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Abstract. Coset diagrams for the action of PSL(2, Z) on real quadratic irrational
numbers are infinite graphs. These graphs are composed of circuits. When modular
group acts on projective line over the finite field Fq , denoted by PL(Fq ), vertices of
the circuits in these infinite graphs are contracted and ultimately a finite coset diagram
emerges. Thus the coset diagrams for PL(Fq ) is composed of homomorphic images of
the circuits in infinite coset diagrams. In this paper, we consider a circuit in which one
vertex is fixed by (xy)m1(xy−1)m2 , that is, (m1,m2). Let α be the homomorphic image
of (m1,m2) obtained by contracting a pair of vertices v, u of (m1,m2). If we change the
pair of vertices and contract them, it is not necessary that we get a homomorphic image
different from α. In this paper, we answer the question: how many distinct homomorphic
images are obtained, if we contract all the pairs of vertices of (m1,m2)? We also mention
those pairs of vertices, which are ‘important’. There is no need to contract the pairs,
which are not mentioned as ‘important’. Because, if we contract those, we obtain a
homomorphic image, which we have already obtained by contracting ‘important’ pairs.
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1. Introduction

The modular group PSL(2, Z) [1,5] has a finite presentation 〈x, y : x2 = y3 = 1〉, where
x : z → −1

z and y : z → z−1
z are linear fractional transformations. The extended modular

group PGL(2, Z) has a finite presentation 〈x, y, t : x2 = y3 = t2 = (xt)2 = (yt)2 = 1〉,
where t is a linear fractional transformation which maps z to 1

z . Let q be a power of a prime
p, andPL(Fq)denote the projective line over the finite field Fq , that is,PL(Fq) = Fq∪{∞}.

In 1978, Higman [5] introduced a new type of graph called coset diagram for the action
of PGL(2, Z) on different objects, and in 1983, Mushtaq [8] laid its foundation. The three-
cycles of y are denoted by small triangles whose vertices are permuted counter-clockwise
by y and any two vertices which are interchanged by x are joined by an edge. The fixed
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Figure 1. A segment of infinite coset diagram.

points of x and y are denoted by heavy dots. Since (yt)2 = 1 is equivalent to t yt = y−1,
therefore t reverses the orientation of the triangles representing the three-cycles of y. Thus,
there is no need to make the diagram complicated by introducing t-edges.

DEFINITION 1 [7]

A coset graph (subgraph) D′ is a homomorphic image of the coset graph (subgraph) D if
and only if

(i) the number of vertices in D′ are less than that in D,
(ii) for each vertex v in D, which is fixed by an element g ∈ PSL(2, Z), there is vertex

v′ in D′ such that (v′)g = v′.

The real quadratic irrational numbers can be expressed in the form a+√
n

c , where n is

a non-square positive integer and a,
(a2−n)

c and c do not have any common factor. Coset

diagrams for the action of modular group on real quadratic irrational numbers a+√
n

c are
infinite graphs [9]. A portion of these graphs is shown in figure 1.

The action of the modular group on real quadratic irrational numbers through coset
diagrams is very difficult to study, as the diagrams are infinite. Therefore, the action of the
modular group on PL(Fq), where q is the power of some prime p, becomes important, as
its coset diagrams are finite. These coset diagrams are homomorphic images of the coset

diagrams for a+√
n

c , where n ≡ z2 mod p for some z ∈ N. For instance, consider the action
of PGL(2, Z) on PL(F19). We can calculate the permutation representations x, y and t
by (z)x = −1

z , (z)y = z−1
z and (z)t = 1

z respectively. So

x : (0 ∞)(1 18)(2 9)(3 6)(4 14)(5 15)(7 8)(10 17)(11 12)(13 16),

y : (0 ∞ 1)(2 10 18)(3 7 9)(4 15 6)(5 16 14)(13 17 11)(8)(12),

t : (0 ∞)(2 10)(3 13)(4 5)(6 16)(7 11)(8 12)(9 17)(14 15)(1)(18).

Of course, the above coset diagram (figure 2) is a homomorphic image of the coset

diagram for a+√
17

c as 17 ≡ 62 mod 19.

For more on coset diagrams, we suggest references [2,3,6,10,11].

DEFINITION 2

By a circuit of length k, denoted by (m1,m2, . . . ,mk) , we mean the circuit containing
one vertex fixed by (xy)m1(xy−1)m2 · · · (xy)mk−1(xy−1)mk ∈ PSL(2, Z). In other words,
it is the circuit in which m1 triangles have one vertex inside the circuit and m2 triangles



Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:13 Page 3 of 26 13

210

18

1

0

87
9

3

12 11

13

17

5

16
14

4
6

15

Figure 2. Coset diagram for PL(F19).

have one vertex outside the circuit and so on. Since it is a cycle (m1,m2, . . . ,mk), so it
does not make any difference if m1 triangles have one vertex outside the circuit and m2
triangles have one vertex inside the circuit and so on.

Note that, the length of a circuit is always even. Suppose there is a circuit
(m1,m2, . . . ,mk) of odd length, that is, k is odd. By definition, (m1,m2, . . . ,mk) means
the circuit in which m1 triangles have one vertex inside the circuit and m2 triangles have
one vertex outside the circuit and continuing in this way, mk triangles have one vertex
inside the circuit. Since it is a closed path, therefore, the first m1 and the last mk trian-
gles are adjacent and have one vertex inside the circuit. Therefore the circuit is in fact
(m1 + mk,m2, . . . ,mk−1), which is of even length.

Remark 1. If v is a fixed point of an element gi = xyκ1xyκ2 . . . xyκn (κ = 1 or −1) of the
modular group, then (v)g is a fixed point of g−1gi g.

