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Abstract
The grey wolf optimizer (GWO) is a novel bionics algorithm inspired by the social rank and prey-seeking behaviors of grey

wolves. The GWO algorithm is easy to implement because of its basic concept, simple formula, and small number of

parameters. This paper develops a GWO algorithm with a nonlinear convergence factor and an adaptive location updating

strategy and applies this improved grey wolf optimizer (improved grey wolf optimizer, IGWO) algorithm to geophysical

inversion problems using magnetotelluric (MT), DC resistivity and induced polarization (IP) methods. Numerical tests in

MATLAB 2010b for the forward modeling data and the observed data show that the IGWO algorithm can find the global

minimum and rarely sinks to the local minima. For further study, inverted results using the IGWO are contrasted with

particle swarm optimization (PSO) and the simulated annealing (SA) algorithm. The outcomes of the comparison reveal

that the IGWO and PSO similarly perform better in counterpoising exploration and exploitation with a given number of

iterations than the SA.

Keywords Grey wolf optimizer � Improved grey wolf optimizer � Geoelectrical � Geoelectrical methods �
Inversion

Introduction

In recent decades, electrical and electromagnetic methods

such as DC resistivity, induced polarization (IP) and

magnetotelluric (MT) methods have received attention

from researchers for many applications in groundwater

management; geothermal resources, and oil, gas, and

mineral-deposit exploration (Nabighian and Asten 2002;

Simpson and Bahr 2005; Zhdanov 2010).

The inversion and interpretation of the observed data are

considered among the greatest challenges of geophysical

methods. Geophysical inversion problems are typically

highly nonlinear, multi-minimum and discontinuous.

Therefore, all linearized inversion strategies, such as the

generalized-inverse (GI) method (Smith and Franklin

1969) and Levenberg–Marquardt (LM) method (Davis

1993), are susceptible to dropping into local optimums.

These linearized methods also heavily depend on the initial

model.

Dissimilarly, nonlinear bionic methods for geophysical

inversion problems have various advantages: they are

highly efficient, have a good convergence speed, and do

not require a reasonable initial model. In recent years, this

type of algorithm has been actively applied in the geo-

physical field for resolving optimization inverse problems;

examples include the genetic algorithm (GA) (Parolai et al.

2005; Sen and Stoffa 1992; Shi et al. 2000; Wang and Tan

2005), simulated annealing (SA) (Dosso and Oldenburg

1991; Wang et al. 2012; Yang et al. 2002), particle swarm

optimization (PSO) (Dos Santos Coelho and Alotto 2008;

Mikki and Kishk 2005; Shaw and Srivastava 2007), colony

optimization (Chen et al. 2005; Dorigo and Stützle 2003;

Wang et al. 2009), glowworm swarm optimization (GSO)

(Krishnanand and Ghose 2006; Krishnanand 2007; Mo

et al. 2016), gravitational search algorithm (GSA) (Rashedi
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et al. 2009), bat algorithm (Yang and Hossein Gandomi

2012; Yang 2010; Yang 2011), fruit fly optimization

algorithm (FOA) (Pan 2012), ant lion optimizer (ALO)

(Mirjalili 2015a), and multi-verse optimizer (MVO) (Mir-

jalili et al. 2016).

The grey wolf optimizer (GWO) algorithm presented by

Mirjalili et al. (2014) is a novel bionics algorithm inspired

by the social rank and prey-seeking behavior of grey

wolves in nature.

Recently, the grey wolf optimizer (GWO) has been

utilized in engineering optimization and other scientific

computation fields. Sulaiman et al. (2015) have shown the

effectiveness of the GWO in an optimal reactive power

dispatch problem using two bus-system case studies. Mir-

jalili (2015b) has proven that the GWO can provide highly

competitive results in multi-layer perceptron (MLP) prob-

lems. Kamboj et al. (2016) have applied the GWO algo-

rithm to solve economic load dispatch problems. Song

et al. (2015) have applied the GWO algorithm to surface

wave dispersion curve inversion problems. Modified

schemes for improving the original GWO algorithm were

recently proposed by hybridizing the GWO with differen-

tial algorithms (Chahar and Kumar 2017; Heidari and

Pahlavani 2017; Jadhav and Gomathi 2017; Zhu et al.

