

m = 0 : 1 = 1 + 2C1 ⇒ C1 = 0,

m = l p + lq − 2 : Clp+lq−2 = nlp+lq−2

+ 2Clp+lq−1 − 1.

The factoring equations can be put into a convenient
matrix form as well. For concreteness, for n = 551, the
matrix representation of eq. (4) is
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
q1 1 0 0 0
q2 q1 1 0 0
q3 q2 q1 1 0
1 q3 q2 q1 1
0 1 q3 q2 q1
0 0 1 q3 q2
0 0 0 1 q3
0 0 0 0 1
0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1
p1
p2
p3
1

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
C2
C3
C4
C5
C6
C7
C8
C9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
1
0
0
0
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
C2
C3
C4
C5
C6
C7
C8
C9
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

Thus, a general factoring problem can be converted into
solving equations of the above structure.

2.2 Simplifying bit-wise factoring equations via
classical processor

Even though theCi variables are not binary, it is possible
to place bounds on them by noting that

max[Ci+1]=
⎢⎢⎢⎣1

2
max

⎛

⎝
βi∑

k=αi

pi−kqk+Ci

⎞

⎠− ni
2

⎥⎥⎥⎦ , (9)

where 	·
 denotes the floor function. This is arrived at
from rearranging the factoring equations. It is also pos-
sible to inductively determine an absolute upper bound
for individual Ci irrespective of ni , namely

max[Ci ]=

⎧
⎪⎨

⎪⎩

i−1 for 1≤i≤lq − 1,

lq−1 for lq ≤ i≤l p,
l p+lq−i for l p + 1≤i≤l p+lq−2.

(10)

The above values are used to initialise {Ci} and then the
bound on each element can be iteratively refined using
eq. (9), where the maximum over the binary variables
{pi , qi } is evaluated in accordance with the constraints
between them.

When n = 551, considering column B1 from table 2
we find that p1 + q1 = 1 + 2C2 while

max[C2] =
⎢⎢⎢⎣1

2

⎛

⎝max
1∑

j=0

p1− j q j + max[C1] − n1

⎞

⎠

⎥⎥⎥⎦

= 0,

as α1 = max(0, 1−10+5+1) = 0, β1 = min(1, 4) = 1
and therefore f2 = 0. In the same way, using bit-wise
logic, the classical processor can determine values of
all other fi ’s. For n = 551, using a simple numerical
procedure we found that

C3 = 0, C4 = 1, C5 = 2, C6 = 1,

C7 = 1, C8 = 1 and C9 = 1. (11)

The simplified matrix representation of the relevant
factoring equations now becomes
⎡

⎢⎢⎢⎢⎢⎣

q1 1 0 0
q2 0 1 0
q3 0 0 1
0 q2 q1 0
0 q3 0 q1
0 0 q3 q2

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎣

1
p1
p2
p3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎣

1
1
1
1
1
0

⎤

⎥⎥⎥⎥⎥⎦
. (12)

Since they involve six unknowns, namely {p1, p2, p3}
and {q1, q2, q3}, it takes six variables to factor 551. How-
ever, a further reduction in the number of variables is
possible by exploiting the first three equations, namely
p1 + q1 = 1, p2 + q2 = 1 and p3 + q3 = 1, which
together imply that q j = 1 − p j . Finally, only three
unknowns define the factoring equations:

p1(1 − p2) + (1 − p1)p2 − 1 = 0,

p1(1 − p3) + (1 − p1)p3 − 1 = 0,

(1 − p2)p3 + p2(1 − p3) = 0, (13)

which can be solved using 3 qubits. Here, we would like
to stress upon the fact that these 3 qubits can be used to
factor even larger bi-primes, given that the factors of the
bi-prime differ from each other by only 3 bits. For exam-
ple, the bi-prime 6767 with factors 67 (1000011)2 and
101 (1100101)2 can be factorised with only 3 qubits. In
general, we state that any bi-prime with factors differ-
ing from each other by n bits can be factorised using n
qubits [10]. Here 551 has only been used as an example.

In the following, we describe how these equations are
solved using a 3-qubit adiabatic quantum processor.