Let vi and v j be any vertices in the circuit (m1,m2) such that (vi )gi = vi and (v j )g j =
v j . Suppose (vi )gk = v j , then g−1

i gk also maps vi to v j . Note that gk and g−1
i gk are

the only two paths to reach v j from vi . Now by contraction of vertices vi and v j , we
mean that vi and v j melt together to become one node v = vi = v j in such a way that
v = vi = v j is fixed by both the elements gk and g−1

i gk , which are the paths from vi
to v j . This is achieved by creating a circuit (closed path) C so that the vertex v in C is
fixed by gk , then by applying g−1

i gk on v such that that g−1
i gk ends at v. As a result of

this type of contraction of pairs of vertices in (m1,m2), we obtain a graph α which is a
homomorphic image of (m1,m2). Note that other than vi , v j , there are so many pairs of
vertices in (m1,m2) which form α by contraction. How many such pairs are there? The
following theorem helps us to find that number.

PROPOSITION 1

Let the vertices vi and v j in (m1,m2) be contracted and a homomorphic image α of
(m1,m2) evolves. Then α is obtainable if the vertices (vi )g and (v j )g in (m1,m2) are
contracted.

Proof. Clearly, the vertex v = vi = v j of α is fixed by gk and g−1
i gk . Now let us contract

(vi )g and (v j )g to become one node (v′)g so that a homomorphic image β of (m1,m2)

evolves. Then (v′)g in β is a fixed point of g−1gkg and g−1g−1
i gkg, whereas ((v′)g)g−1
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Figure 4. A homomorphic image of the circuit (4, 3).

in β is a fixed point of g(g−1gkg)g−1 = gk and g(g−1g−1
i gkg)g−1 = g−1

i gk . Thus β and
α are the same graphs. �

Let E be the set of elements g in PSL(2, Z) so that (vi )g and (v j )g lie in (m1,m2).
Then by Proposition 1, we have the following result.

COROLLARY 1

If vi and v j are contracted to obtain α, then during this process | E | number of pairs of
vertices are contracted all together.

Note that | E | is not the total number of pairs of vertices to create α. In next section, a
method to count all the pairs for α is given.

Example 1. Consider a circuit in which there is a vertex v, fixed by (xy)4(xy−1)3. Thus,
it is a circuit of length two and is denoted by (4, 3) (figure 3). Let us contract the vertices
v and u of (4, 3) and a homomorphic image of (4, 3) is evolved. (figure 4).

By α∗ we mean the mirror image of α. If g = xyκ1xyκ2 . . . xyκn (κi = 1 or −1) is a
word, then let g∗ = xy−κ1xy−κ2 . . . xy−κn . If (v)g = v, then g∗ fixed v∗.

We define a vertical axis of the symmetry of α as follows.
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DEFINITION 3

A homomorphic image α has a vertical axis of symmetry if and only if by contracting vi
and v j , the vertices v∗

i and v∗
j are also contracted.

Remark 2. In coset diagrams, t reverses the orientation of the triangles representing the
three cycles of y (as reflection does). So corresponding to each vertex v fixed by the pair
gi , g j in α, there is a vertex v∗ in α∗ (mirror image of α) such that v∗ is a fixed point
of gi ∗, g j

∗. In other words, it is created by contracting v∗
i and v∗

j . There are certain α’s
which have a vertical symmetry and so have the same orientations as those of their mirror
images. The homomorphic image α of a circuit (m1,m2), which has a vertex v fixed by
the pair gi , g j , has the same orientation as that of its mirror image if and only if there is a
vertex v∗ in α such that (v∗)gi ∗ = v∗, (v∗)g j

∗ = v∗.

2. Counting of the number of pairs of vertices for a homomorphic image

Let a homomorphic image α be obtained by contracting vi and v j in (m1,m2). The by
Proposition 1, α has |E | number of pairs of vertices. Note that |E | is not the total number
of pairs of vertices to create α. To find the total number of pairs of vertices, one should
follow the following steps:

Step (i). If by contracting vi and v j to create α, the vertices v∗
i and v∗

j are not contracted.
Then α has a different orientation from its mirror image α∗. So there are | E | number of
more pairs of vertices for the mirror image of α.

But if vi , v j and v∗
i , v

∗
j are contracted all together, then α has a vertical symmetry. So

in this case, α has |E | number of pairs of vertices.
Step (ii). Now we check whether m1 = m2. If it is, then in addition to vi , there is another
vertex ui which is fixed by the same word gi in (m1,m2). It means that α is obtainable, if
we contract ui and v j . If by contracting vi and v j to create α, and v∗

1 and v∗
2 to create α∗,

the vertices ui and v j are not contracted. Then as many number of pairs of vertices for α

are increased as obtained at the end of Step (i).

But if by contracting vi and v j or v∗
1 and v∗

2 , ui and v j are also contracted, or m1 �= m2.
Then there is no extra pairs for α. Thus we are left with as many pairs of vertices as obtained
at the end of Step (i).

Remark 3. Consider a circuit (m1,m2) for convenience. Let m1 ≥ m2. Let i =
1, 2, 3, . . . , 3m1 and j = 1, 2, 3, . . . , 3m2. In figure 5, one can see that the vertex
u∗
i = u3m1−(i−1) and v∗

j = v3m2−( j−1). So in (m1,m2) corresponding to each vertex
v, fixed by g, there is a vertex v∗ such that (v∗)g∗ = v∗.