2015), or by incorporating different convergence factor

formulas to focus on an appropriate balance between

exploration and exploitation (Mittal et al. 2016; Mohamed

et al. 2015; Muangkote et al. 2014).

In this paper, the GWO algorithm is improved by a

nonlinear convergence factor and an adaptive location

updating strategy. The applicability of the improved grey

wolf optimizer (IGWO) algorithm to geophysical inverse

problems is tested using MT, DC and IP data. Furthermore,

the above results are compared to the results of PSO and

SA to further test the performance of the IGWO. The

comparison illustrates that the IGWO algorithm effectively

balances the global exploration and local exploitation,

helping to find a highly accurate solution.

Grey wolf optimizer

The GWO, as a recently presented algorithm, imitates the

social rank and prey-seeking behaviors of grey wolves.

Members of a grey wolf pack are stratified according to the

following four ranks: alpha (a), beta (b), delta (d) and

omega (x).

Social hierarchy

The social structure of a grey wolf pack has very strict

levels of hierarchy that must be adhered to by all members

of the pack. The leader of a grey wolf pack is the alpha (a).

As the commander of the whole pack, the alpha is

responsible for the decisions governing certain daily

activities. The second level is beta (b), which is only

submissive to the commander. The delta (d), as the third

level, is under the command of the upper ranks. The others

are omegas (x). Omegas are at the bottom of the hierarchy

and must obey other dominant wolves, playing the role of

maintaining the dominance structure and balancing the

entire wolf pack. A model of grey wolves’ social hierarchy

is pictured in Fig. 1.

Apart from the grey wolves’ social hierarchy, their prey-

seeking activity is also simulated in the GWO algorithm.

There are three different stages in their hunting activity

(Muro et al. 2011):

1. Following the trail of the prey and getting close to the

prey;

2. Surrounding the prey and forcing the prey to stop

moving;

3. Assaulting the prey.

Following the trail of the prey, and getting close
to the prey

The alpha is the leader of the grey wolf pack and all the

other wolves are under the command of the alpha. In the

GWO algorithm, alpha represents the fittest solution.

Omegas must submit to the upper three ranks. The corre-

sponding equations are proposed (Mirjalili et al. 2014):

D ¼ C � xp tð Þ � xðtÞ
�
�

�
�; ð1Þ

x t þ 1ð Þ ¼ xp tð Þ � A � D; ð2Þ

t symbolizes the number of iterations; � indicates a dot

product; xp indicates the location of the prey; x indicates

the location of a grey wolf; and C and A represent two

searching coefficient vectors:

A ¼ 2a � r1 � a; ð3Þ
C ¼ 2r2; ð4Þ

Alpha

Beta

Delta

Omega

Fig. 1 Model of the social hierarchy of the grey wolf
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where a is linearly diminished in 0; 2½ � and r1 and r2 are

random value vectors in 0; 1½ �.

Surrounding the prey, and forcing the prey
to stop moving

In the hunting procedure, the prey is regarded as an optimal

solution and the alpha possesses the best ability to follow

the trail of the prey. Considering the uncertainty of the real

location of the prey in a geophysical inverse problem,

alpha is assumed as the location of the prey because it is

closest to the prey.

Omegas update their locations via the guidance of the

other three wolves. Grey wolves split up to chase the prey

separately and then they move towards each other to

assault. The corresponding formulas are proposed (Mirjalili

et al. 2014):

Da ¼ C1xaðtÞ � xðtÞj j
Db ¼ C2xbðtÞ � xðtÞ

�
�

�
�

Dd ¼ C3xdðtÞ � xðtÞj j;

8

<

:
ð5Þ

where Ci ¼ 2� ri1, ri1 is a random vector in 0; 1½ �, and
i ¼ 1; 2; 3.

x1 ¼ xa tð Þ � A1 � Da

x2 ¼ xb tð Þ � A2 � Db

x3 ¼ xd tð Þ � A3 � Dd;

8

<

:
ð6Þ

x ¼ ðx1 þ x2 þ x3Þ=3; ð7Þ

where

Ai ¼ 2a � ri2 � a; ð8Þ

where ri2 is a random vector in 0; 1½ � and xa tð Þ, xb tð Þ and
xd tð Þ indicate the locations of alpha, beta and delta,

respectively, at the iteration of t.