2.3 Solving the bit-wise factoring equations via
quantum adiabatic processor

2.3.1 Quantum adiabatic algorithm. Consider a
closed quantum system existing in an eigenstate |ψi 〉
of the initial Hamiltonian Hi which is slowly changed
to a new Hamiltonian Hf . Then, according to the quan-
tum adiabatic theorem, the system mostly remains in
an eigenstate of the instantaneous Hamiltonian and ulti-
mately reaches the corresponding eigenstate of the final
Hamiltonian, provided the system does not find two or
more crossing eigenstates during the process [7,11].

Given a problem, adiabatic quantum computation
typically involves encoding the solution to the problem
in the ground state of the final Hamiltonian. A suitable
initial Hamiltonian is chosen for which ground state can
be prepared easily. Then the Hamiltonian of the system
is slowly varied such that the system stays in the ground
state of the instantaneous Hamiltonian. The intermedi-
ate Hamiltonian can be seen as an interpolation (linear
or nonlinear) between the initial and final Hamiltonian
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[12]. If T is the total time of evolution and 0 ≤ s ≤ 1 is
the interpolation parameter, then

H (s) = (1 − s)Hi + sHf . (14)

For linear interpolation we choose s = t/T , where t is
the instantaneous time of evolution [13]. The adiabatic
theorem requires that

T =
∣∣∣∣
max{dH (s)/ds}

ε�2/h̄

∣∣∣∣ , (15)

where � is the minimum energy gap between the ground
and the first excited states. Probability of reaching
the ground state of the final Hamiltonian is given by
1 − ε2. From here onwards, we set h̄ = 1 and express
the Hamiltonian in angular frequency units.

Now the entire time evolution of the system from Hi
to Hf can be thought of as a unitary transformation UT
generated by a piece-wise constant Hamiltonian

Hm = (1 − m/M)Hi + (m/M)Hf (16)

with M pieces, each of duration τ , and 0 ≤ m ≤ M .
Defining Um = exp(−iHmτ), the total evolution oper-
ator UT = ∏M

m=1 Um .

2.3.2 Quantumadiabatic factoring. In order to convert
the factorisation problem into an optimisation problem,
Peng et al [8] constructed a cost function f (p, q) =
(n − p · q)2 which is minimum when p and q are the
factors. They replace the scalar variables p and q with
operators

P =
l p−1∑

i=0

2iWi and Q =
lq−1∑

i=0

2iWi . (17)

Here the number operator Wi = (I2 − σi z)/2 is
constructed in terms of the identity operator I2 and the
Pauli z-operator σz of the i th qubit. Note that eigen-
vectors |0〉 and |1〉 of Wi have the eigenvalues 0 and 1,
respectively, the values a classical bit can take. Using
this method, Peng et al [8] could factor the number 21
from the adiabatically prepared ground state of the final
Hamiltonian

Hf = (N I2n − P · Q)2. (18)

It can be noted that the ground state of the above
Hamiltonian represents the factors. However, extending
this method for factorising larger numbers is difficult
because the Hamiltonian in eq. (18) can have many-
body terms and required a large number of qubits.

Xu et al [9] improved upon this scheme using table 1.
Each column of table 1 represents an equation which
is subsequently encoded into a bitwise Hamiltonian,
whose ground state contains the information about
respective bits of the two factors. For example,

B1 : p1 + q1 − 1 − 2c12 = 0,

B2 : p2 + p1q1 + q2 + c12 − 1 − 2c23 − 4c24 = 0

and so on.
Now, the bit variables are replaced by the number

operators: p j → Wj , q j → Wj+l p−2. The carry bits
{c j, j+i } are organised in a list according to increasing
i for the same j and then in the order of increasing j .
Each element k of the list is mapped onto Wk+lq+l p−4.
The bit-wise Hamiltonians are then

B1 : H1 = (W1 + W4 − 1 − 2W7)
2,

B2 : H2 = (W2 + W1W4 + W5 + W7

− 1 − 2W8 − 4W15)
2

and so on. Thus, the final Hamiltonian of the factorisa-
tion problem is the sum

Hf =
ln−1∑

i=1

Hi. (19)

If the Hamiltonian is varied slowly enough, the adiabatic
theorem ensures that the system ends up, with high prob-
ability, in the ground state of the target Hamiltonian.
Therefore, on measuring the adiabatically prepared
ground state of Hf , it is possible to retrieve the factors.
Although the above encoding requires 20 qubits to fac-
tor the number 551, our hybrid scheme (§2.2) requires
only 3 qubits.