The coset diagrams are composed of circuits. The vertices of the circuits in infinite
diagrams are contracted in a certain way, and a finite coset diagram evolves. It is therefore
necessary to ask, how many distinct homomorphic images are obtained if we contract all
the pairs of vertices of a circuit? We not only give the answer to this question for a circuit of
length two (m1,m2), but also mention those pairs of vertices which are ‘important’. There
is no need to contract the pairs which are not mentioned as ‘important’. If we contract
those, we obtain a homomorphic image, which we have already obtained by contracting
‘important’ pairs.
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Figure 5. Graph of the circuit (m1,m2).

Theorem 1. If the vertices u3m1 and u3i1+1 : i1 = 0, 1, 2, . . . ,m2 − 1 in (m1,m2) are
contracted (melted together to become one node), then m2 distinct homomorphic images
of (m1,m2) are created. Moreover, the total number of pairs of vertices for contraction to
create αi1 are 3(m2

2 + 3m2 − 2).

Proof. Let us contract u3m1 and u3i1+1 to obtain a family of homomorphic images of
(m1,m2), denoted by αi1 . Graphically, αi1 can be classified into two families:

(i) αi1 : i1 < m2 − 1 (figure 6),
(ii) αi1 : i1 = m2 − 1 (figure 7).

In figure 5, one can see that (xy)m2(xy−1)i1x and y−1(xy−1)m1−i1−1 are the two possible
paths between u3m1 and u3i1+1. Then for each i1, there is a vertex v in αi1 fixed by
(xy)m2(xy−1)i1x and y−1(xy−1)m1−i1−1. Now

E1 = {x, xy−1, xy, xyx, xyxy−1, (xy)2, . . . , (xy)i1x,

(xy)i1xy−1, (xy)i1+1, e, y, y−1}

is the set of elements in PSL(2, Z) so that (u3m1)g and (u3i1+1)g lies in (m1,m2) for all
g ∈ E1. Since |E1 |= 3(i1 + 2), by Proposition 1, the number of pairs of vertices to create
αi1 by contraction is 3(i1 +2). In figures 6 and 7, one can see that for k �= l , αk and αl have
different number of triangles. Therefore, all αi1 : i1 = 0, 1, 2, . . . ,m2 − 1 are different
and none of them is a mirror image of the other.

Hence |αi1 |= m2, so there are 3
∑m2−1

i1=0 (i1 + 2) pairs of vertices to create {αi1 : i1 =
0, 1, 2, . . . ,m2−1}. Also from figures 6 and 7, only α0 has a vertical axis of symmetry, that
is, α0 has the same orientation as that of its mirror image and all otherm2−1 homomorphic
images of (m1,m2) do not possess a vertical axis of symmetry. Thus there are

6
m2−1∑

i2=1

(i2 + 2) + 6 = 6

⎧
⎨

⎩

m2−1∑

i2=1

(i2 + 2) + 1

⎫
⎬

⎭
= 3(m2

2 + 3m2 − 2)

pairs of vertices for contraction to create {αi1 : i1 = 0, 1, 2, . . . ,m2 − 1}. �
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Figure 6. Graph of the homomorphic image αi1 : i1 < m2 − 1.

Theorem 2. If the vertices u3m1 and v3i1+1 : i1 = 0, 1, 2, . . . ,m2 − 1 in (m1,m2) are
contracted (melted together to become one node), then m2 distinct homomorphic images
of (m1,m2) are created. Moreover, the total number of pairs of vertices for contraction to
create βi1 are

3
2 (m2

2 + 3m2).

Proof. Let us contract u3m1 and v3i1+1 to obtain a family of homomorphic images of
(m1,m2) denoted by βi1 . Suppose r is the remainder of i1

m2−i1
. Graphically, βi1 can be

classified into four families:

(i) βi1 : m2 − 2i1 > 1 (figure 8),
(ii) βi1 : m2 − 2i1 = 1 (figure 9),

(iii) βi1 : m2 − 2i1 < 1 and m2 − i1 > r + 1 (figure 10),
(iv) βi1 : m2 − 2i1 < 1 and m2 − i1 = r + 1 (figure 11).

In figure 5, one can see that (xy)m2−i1 and (xy)i1(xy−1)m1 are the two possible paths
between u3m1 and v3i1+1. Then for each i1, βi1 has a vertex v fixed by (xy)m2−i1 and
(xy)i1(xy−1)m1 .Now E2 = {x, xy−1, xy, xyx, xyxy−1, (xy)2, . . . , (xy)i1x, (xy)i1xy−1,

(xy)i1+1, e, y, y−1} is the set of elements in PSL(2, Z) so that (u3m1)g and (v3i1+1)g lies
in (m1,m2) for all g ∈ E2. Since |E2 | = 3(i1 + 2), by Proposition 1, the number of
pairs of vertices to create βi1 by contraction is 3(i1 + 2). In figures 8, 9, 10 and 11,
one can see that for k �= l, βk and βl have different number of triangles. Therefore, all
βi1 : i1 = 0, 1, 2, . . . ,m2 − 1 are different and none of them is a mirror image of the
other.

Hence |βi1 |= m2, so there are 3
∑m2−1

i1=0 (i1 + 2) pairs of vertices to create {βi1 : i1 =
0, 1, 2, . . . ,m2 − 1}. Also from figures 8–11, all βi1 have a vertical axis of symmetry. In
other words, these diagrams have the same orientations as those of their mirror images.
Thus there are 3

∑m2−1
i1=0 (i1 + 2) = 3

2 (m2
2 + 3m2) pairs of vertices for contraction to create

{βi1 : i1 = 0, 1, 2, . . . ,m2 − 1}. �
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Figure 8. Graph of the homomorphic image βi1 : m2 − 2i1 > 1.