Assaulting the prey

According to Eq. (3), with the linear decrease of a, A is

variable between - 2 and 2. In the initial stage of iteration,

Aj j[ 1, and the prey can be in any place; therefore, the

grey wolf pack will expand the encircling circle and the

global exploration is dominant. In the later iterative period,

Aj j\1, and the local exploitation is dominant; therefore,

the encircling circle will shrink to a reasonable size and the

candidate solutions converge towards the position of the

prey. The pseudo-code of the GWO is provided in Fig. 2.

Improved grey wolf optimizer

In terms of the characteristics of the geophysical inverse

problems, we improve the original GWO algorithm to

ensure its performance in the geophysical inversion prob-

lems. On one hand, an improved convergence factor is

proposed to adapt to the nonlinear inverse problems. On the

other hand, equations of the conventional location updating

strategy are modified in terms of the differences between

the individual fitness values of alpha, beta, and delta. This

modified GWO algorithm is proposed as the IGWO.

Nonlinear convergence factor

The convergence factor a in the GWO algorithm linearly

varies from 2 to 0. In this paper, the equation of the con-

vergence factor is modified as follows for a better balance

between exploration and exploitation:

a ¼ 2 1� t � 1

tmax � 1

� �1:5
 !

: ð9Þ

In Eq. (9), the convergence factor a is described as an

exponential variation, as shown in Fig. 3. In the original

GWO algorithm, half of the iterations are for exploration

Initialize the grey wolf ( =1,2,...,N); x ii 

For each wolf, calculate the fitness value;
Rank the wolf pack as alpha (α), beta (β), delta (δ) and omegas (ω);

 t=1:1:tfor max

for each omega (ω)
             Update the position by equations (5)-(8);

end for
       Obtain the updated wolf pack;
       Update A, C and a;
       Recalculate the fitness values of the wolves;
       Rank the updated wolf pack as alpha (α), beta (β), delta (δ) and omegas (ω);
end for
Return the  position of alpha (α) as the final solution.

Fig. 2 Pseudo-code of the

GWO algorithm
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and the other half are devoted to exploitation. With the

modified convergence factor, a larger number of iterations

are used for exploration, which is beneficial to avoid the

local minima. Using this type of nonlinear convergence

factor, the percentage of iterations used for exploration

and exploitation is approximately 60 and 40%,

respectively.

Weighted location updating strategy

The conventional location updating strategy of omegas is

calculated via Eqs. (5), (6) and (7). According to Eqs. (5),

(6) and (7), alpha, beta and delta are equally important for

the updating position of omegas. Thus, the location

updating strategy in the original GWO loses sight of the

vital differences for the three upper social ranks.

2 4 6 8 10 12 14 16 18 20
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1.8

1.6
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1
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0.6

0.4

0.2

0

Exploration
Exploitation

Fig. 3 Modified convergence

factor (when the maximum

iteration is 20)

Table 1 Results for the multi-

extrema function tests
Function Number of dimensions Optimum Search space Number of iterations required

IGWO GWO

F1 1 0 �1000� x� 1000 14 27

F2 2 0; 0½ � �500� x; y� 500 21 30

F3 3 0; 0; 0½ � �2000� x; y; z� 2000 130 662
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Fig. 4 Fitness behaviors of the GWO and IGWO. a Objective values in the test using F1. b Objective values in the test using F2. c Objective

values in the test using F3

610 Acta Geophysica (2018) 66:607–621

123



Here, an improved location updating strategy is

proposed:

Q að Þ ¼ 1=W xa tð Þð Þ
Q bð Þ ¼ 1=W xb tð Þ

� �

Q dð Þ ¼ 1=W xd tð Þð Þ

8

<

:
; ð10Þ

x ¼ xa � Q að Þ= Q að Þ þ Q bð Þ þ Q dð Þð Þ½ �
þ xb � Q bð Þ=ðQ að Þ þ Q bð Þ þ Q dð ÞÞ½ �
þ xd � Q dð Þ=ðQ að Þ þ Q bð Þ þ Q dð ÞÞ½ �;

ð11Þ

where W represents the object function; Q is described as

the inverse of W; and Q að Þ, Q bð Þ and Q dð Þ are fitness

values of alpha, beta and delta, respectively, at the current

iteration t.