2.3.3 Quantum adiabatic factoring of 551. In a hybrid
computer, we first reduce the bit-wise factoring equa-
tions as described in §2.2 and then apply the quantum
adiabatic algorithm to solve the residual equations. For
the specific case of 551, the factoring equations are given
by eq. (13). Replacing p j → Wj = (I2 − σ j z)/2, we
form the bit-wise Hamiltonian Hi. Final Hamiltonian
(eq. (19)) becomes

Hf = (3I8 + σ 1
z σ 2

z − σ 2
z σ 3

z + σ 1
z σ 3

z )/2. (20)

In the next section, we describe the experimental
determination of the ground state of the above Hamilto-
nian which reveals the factors of 551.

3. Experiment

We implement the adiabatic factorisation of 551 on a
3-qubit NMR register involving 1H, 19F and 13C of
dibromofluoromethane (DBFM) dissolved in acetone-
D6 [14]. All the experiments were carried out on a
Bruker 500 MHz NMR spectrometer at an ambient
temperature of 300 K.

The internal Hamiltonian for the 3-qubit system under
week-coupling approximation [15,16] can be written as
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(a) (b)

(c)

(d)

(e)

(f)

(g)

Figure 1. The molecular structure of DBFM is shown in (a).
Resonance offsets (νi , diagonal elements), coupling constants
(Ji j , off-diagonal elements) and relaxation parameters are tab-
ulated in (b). The experimental NMR spectra correspond to
thermal equilibrium (c), PPS (d), the ground state of initial
Hamiltonian Hi (e) and the solution, i.e. the ground state of
the final Hamiltonian Hf (f). The energy-level diagram (g)
describes the deviation populations in the final state.

Hint = −2π

3∑

i=1

νi I
i
z + 2π

i=2∑

i=1, j>i

Ji j I
i
z I

j
z , (21)

where νi are the resonance offsets, Ji j are the coupling
constants and I iz are the z-components of spin angular
momentum operators. The molecular structure, Hamil-
tonian parameters and the thermal equilibrium spectra
of DBFM are shown in figures 1a–1c, respectively.

The complete circuit for the experiment is shown in
figure 2. The experiment mainly involves the following
four stages:

(i) Initialisation: Preparation of |000〉 pseudopure
state (PPS) from thermal equilibrium state was
achieved by standard methods [17–19]. The PPS
spectra shown in figure 1d corresponds to a
fidelity of over 0.99.

(a)

(b)

(c)

Figure 2. Three-qubit circuit for solving the bit-wise fac-
toring equations (a), the transformation of energy spectrum
during the adiabatic evolution (b) and the simulated fidelity of
the solution state with the instantaneous ground state during
the adiabatic evolution (c).

(ii) Preparing the ground state: We choose the initial
Hamiltonian as

Hi = σ 1
x + σ 2

x + σ 3
x , (22)

whose ground state is |−−−〉 (where |±〉 =
(|0〉 ± |1〉)/√2). Transforming the PPS into
|−−−〉 was achieved by using three pseudo-
Hadamard gates (H = exp[i(π/2)σy/2]) and the
corresponding experimental spectra are shown in
figure 1e.

(iii) Adiabatic evolution: The ground state of the
initial Hamiltonian was driven adiabatically
towards the ground state of the final Hamiltonian
Hf (as in eq. (19)) over a duration T = 3.5 s in
20 steps. The progression of energy eigenvalues
E j (s) as a function of the interpolation parameter
s is shown in figure 2b. Note that the ground state
has no cross-over except at the end of the evolu-
tion where it becomes doubly degenerate. Each
of these degenerate eigenstates encodes a fac-
tor. To quantify the overlap between the expected
probabilities pth

j and the simulated probabilities
psj after the sth step, we define a fidelity measure

F(s) =
∑

j p
th
j p

s
j√∑

j (p
th
j )2

∑
j (p

s
j )

2
. (23)
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p1 p2 p3  dec(1p3p2p11) 

0 0 0 17 

0 0 1 25 

0 1 0 21 

0 1 1 29 

1 0 0 19 

1 0 1 27 

1 1 0 23 

1 1 1 31 

0 

5 

10 

15 

20 

Figure 3. Experimental probabilities of all the eight eigen-
states at various stages of circuit in figure 2. Evolution of the
probabilities during all the 20 adiabatic steps is shown. The
table describes decoding the various eigenstates into respec-
tive decimal numbers. Factors highlighted in red achieve the
highest probabilities during the adiabatic process.