Theorem 3. If the vertices v3m2 and u3i3+1 : i3 = 1, 2, . . . ,m1 − 1 in (m1,m2) are
contracted (melted together to become one node), then m1 − 1 distinct homomorphic
images of (m1,m2) are created. Moreover, the total number of pairs of vertices for con-
traction to create β ′

i3
are 3

2 (m2
1 + 3m1 − 4).

The above theorem can be proved along the same lines as that of Theorem 2, by inter-
changing m1,m2, E2, i1 and βi1 by m2,m1, E3, i3 and β ′

i3
respectively. Suppose r ′ is the

remainder of i3
m1−i3

. Graphically, β ′
i3

can be classified into four families:

(i) β ′
i3

: m1 − 2i3 > 1 (figure 12),
(ii) β ′

i3
: m1 − 2i3 = 1 (figure 13),

(iii) β ′
i3

: m1 − 2i3 < 0 and m1 − i3 > r ′ + 1 (figure 14),
(iv) β ′

i3
: m1 − 2i3 < 0 and m1 − i3 = r ′ + 1 (figure 15).

Let ε1 =
{

0, if m1 + m2 ≡ 0 mod 2
1, if m1 + m2 ≡ 1 mod 2

.
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Figure 9. Graph of the homomorphic image βi1 : m2 − 2i1 = 1.
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Figure 10. Graph of the homomorphic image βi1 : m2 − 2i1 < 1,m2 − i1 > r + 1.

Theorem 4. If the vertices u3m1 and u3 j1+1 : j1 = m2 + 1,m2 + 2, . . . , m1+m2−ε1
2 in

(m1,m2) are contracted (melted together to become one node), then 1
2 (m1 − m2 − ε1)

distinct homomorphic images of (m1,m2) are created. Moreover, the total number of pairs
of vertices for contraction to create γ j1 are 3(m2 + 2)(m1 − m2 − 1).

Proof. Let us contract u3m1 and u3 j1+1 to obtain a family of homomorphic images of
(m1,m2) denoted by γ j1 . Diagrammatically by γ j1 , we mean figure 16.

In figure 5, one can see that (xy)m2(xy−1) j1x and y−1(xy−1)m1− j1−1 are the two pos-
sible paths between u3m1 and u3 j1+1. Then for each j1, γ j1 contains a vertex v fixed by
(xy)m2(xy−1) j1x and y−1(xy−1)m1− j1−1. Now

E4 =
{
x, xy−1, xy, xyx, xyxy−1, (xy)2, . . . , (xy)m2 ,

(xy)m2x, (xy)m2xy−1, (xy)m2+1, e, y, y−1

}
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Figure 11. Graph of the homomorphic image βi1 : m2 − 2i1 < 1,m2 − i1 = r + 1.
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Figure 12. Graph of the homomorphic image β ′
i3

: m1 − 2i3 > 1.

is the set of elements in PSL(2, Z) so that (u3m1)g and (u3 j1+1)g lies in (m1,m2) for all
g ∈ E4. Since | E4 | = 3(m2 + 2), therefore by Proposition 1, the number of pairs of
vertices to create γ j1 by contraction is 3(m2 + 2).

Consider two homomorphic images γk and γl of (m1,m2). Then γk and γl are cre-
ated by contraction of u3m1 , v3k+1 and u3m1 , v3l+1 respectively. Let γk and γl be
the same homomorphic images of (m1,m2). Then there is an element g in E4 such
that (u3m1)g = u3m1 and (v3k+1)g = v3l+1. There is only one element e ∈ E4
which maps u3m1 to u3m1 , but (v3k+1)e �= v3l+1. Thus all homomorphic images in{
γ j1 : j1 = m2 + 1,m2 + 2, . . . , m1+m2−ε1

2

}
are distinct. Thus |γ j1 | = 1

2 (m1 −m2 − ε1).

From figure 16, one can see that γk and γl are mirror images of each other if and only if
k − m2 − 1 = m1 − l − 1 and l − m2 − 1 = m1 − k − 1. It means that k = m1+m2

2 = h,
implying that for k �= l, γk and γl are not mirror images of each other and γm1+m2

2
is

the mirror image of itself, that is, it has the same orientation as that of its mirror image.
Now
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Figure 14. Graph of the homomorphic image β ′
i3

: m1 − 2i3 < 0,m1 − i3 > r ′ + 1.

(i) If m1 + m2 ≡ 0 mod 2, then only μm1+m2
2

∈ {γ j1} has the same orientation as that

of its mirror image, and all other 1
2 (m1 − m2 − 2) homomorphic images have different

orientations from their mirror images. Hence there are

2 |E4 |
(
m1 − m2 − 2

2

)

+ |E4 | = 3(m2 + 2)(m1 − m2 − 1)

pairs of vertices to create γ j1 .
(ii) If m1 + m2 ≡ 1 mod 2, then all γ j1 have different orientations from their mirror
images. Hence there are

2 |E4 |
(
m1 − m2 − 1

2

)

= 3(m2 + 2)(m1 − m2 − 1)

pairs of vertices to compose γ j1 .
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Figure 15. Graph of the homomorphic image β ′
i3
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Figure 16. Graph of the homomorphic image γ j1 .

Let ε2 =
{

0, if m2 ≡ 0 mod 2
1, if m2 ≡ 1 mod 2

. �

Theorem 5. If the vertices u3i3+1 : i3 = 1, 2, . . . ,m1 − 1 and v3 j2 : j2 =
1, 2, . . . ,

m2−(ε2+2)
2 in (m1,m2) are contracted (melted together to become one node),

then 1
2 (m1 − 1)(m2 − (ε2 + 2)) distinct homomorphic images of (m1,m2) are cre-

ated. Moreover, the total number of pairs of vertices for contraction to create λ(i3, j2)

are 6(m1 − 1)(m2 − (ε2 + 2)).