In the original GWO, the ratios for the three best wolves

guiding omegas to update their positions are equal and this

searching strategy seems to ignore the differences among

alpha, beta and delta. The adaptive searching strategy

controls the searching direction by the fitness values of

alpha, beta and delta and improves the convergence speed

and the optimization precision. Equations (10) and (11)

reveal the improved principle of searching strategies: alpha

tends to play a greater role in guiding the direction and step

length of omegas’ updated positions than does beta, while

beta tends to play a greater role in guiding the direction and

step length of omegas’ updated positions than does delta.

Time series

Im
pe

de
nc

e
ph

as
e

1 .810

1 .710

1.610

1. 510

1 .410

- 110 210 310 510010 110 410

0-10

- 0.1-10

Measured apparent res istivity
Predicted apparent resistivity

a

Measured phase
Predicted phase

Resist ivity (ohmm)

D
ep

th
(m

)
Lower li mit

In verted

U pper li mit

True

b
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
100 101 103102 104

Fig. 5 Inverted results using the IGWO based on noiseless forward modeling data from model A. a The measured apparent resistivity and phase

and the predicted apparent resistivity and phase using the IGWO. b The search area, inversion solution and true model

Time series Resistivi ty (ohmm)

D
ep

th
(m

)
Im

pe
de

nc
e

ph
as

e

1 .810

1.710

1.610

1. 510

1.410

- 110 210 310 510010 110 410

0-10

- 0.1-10

Measured apparent res istivity
Predicted apparent resistivity

a

Measured phase
Predicted phase

Low er limi t

Inve rted

Upp er limi t

True

b

100 101 103102 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 6 Inverted results using the IGWO based on the data from model A with 10% noise. a The noisy measured apparent resistivity and phase

and the predicted apparent resistivity and phase using the IGWO. b The search area, inversion solution and true model
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Multi-extrema function tests

Three typical multi-extrema functions are chosen to eval-

uate the rationality of the IGWO. In every test, the grey

wolf population N ¼ 5. The three mathematical formula-

tions are as follows:

F1 ¼ x2 � 2 cos 2pxð Þ þ 2;�1000� x� 1000; ð12Þ

F2 ¼ x2 þ y2;�500� x; y� 500; ð13Þ

F3 ¼ 0:5þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p� 	2

�0:5

� �

= 1þ 0:0001 � x2 þ y2 þ z2
� �2

� 	2

� 2000� x; y; z� 2000;

ð14Þ

Details about those functions and corresponding com-

parison results are depicted in Table 1.

The fitness behaviors of the GWO and IGWO in the

above tests are exhibited in Fig. 4 for further verification of

the high efficiency of the IGWO.

The results of the above tests reveal that the IGWO

outperforms the GWO in terms of the number of iterations
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required to obtain an optimal solution, as exhibited in

Table 1 and an improvement in misfit situations, as shown

in Fig. 4.

IGWO for geophysical inversion

For geoelectrical data inversion, we focus on the thickness

and the resistivity value of each layer of the geoelectrical

models. The parameter vector is described as

x ¼ x1; x2; . . .; x2m�1f g, where m is the number of layers;

we assume that the population of the pack is N, and the

location of each wolf is xi ¼ xi1; xi2; . . .; xið2m�1Þ

 �

. For

each grey wolf, the objective function value using MT, DC

resistivity and IP methods can be calculated, respectively,

as follows:

WMT ¼ 1

2

Xn

i¼1

qci � qai
qai

� �2

þ 1

2

Xn

i¼1

uci � uai

uai

� �2

WDC ¼
Pn

i¼1

qci � qai
qai

� �2

WIP ¼ 1

2

Xn

i¼1

qci � qai
qai

� �2

þ 1

2

Xn

i¼1

gci � gai
gai

� �2

;

8

>>>>>>>><

>>>>>>>>:

ð15Þ

where qc, qa, uc, ua, gc and ga indicate the predicted

apparent resistivity, the measured apparent resistivity, the

predicted phase, the measured phase, the predicted appar-

ent chargeability, and the measured apparent chargeability,

respectively, and k indicates the length of the measured

data. The first and third cases in Eq. (15) are treated as the

resistivity and phase and resistivity and chargeability,

Table 2 Electrical properties of

the models, search space and

results in the inversion of MT

data by the IGWO

Model Parameters Iterations True value Search space Estimated value

Minimum Maximum Noise-free 10% noise

Model A q1 ðXmÞ 100 100 10 4010 105.3 82.68

q2 ðXmÞ 100 1.5 0 300 1.462 1.509

q3 ðXmÞ 100 50 10 2010 50.01 50.41

h1ðmÞ 100 1000 100 4100 993.4 1034

h2ðmÞ 100 100 10 410 97.82 99.48

Model B q1 ðXmÞ 150 100 10 510 100.6 95.10

q2 ðXmÞ 150 200 0 600 159.4 146.4

q3 ðXmÞ 150 10 10 510 10.14 9.214

q4 ðXmÞ 150 300 0 700 300.7 291.2

h1ðmÞ 150 3000 100 4100 2845 3343

h2ðmÞ 150 3000 100 6100 3190 2647

h3ðmÞ 150 5000 100 8100 5047 4542
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Fig. 9 Inverted results using the IGWO based on noiseless forward modeling data from model C. a The measured apparent resistivity and the

predicted apparent resistivity using the IGWO. b The search area, inversion solution and true model
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respectively, of joint inversion (Vozoff and Jupp 1975;

Lines et al. 1988; Raiche 1985).Taking MT data as an

example, the IGWO procedure for the inversion is pro-

posed as follows:

1. Initialize the population N of the grey wolves, the

number of iterations tmax, A, C, and a;

2. Initialize the location vector xi, and load the measured

apparent resistivity qa and phase ua;

3. Compute the corresponding fitness values, and initial-

ize alpha, beta and delta;

4. Update the position of omegas using Eqs. (10) and

(11); compute the fitness values of all updated location

vectors for all the wolves; update alpha, beta and delta;

and update a, A, and C;

5. When the current iteration t[ tmax, end the iteration;

6. Return the position of alpha xa as the inverse result.

Synthetic data

MT, DC and IP data sets over three-layered and four-lay-

ered models are inverted to test the performances of the

IGWO. Moreover, the noise-contaminated data sets per-

turbed by a 10% Gaussian noise are also inverted. Fur-

thermore, a very wide searching area is designed in the

tests below to prove the robustness of the IGWO.

For three-layered models, the grey wolf population N ¼
30 and the maximum iteration tmax ¼ 100. For four-layered

Resistivity (ohmm)

D
ep

th
(m

)

0

100

300

400

500

600

700

800

900

1000210 610 810010 410

310

410

210

AB/2 (m)

200

Predicted apparent resistivity

a

Measured apparent resistivity

b

Lowe r limit

Inverted

Upper limit

True

101 103102 104

Fig. 10 Inverted results using the IGWO based on the data from model C with 10% noise. a The noisy measured apparent resistivity and the

predicted apparent resistivity using the IGWO. b The search area, inversion solution and true model
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models, the grey wolf population N ¼ 60 and the maxi-

mum iteration tmax = 150.

Magnetotelluric sounding

We consider two MT models: model A is an H-type geo-

electrical structure with three layers, and the second layer

is a relatively conductive thin layer; model B is a KH-type

geoelectrical structure with four layers. There is approxi-

mately 200–10,000% searching area departure from the

real values in model A and 66–2500% in model B. The

results of the tests on the synthetic and noise-contaminated

MT data are illustrated in Figs. 5, 6, 7 and 8. More infor-

mation on the models and results of the inversions is given

in Table 2.