The profile of F(s) vs. the interpolation
parameter s ultimately reaches a value of 0.99
at the end of evolution (see figure 2c).

The propagators corresponding to these
adiabatic steps are realised using the recently
developed Bang–Bang quantum control
technique [20]. The obtained RF sequences were
robust within an RF inhomogeneity of ±10% and
had average fidelities above 0.99.

(iv) Measurement of probabilities: To demonstrate
the evolution of the probabilities during the adia-
batic process, we carried out 20 experiments each
with varying length of the adiabatic sequence. In
each experiment, after dephasing the coherences
using a pulsed-field gradient [21], we measured
the probabilities of various eigenstates in the
computational basis (see figure 2a) [22,23]. The
bar plots of the probabilities vs. the number of
steps are shown in figure 3.

The experimental spectra of the final state and
the corresponding population distributions are
shown in figures 1f and 1g, respectively. The
fidelity of the final state with the desired target
state was over 0.99.

Number to be factored

Forming the multiplication 
table

Forming the factoring 
equations and conditions on 

carry bits

Simplifying the factoring 
equations 

Solving the factoring 
equations to get factors

Quantum Processor

Solving the factoring 
equations to get factors

Classical Processor
(reduced complexity 

due to lesser 
number of carry 

bits)

more qubits

lesser qubits

Figure 4. Flowchart of the overall process.

3.1 Discussions

It is clear from the table in figure 3 that the final state
encodes the factors 19 and 29 with high probability. As
with an NP problem, these factors can be verified easily.

An important issue is the complexity of the whole
process, which is discussed qualitatively in the
following. Formulating the bit-wise factoring equations
(eq. (8)) involves mainly bit-wise multiplications, and
hence polynomial in the bit size of the composite number
(ln). In principle, these factoring equations can directly
be passed on to a quantum processor with a large num-
ber of qubits. Instead, we used some simple classical
routines to reduce the size of the quantum register. This
procedure involves computing upper bounds of cumula-
tive carries Ci (see eq. (10)) and its complexity depends
on the particular classical algorithm used. We presume
that this optional procedure can be carried out efficiently
without any exponential complexity. The quantum adi-
abatic process for solving the linear equations itself is
believed to be polynomial [24,25]. Therefore, we believe
that the overall factorisation procedure is efficient.

The crucial point in a hybrid scheme is to maximise
the efficiency of the overall computation by optimising
the switching point from classical to quantum proces-
sor. In this particular problem, simplifying the factoring
equations to a higher extent will mean lesser number
of required qubits during the quantum procedure. How-
ever, the complexity of classical simplification by itself
should remain polynomial. The exact point of the cross-
over depends on the particular problem at hand and
needs further investigation (figure 4).

In the case of factoring 551, it so happened that
calculating the upper and lower bounds of carries Ci
were enough to fix the values of the same. However, it
is probable that for larger numbers, this procedure may
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not be able to fix the values of all the carry variables,
and the simplified factoring equations that are passed to
the quantum routine may involve those unknown car-
ries Ci . Nevertheless, these variables will be bounded
from above and below, making the number of qubits
required to encode them less than in the unbounded
case.

4. Conclusions

Although, classical computers have seen an enormous
progress over the past few decades, their difficulty in
factorisation has become the corner stone of classi-
cal cryptography. Quantum computers are capable of
factoring large numbers with polynomial complexity.
Although prototype quantum computers capable of fac-
toring small numbers have already been built, a large
quantum computer outperforming a classical computer
is just not around the corner. In this scenario, it is possi-
bly more realistic to look for a hybrid computer having
both classical and quantum processors.

In the present work, we analysed a possible scheme
to factor a composite number by combining certain bit-
wise operations using a classical processor, and then
solving a set of linear equations using an adiabatic
quantum processor. We described the algorithm with
respect to factoring the number 551 into 19 and 29 using
only 3 qubits. Finally, we experimentally demonstrated
the adiabatic quantum algorithm using a 3-qubit NMR
quantum simulator, and obtained the factors with high
probability. We believe this as a first step in exploiting
the best of both the classical and quantum computational
capabilities.
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