Proof. Let us contract u3i3+1 and v3 j2 to obtain a family of homomorphic images of
(m1,m2) denoted by λ(i3, j2). Diagrammatically by λ(i3, j2), we mean figure 17.

In figure 5, one can see that (xy)i3(xy−1) j2 and (xy−1)m2− j2(xy)m1−i3 are the two
possible paths between u3i3+1 and v3 j2 . Then for each i3, j2, λ(i3, j2) contains a vertex v

fixed by (xy)i3(xy−1) j2 and (xy−1)m2− j2(xy)m1−i3 . Now E5 = {x, xy−1, xy, e, y, y−1}
is the set of elements in PSL(2, Z) so that (u3i3+1)g and (v3 j2)g lies in (m1,m2) for all
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Figure 17. Graph of the homomorphic image λ(i3, j2).

g ∈ E5. Since | E5 | = 6, therefore by Proposition 1, the number of pairs of vertices to
create each λ(i3, j2) by contraction is 6.

(i) Consider two homomorphic images, λ(h1,k1), λ(h2,k2) ∈ {λ(i3, j2)}. Then λ(h1,k1) and
λ(h2,k2) are formed by contraction of u3h1+1, v3k1 and u3h2+1, v3k2 respectively. Let λ(h1,k1)

and λ(h2,k2) be the same homomorphic image of (m1,m2). Then there is an element g
in E5 such that (u3h1+1)g = u3h2+1 and (v3k1)g = v3k2 . There is only one element
xy−1 ∈ E5 which maps u3h1+1 to u3h2+1 (h2 = h1 +1), but (v3k1)xy

−1 �= v3k2 . Therefore
λ(h1,k1), λ(h2,k2) are distinct.
(ii) From figure 17, one can see that λ(h1,k1) and λ(h2,k2) are mirror images of each other if
and only if h1 −1 = m1 −h2 −1,m1 −h2 −1 = h1 −1 andm2 −k1 −1 = k2 −1, k1 −1 =
m2 − k2 − 1 which means h2 = m1 − h1, k2 = m2 − k1.

So λ(h1,k1) and λ(m1−h1,m2−k1) are mirror images of each other, but for each k1 ∈
{1, 2, . . . ,

m2−(ε2+2)
2 }, m2 − k1 /∈ {1, 2, . . . ,

m2−(ε2+2)
2 } consequently, λ(m1−h1,m2−k1) /∈

{λ(i3, j2)}. Therefore λ(h1,k1), λ(h2,k2) ∈ {λ(i3, j2)} are not mirror images of each other.
(iii) Let λ(h,k) ∈ {

λ(i3, j2)
}

be the mirror image of itself, that is, has the same orientation as
that of its mirror image. Then from figure 17, h−1 = m1 −h−1 and k−1 = m2 −k−1,
which means h = m1

2 , k = m2
2 . But λ(h,k) /∈ {λ(

m1
2 ,

m2
2 )}.

From (i), (ii) and (iii), we have all homomorphic images in

{

λ(i3, j2) : i3 = 1, 2, . . . ,m1 − 1, j2 = 1, 2, . . . ,
m2 − (ε2 + 2)

2

}

which are distinct and none of them is a mirror image of the other or itself. Thus, |λ(i3, j2) | =
1
2 (m1 −1)(m2 −(ε2 +2)), and there are 2 × |E5 | × |λ(i3, j2) | = 6(m1 −1)(m2 −(ε2 +2))

pairs of vertices to compose λ(i3, j2). �

Recall ε2 =
{

0, if m2 ≡ 0 mod 2
1, if m2 ≡ 1 mod 2

and let

i4 =
{

1, 2, . . . , m1−ε3
2 if m2 ≡ 0 mod 2

1, 2, . . . ,m1 − 1 if m2 ≡ 1 mod 2
, ε3 =

{
0 if m1 ≡ 0 mod 2
1 if m1 ≡ 1 mod 2

.
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Figure 18. Graph of the homomorphic image λ(
i4,

m2−ε2
2

).

Theorem 6. If the vertices u3i4+1 and v3(
m2−ε2

2 )
in (m1,m2) are contracted (melted

together to become one node), then

{ m1−ε3
2 , if m2 ≡ 0 mod 2

m1 − 1, if m2 ≡ 1 mod 2
distinct homomorphic

images of (m1,m2) are created. Moreover, the total number of pairs of vertices for con-

traction to create λ
(i4,

m2−ε2
2 )

are

{
6(m1 − 1), if m2 ≡ 0 mod 2
12(m1 − 1), if m2 ≡ 1 mod 2

.

Proof. Let us contract u3i4+1 and v3(
m2−ε2

2 )
to obtain a family of homomorphic images of

(m1,m2) denoted by λ
(i4,

m2−ε2
2 )

. Diagrammatically by λ
(i4,

m2−ε2
2 )

, we mean figure 18.

In figure 5, one can see that (xy)i4(xy−1)
m2−ε2

2 and (xy−1)
m2+ε2

2 (xy)m1−i4 are the
two possible paths between u3i4+1 and v3(

m2−ε2
2 )

. Then for each i4, λ
(i4,

m2−ε2
2 )

con-

tains a vertex v fixed by (xy)i4(xy−1)
m2−ε2

2 and (xy−1)
m2+ε2

2 (xy)m1−i4 . Now E6 =
{x, xy−1, xy, e, y, y−1} is the set of elements in PSL(2, Z) so that (u3i4+1)g and
(v3(

m2−ε2
2 )

)g lies in (m1,m2) for all g ∈ E6. Since | E6 | = 6, therefore, by Proposition 1,

the number of pairs of vertices to create each λ
(i4,

m2−ε2
2 )

by contraction is 6.