DC resistivity

Two models are provided using the DC resistivity method:

model C and model D. Model C consists of a resistive thin

layer, and model D consists of a conductive thin layer.

There is approximately 100–3333% searching area depar-

ture from the real values in model C and 125–3333% in

model D. The results of tests on the synthetic and con-

taminated DC resistivity data are illustrated in Figs. 9, 10,

11 and 12. More information on the models and results of

the inversions is given in Table 3.

Induced polarization (IP)

Two models are considered using the IP method: model E

and model F. Model E simulates a silver mineral with a
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Fig. 12 Inverted results using the IGWO based on the data from model D with 10% noise. a The noisy measured apparent resistivity and the
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Table 3 Electrical properties of

the models, search space and

results in the inversion of DC

resistivity data by the IGWO

Model Parameters Iterations True value Search space Estimated value

Minimum Maximum Noise-free 10% noise

Model C q1 ðXmÞ 100 2500 10 5010 2463 2585

q2 ðXmÞ 100 100 10 1100 96.23 91.98

q3 ðXmÞ 100 300 0 700 299.4 297.6

h1ðmÞ 100 1.5 0 100 1.514 1.514

h2ðmÞ 100 20 0 100 18.07 18.03

Model D q1 ðXmÞ 150 1000 10 5010 997.9 960.9

q2 ðXmÞ 150 4000 0 10,000 3768 4593

q3 ðXmÞ 150 50 10 210 35.69 44.50

q4 ðXmÞ 150 500 50 2050 499.9 467.0

h1ðmÞ 150 40 0 300 38.81 37.20

h2ðmÞ 150 100 0 500 106.8 94.47

h3ðmÞ 150 1.5 0 100 1.008 2.525
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low-resistivity and high-chargeability thin layer, and model

F simulates a non-mineralized rock with a high-resistivity

and low-chargeability thin layer. There is approximately

83–500% searching area departure from the real values in

model E and 125–1000% in model F. The results of tests on

the synthetic and contaminated IP data are illustrated in

Figs. 13, 14, 15 and 16. More information on the models

and results of the inversions is given in Table 4.

Comparisons with other algorithms

The results of the IGWO based on models A, B, C and D

are contrasted with the PSO and the SA algorithm for

further verification of the accuracy and efficiency of the

IGWO. We set inverted parameters (search space and

maximum iteration) in the IGWO to be the same as those in

the PSO and SA. For models A and C, the initial model

number N ¼ 30 and the maximum iteration tmax ¼ 100. For

models B and D, the initial model number N ¼ 60 and the

maximum iteration tmax = 150. In the SA algorithm, the

temperature T equation for the iterative annealing process

is: T kð Þ ¼ 0:5� 0:99k. Additionally, the acceptance prob-

ability PðDEÞ ¼ exp � DE
T

� �

. DE indicates the objective

difference.

The search space and the experimental results are pro-

vided in Table 5. In addition, the relative errors between

the predicted data inverted by SA, PSO and IGWO algo-

rithms and the measured data are depicted in Table 6.
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Comparisons of fitness behaviors between the SA, PSO

and IGWO are exhibited in Fig. 17.

We can clearly see that the IGWO and PSO outperform

the SA in terms of the accuracy of the finial inverted results

and their convergence speeds. The typical characteristics of

the SA, PSO and IGWO are quite well illustrated in the

convergence curves in Fig. 17. For the IGWO and PSO, the

misfit function values in Fig. 17 always sharply decay at

the very beginning of the iterations and generally quickly

derive a small number at the next iteration. For SA, the

objective values are all greater than those in the IGWO and

PSO. Tables 5 and 6 and Fig. 17 reveal that the IGWO and

PSO have better performances than the SA in terms of

those improved misfit situations.

The CPU time (a CPU-i5 2540 M with 2.60-GHz clock

speed) needed for one iteration and the number of iterations

required to obtain an acceptable solution in the SA, PSO,

GWO and IGWO inversions are shown in Table 7. Table 7

indicates that the IGWO is more time consuming than the

PSO, SA and the original GWO. Generally, the PSO, GWO

and IGWO require fewer iterations than does SA to obtain

an acceptable solution.