We prove in Theorem 5, that all fragments in {λ(i3, j2)} are distinct, and that the mirror
image of λ(h1,k1) ∈ {λ(i3, j2)} is λ(m1−h1,m2−k1). Similarly, we have that all the frag-
ments in {λ

(i4,
m2−ε2

2 )
} are different, and the mirror image of λ

(h1,
m2−ε2

2 )
∈ {λ

(i4,
m2−ε2

2 )
} is

λ
(m1−h1,

m2+ε2
2 )

. Now

(i) If m2 ≡ 1 mod 2, then λ
(m1−h1,

m2+1
2 )

/∈ {λ
(i4,

m2−1
2 )

}. This shows that none of the

fragments in {λ
(i4,

m2−1
2 )

} is the mirror image of the other. Hence |{λ
(i4,

m2−1
2 )

}| = m1 − 1,

and so there are 2 × | E6 | × |{λ
(i4,

m2−1
2 )

}| = 12(m − 1) pairs of vertices to compose

λ
(i4,

m2−ε2
2 )

.

(ii) If m2 ≡ 0 mod 2 and m1 ≡ 1 mod 2, then for all h1 ∈ {1, 2, . . . , m1−1
2 }, we have

m1 − h1 > m−1
2 implying that λ(m1−h1,

m2
2 ) /∈ {λ(i4,

m2
2 )}. So none of the fragments in

{λ(i4,
m2
2 )} is the mirror image of the other, which implies that |{λ(i4,

m2
2 )}| = m−1

2 . Hence
the total number of pairs of vertices for λ(i4,

m2
2 ) are 2 × |E6 | × |{λ(i4,

m2
2 )}| = 6(m − 1).
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Figure 19. Graph of the homomorphic image χ( j3, j4).

(iii) If m1 and m2 are both even, then for all h1 ∈ {
1, 2, . . . , m1

2

} \m1
2 , we have m1 − h1 >

m1
2 implying that λ(m1−h1,

m2
2 ) /∈ {λ(i4,

m2
2 )}, and for h1 = m1

2 , we have λ(m1−h1,
m2
2 ) =

λ(
m1
2 ,

m2
2 ) ∈ {λ(i4,

m2
2 )}. This shows that for i4 < m1

2 , none of the fragments in {λ(i4,
m2
2 )}

is the mirror image of the other and λ(
m1
2 ,

m2
2 ) is the mirror image of itself, which implies

that |{λ(i4,
m2
2 )}| = m1

2 . Hence there are 2 × | E6 | × (m1−2
2 )+ | E6 | = 6(m1 − 1) pairs

of vertices for λ(i4,
m2
2 ). �

Recall ε3 =
{

0, if m1 ≡ 0 mod 2
1, if m1 ≡ 1 mod 2

and let

j3 = 1, 2, 3, . . . ,
m1 − 2 + ε3

2
, j4 = j3 + 1, j3 + 2, . . . ,m1 − j3.

Theorem 7. If the vertices u3 j3+1 and u3 j4 in (m1,m2) are contracted (melted together to
become one node), then 1

4 (m2
1 − 2m1 + ε3) distinct homomorphic images of (m1,m2) are

created. Moreover, the total number of pairs of vertices for contraction to create χ( j3, j4)

are 3(m2
1 − 3m1 + 2).

Proof. Let us contract u3 j3+1 and u3 j4 to obtain a family of homomorphic images of
(m1,m2) denoted by χ( j3, j4). Diagrammatically by χ( j3, j4), we mean figure 19.

In figure 5, one can see that y−1(xy−1) j4− j3−1 and (xy) j3(xy−1)m2(xy)m1− j4x are the
two possible paths between u3 j3+1 and u3 j4 . Then for each j3, j4, there is a vertex v in
χ( j3, j4) such that

(v)y−1(xy−1) j4− j3−1 = v = (v)(xy) j3(xy−1)m2(xy)m1− j4x .

Now E7 = {x, xy−1, xy, e, y, y−1} is the set of elements in PSL(2, Z) so that (u3 j3+1)g
and (u3 j4)g lies in (m1,m2) for all g ∈ E7. Since | E7 | = 6, therefore, by Proposition 1,
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the number of pairs of vertices to create each χ( j3, j4) by contraction is 6. Consider two
homomorphic images χ(h1,k1), χ(h2,k2) ∈ {χ( j3, j4)}. Then χ(h1,k1) and χ(h2,k2) are formed
by contraction of u3h1+1, u3k1 and u3h2+1, u3k2 respectively. Let χ(h1,k1) and χ(h2,k2) be
the same homomorphic images of (m1,m2). Then there is an element g in E7 such that
(u3h1+1)g = u3h2+1 and (u3k1)g = u3k2 . There is only two elements xy, xy−1 ∈ E7
such that xy maps u3h1+1 to u3h2+1 (h2 = h1 − 1) and xy−1 maps u3h1 to u3h2 (h2 =
h1 +1), but in both the cases neither (u3k1)xy

−1 = u3k2 nor (u3k1)xy
−1 = u3k2 . Therefore

χ(h1,k1), χ(h2,k2) are distinct.
Let χ(h1,k1) and χ(h2,k2) be mirror images of each other, that is, χ(h1,k1) = χ∗

(h2,k2). Then
by Remark 2, χ(h1,k1) can be obtained by contracting u∗

3h2+1 and u∗
3k2

. In other words,
u∗

3h2+1 ←→ u∗
3k2

is one of the 6 pairs of vertices which create χ(h1,k1) by contraction.
So there is an element g in E7 such that (u3h1+1)g = u∗