Field data

For further investigation and evaluation of the performance

and robustness of the IGWO algorithm, the observed MT

data acquired at Caosiyao Village of Ulanqab City in the
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Table 4 Electrical properties of

the models, search space and

results in the inversion of IP

data by the IGWO

Model Parameters Iterations True value Search space Estimated value

Minimum Maximum Noise-free 10% noise

Model E q1 ðXmÞ 100 300 10 2010 299.9 294.2

q2 ðXmÞ 100 10 0 100 14.96 9.320

q3 ðXmÞ 100 150 10 810 149.6 148.8

h1ðmÞ 100 200 0 1000 194.7 219.4

h2ðmÞ 100 10 0 100 13.35 12.23

g1ð% Þ 100 10 0 100 9.968 9.619

g2ð%Þ 100 60 0 100 62.28 58.10

g3ð%Þ 100 10 0 100 10.05 9.866

Model F q1 ðXmÞ 150 500 10 2010 500.3 498.1

q2 ðXmÞ 150 800 100 3100 793.1 750.2

q3 ðXmÞ 150 30 10 210 21.34 24.19

q4 ðXmÞ 150 10 0 200 10.00 9.783

h1ðmÞ 150 100 0 1000 111.6 98.26

h2ðmÞ 150 50 0 500 44.72 54.89

h3ðmÞ 150 200 0 1000 220.4 193.0

g1ð% Þ 150 40 0 100 39.37 38.37

g2ð%Þ 150 5 0 100 1.145 6.072

g3ð%Þ 150 30 0 100 27.43 32.63

g4ð%Þ 150 20 0 100 20.43 19.27

Table 5 Search space and

results of the inversions using

the MT and DC methods based

on the SA, PSO and IGWO

algorithms

Model Parameters True value Search space Estimated value

SA PSO IGWO

Model A q1 ðXm) 100 0–200 109.4 101.7 99.67

q2 ðXmÞ 1.5 0–100 1.190 1.248 1.691

q3 ðXmÞ 50 0–100 54.75 49.97 50.03

h1ðmÞ 1000 0–2000 1049 1003 995.5

h2ðmÞ 100 0–200 88.84 82.85 113.4

Model B q1 ðXmÞ 100 0–200 102.2 99.17 99.75

q2 ðXmÞ 200 0–400 201.8 274.7 182.9

q3 ðXmÞ 10 0–100 12.03 10.91 10.92

q4 ðXmÞ 300 0–600 283.8 299.8 301.1

h1ðmÞ 3000 0–6000 3577 3019 2860

h2ðmÞ 3000 0–6000 3349 2788 3024

h3ðmÞ 5000 0–10,000 8177 5529 5504

Model C q1 ðXmÞ 2500 0–5000 3008 2385 2466

q2 ðXmÞ 100 0–200 119.4 124.7 95.56

q3 ðXmÞ 300 0–600 292.2 303.5 300.7

h1ðmÞ 1.5 0–100 1.352 1.474 1.517

h2ðmÞ 20 0–100 25.28 41.83 18.06

Model D q1 ðXmÞ 1000 0–2000 925.3 994.2 998.3

q2 ðXmÞ 4000 0–8000 3864 4219 3952

q3 ðXmÞ 50 0–100 39.97 92.28 98.10

q4 ðXmÞ 500 0–1000 529.6 498.7 499.8

h1ðmÞ 40 0–100 40.19 39.21 39.62

h2ðmÞ 100 0–200 74.82 96.40 101.4

h3ðmÞ 1.5 0–100 11.19 4.172 2.980
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Inner Mongolia Autonomous Region of northern China are

analyzed using the IGWO algorithm. The MT survey was

conducted for a total of 130 stations and divided into 8

lines that extend from northwest to southeast. The original

data from the fifteenth station on the fourth line are

inversed using the IGWO. The inverted results of the

IGWO algorithm for the observed MT data are illustrated

in Fig. 18. The relative error between the predicted data

and the observed data is 4.225%.

Figure 18a illustrates that the predicted apparent resis-

tivity fits the measured apparent resistivity quite well.

Beneath the sounding station, resistivity values tend to

increase with depth. Figure 18b shows the convergence

behavior in the iterative process of the IGWO. The

objective function values in Fig. 18b sharply decay during

the first 20 iterations and generally quickly derive a small

number during the following 80 iterations. Figure 18c

depicts the inverted solutions from the IGWO and OCCAM

by WinGLink. The inverted solution generally conforms to

the results obtained using OCCAM as well as the inter-

pretation results by our previous work shown on the right

side of Fig. 18c.

Generally, the clay cap layer possesses a very low-re-

sistivity value of approximately 100 Xm at depths of

0–286 m above the surface. The second layer is a low-

resistivity layer (2000 Xm) at depths of 0–4873 m below

the surface. Below the two low-resistivity layers, resistivity

tends to sharply increase to approximately 20,000 Xm,

which is interpreted as the zone of granitic batholith.

Conclusions

This paper proposes an emerging geophysical inversion

algorithm named the IGWO. The GWO algorithm is a

recently developed bionic algorithm inspired by the social

rank and prey-seeking behaviors of grey wolves in nature.

The mathematical theory of trailing, surrounding, and

assaulting prey can be applied to the inverse problem of

geoelectrical data. We made improvements to the

Table 6 The relative errors between the predicted data inverted by

the SA, PSO and IGWO algorithms and the measured data

Model Relative errors

SA (%) PSO (%) IGWO (%)

Model A 1.98 0.0428 0.0608

Model B 2.01 0.0475 0.0899

Model C 3.05 1.69 0.219

Model D 1.04 1.33 0.0554
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Table 7 CPU time needed for

one iteration and the number of

iterations required to obtain an

acceptable solution in the SA,

PSO, GWO and IGWO

inversions

Model CPU time (s) Number of iterations required

SA PSO GWO IGWO SA PSO GWO IGWO

Model A 0.2344 0.1563 0.2188 0.2031 73 48 40 38

Model B 0.3281 0.2969 0.4219 0.4375 69 51 50 54

Model C 0.0625 0.0781 0.1406 0.1719 45 34 30 36

Model D 0.0938 0.1094 0.3906 0.4063 51 21 14 16
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convergence factor and the location updating strategy of

the original GWO algorithm. This modified GWO algo-

rithm was named the IGWO. In the procedure of inversion,

we adopted a quite wide searching space. The effectiveness

and robustness of the IGWO were also tested on the

noiseless, contaminated, and observed data. For verifica-

tion, comparisons were made between the inverted results

of the PSO, SA and IGWO algorithm. Contrastive tests

demonstrated that the IGWO and PSO perform much better

in counterpoising the exploration and exploitation in the

iterations than SA. In contrast to PSO, the IGWO can

acquire more accurate results and provides more improved

misfit values.

We have shown that the IGWO can be applied to geo-

electrical inverse problems. The high performance, effi-

ciency, and accuracy and the satisfactory convergence

characteristics of the IGWO algorithm are sufficiently

illustrated in this paper.

Acknowledgements This research was supported by the National

Natural Science Foundation of China (NSFC) (No. 41574067) and the

National Programs for High Technology Research and Development

of China (No. 2012AA09A404). The authors sincerely thank Yang

Hao, Wang Xuemei and Yuan Wenxiu for their constructive sug-

gestions and encouraging comments.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author

states that there are no conflicts of interest.

References

Chahar V, Kumar D (2017) An astrophysics-inspired Grey wolf

algorithm for numerical optimization and its application to

engineering design problems. Adv Eng Softw 112:231–254

Chen S, Wang S, Zhang Y (2005) Ant colony optimization for the

seismic nonlinear inversion/SEG technical program expanded

abstracts 2005. Soc Explor Geophys 24(1):1732–1734

Davis P (1993) Levenberg-marquart methods and nonlinear estima-

tion. Siam News 26(6):1–12
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