3h2+1 and (u3k1)g = u∗
3k2

. There
is only one element x ∈ E7 which maps u3h1+1 to u3h1 = u∗

3(m1−h1)+1 and u3k1 to
u3k1+1 = u∗

3(m1−k1)
. This implies that for h2 = m1 − h1 and k2 = m1 − k1, χ(h1,k1)

and χ(h2,k2) are mirror images of each other. But for each h1 ∈
{

1, 2, 3, . . . , m1−2+ε3
2

}
,

clearly h2 = m1 − h1 > m1−2+ε3
2 , which means that χ(h2,k2) = χ(m1−h1,m1−k1) /∈

{
χ( j3, j4) : j3 = 1, 2, 3, . . . , m1−2+ε3

2 and
j4 = j3 + 1, j3 + 2, . . . ,m1 − j3

}

. Therefore, χ(h1,k1), χ(h2,k2) ∈ {χ( j3, j4)} are

not mirror images of each other. Hence,

|χ(i3, j2)| = (m1 − 2) + (m1 − 4) + (m1 − 6) + · · · + (4 − ε3) + (2 − ε3)

= 1

4
(m2

1 − 2m1 + ε3).

Let 	(h,k) ∈ {χ( j3, j4)} be the mirror image of itself, that is, has the same orientation as
that of its mirror image. Then from figure 19, h−1 = m1 −k−1 which means k = m1 −h.

Now for all h ∈ {1, 2, 3, . . . , m1−2+ε3
2 }, we have k = m1 −h ∈ {h+1, h+2, . . . ,m1 −h}

implying that for all h ∈ {1, 2, 3, . . . , m1−2+ε3
2 }, 	(h,m1−h) ∈ {χ( j3, j4)} which is the mirror

image of itself.
So out of 1

4 (m2
1 − 2m1 + ε3) homomorphic images in {χ( j3, j4)}, m1−2+ε3

2 are the mirror
images of itself, and hence there are

2× |E7 | ×
(

1

4
(m2

1 − 2m1 + ε3) − m1 − 2 + ε3

2

)

+ |E7 | ×
(
m1 − 2 + ε3

2

)

= 3(m2
1 − 3m1 + 2)

pairs of vertices to compose χ( j3, j4). �

Recall ε2 =
{

0, if m2 ≡ 0 mod 2
1, if m2 ≡ 1 mod 2

and let

j5 = 1, 2, 3, . . . ,
m2 − 2 + ε2

2
, j6 = j5 + 1, j5 + 2, . . . ,m2 − j5.

Theorem 8. If the vertices v3 j5+1 and v3 j6 in (m1,m2) are contracted (melted together to
become one node), then 1

4 (m2
2 − 2m2 + ε2) distinct homomorphic images of (m1,m2) are
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Figure 20. Graph of the homomorphic image χ ′
( j5, j6)

.

created. Moreover, the total number of pairs of vertices for contraction to create χ ′
( j5, j6)

are 3(m2
2 − 3m2 + 2).

The above theorem can be proved along the same lines as those of Theorem 7, by inter-
changing m1,m2, E7, j3, j4 and χ( j3, j4) by m2,m1, E8, j5, j6 and χ ′

( j5, j6)
respectively.

Diagrammatically by χ ′
( j5, j6)

, we mean figure 20.

Recall, ε3 =
{

0, if m1 ≡ 0 mod 2
1, if m1 ≡ 1 mod 2

and let j7 = {
1, 2, 3, . . . , m1−ε3

2

}
.

Theorem 9. If the vertices u3 j7+1 and u3 j7 in (m1,m2) are contracted (melted together
to become one node), then 1

2 (m1 − ε3) distinct homomorphic images of (m1,m2) are
created. Moreover, the total number of pairs of vertices for contraction to create χ( j7, j7)

are 3(m1 − 1).

Proof. Let us contract u3 j7+1 and u3 j7 to obtain a family of homomorphic images of
(m1,m2) denoted by χ( j7, j7). Diagrammatically by χ( j7, j7), we mean figure 21.

In figure 5, one can see that x and y(xy) j7−1(xy−1)m2(xy)m1− j7 are the two possible
paths between u3 j7+1 and u3 j7 . Then for each j7, χ( j7, j7) contains a vertex v fixed by
x and y(xy) j7−1(xy−1)m2(xy)m1− j7 . Now E9 = {x, xy, xy−1, e, y, y−1} is the set of
elements in PSL(2, Z) so that (u3 j7+1)g and (u3 j7)g lies in (m1,m2) for all g ∈ E9. But
one can see that ‘(u3 j7+1)x, (u3 j7)x and (u3 j7)e, (u3 j7+1)e’, ‘(u3 j7+1)xy, (u3 j7)xy and
(u3 j7)y, (u3 j7+1)y’ and ‘(u3 j7+1)xy−1, (u3 j7)xy

−1 and (u3 j7)y
−1, (u3 j7+1)y−1’ are the

same pairs of vertices. Therefore, the number of pairs of vertices to create each χ( j7, j7) by
contraction is 3.

In Theorem 7, we prove that all homomorphic images of (m1,m2) in {χ( j3, j4)} are
distinct, and that the mirror image of χ(h1,k1) ∈ {χ( j3, j4)} is χ(m1−h1,m1−k1). Similarly,
we have that all homomorphic images of (m1,m2) in χ( j7, j7) are different, and the mirror
image of χ(h1,h1) ∈ χ( j7, j7) is χ(m1−h1,m1−h1). Now for all h1 ∈ {

1, 2, 3, . . . , m1−ε3
2

}
�

m1
2 ,
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Figure 21. Graph of the homomorphic image χ( j7, j7).

we have m1 − h1 is greater than all the members in
{
1, 2, 3, . . . , m1−ε3

2

}
�

m1
2 , implying

that χ(m1−h1,m1−h1) /∈ {χ( j7, j7)}. But for h1 = m1
2 , we have m1 − h1 = m1

2 , so χm1
2

is the
mirror image of itself. Thus all homomorphic images of (m1,m2) in {χ( j7, j7)} are different,
none of them is a mirror image of the other, implying that |χ( j7, j7)| = 1

2 (m1 − ε3). Now
we have two cases:

(i) If m1 ≡ 0 mod 2, then none of the homomorphic image (m1,m2) in {χ( j7, j7)} is the
mirror image of itself. Hence, there are 2 × | E9 | × 1

2 (m1 − 1) = 3(m1 − 1) pairs of
vertices to compose χ( j7, j7).
(ii) If m1 ≡ 0 mod 2, then only χm1

2
∈ {χ( j7, j7)} is the mirror image of itself. Hence, there

are 2 × |E9 | × 1
2 (m1 − 2)+ |E9 | = 3(m1 − 1) pairs of vertices to compose χ( j7, j7). �

Recall ε2 =
{

0, if m2 ≡ 0 mod 2
1, if m2 ≡ 1 mod 2

and let j8 = 1, 2, 3, . . . , m2−ε2
2 .

Theorem 10. If the vertices v3 j8+1 and v3 j8 in (m1,m2) are contracted (melted together
to become one node), then 1

2 (m2 − ε2) distinct homomorphic images of (m1,m2) are
created. Moreover, the total number of pairs of vertices for contraction to create χ( j8, j8)

are 3(m2 − 1).

The above theorem can be proved along the same lines as those of Theorem 9, by inter-
changing m1,m2, E9, j7 and χ( j7, j7) by m2,m1, E10, j8 and χ ′

( j8, j8)
respectively. Dia-

grammatically by χ ′
( j8, j8)

, we mean figure 22.

Theorem 11. Let η be the homomorphic image of (m1,m2) composed by contracting the
vertices u3m1 and v3m2 in (m1,m2). Then there are

{
6(m2 + 1), if m1 > m2
3m1, if m1 = m2

.

pairs of vertices to compose η and their mirror images.

Proof. Let us contract the vertices u3m1 and v3m2 and a homomorphic image of (m1,m2)

denoted by η is created. Diagrammatically by η, we mean
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Figure 22. Graph of the homomorphic image χ( j8, j8).

vm2 1 triangles

Figure 23. Graph of the homomorphic image η : m1 − m2 − 1 > 0.

In figure 5, we have x and y(xy)m2−1(xy−1)m1 are the two possible paths between u3m1

and v3m2 . Then η contains a vertex v fixed by x and y(xy)m2−1(xy−1)m1 . Now ifm1 > m2,
then

E11 =
{

x, xy−1, xy, xyx, xyxy−1, (xy)2, x, xy−1, (xy)3, . . . ,

(xy)m2−1x, (xy)m2−1xy−1, (xy)m2 , (xy)m2 x, (xy)m2 xy−1, (xy)m2+1

}

and for m1 = m2,

E11 =

⎧
⎪⎪⎨

⎪⎪⎩

x, xy−1, xy, xyx, xyxy−1, (xy)2, x, xy−1, (xy)3, . . . ,

(xy)m2−1x, (xy)m2−1xy−1, (xy)m2 , (xy)m2 x, (xy)m2+1, (xy)m2 xy−1,

(xy)m2 xy−1x, (xy)m2 xy−1xy, (xy)m2 (xy−1)2, . . . ,

(xy)m2 (xy−1)m1−1x, (xy)m2 (xy−1)m1−1xy, (xy)m2 (xy−1)m1

⎫
⎪⎪⎬

⎪⎪⎭

is the set of elements in PSL(2, Z) so that (u3m1)g and (v3m2)g lies in (m1,m2) for all
g ∈ E11. One can see that if m1 = m2, then for each g ∈ E11 there is a word g′
in E11 such that (u3m1)g, (v3m2)g and (u3m1)g

′, (v3m2)g
′ are the same pairs of vertices.

Therefore by Proposition 1, the number of pairs of vertices to create each η, by contraction,

is

{
3(m2 + 1) if m1 > m2
3m1 if m1 = m2

. From figures 23 and 24, one can see that η : m1 > m2 has
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Figure 24. Graph of the homomorphic image η : m1 − m2 − 1 = 0.
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Figure 25. Graph of the homomorphic image η : m1 = m2.

distinct orientation from its mirror image, whereas figure 25 shows that η : m1 = m2 is

the mirror image of itself. Thus there are

{
6(m2 + 1), if m1 > m2
3m1, if m1 = m2

pairs of vertices to

compose η. �

Remark 4. Now we show that if m1 �= m2, all the sets of homomorphic images
{αi1}, {βi1}, {βi3 ′}, {γ j1}, {λ(i3, j2)}, {λ(i4,

m2−ε2
2 )

}, {χ( j3, j4)}, {χ ′
( j5, j6)

}, {χ( j7, j7)}, {χ ′
( j8, j8)

}
and {η} are mutually disjoint.

Since each αi1 contain a vertex, fixed by (xy)m2(xy−1)i1x and y−1(xy−1)m1−i1−1,
it is clear from figures 8 to 25 that none of the diagrams contains a vertex fixed by
(xy)m2(xy−1)i1x and y−1(xy−1)m1−i1−1. This implies that

{αi1} ∩ {βi1} = {αi1} ∩ {β ′
i3} = {αi1} ∩ {γ j1} = {αi1} ∩ {λ(i3, j2)}

= {αi1} ∩
{

λ(
i4,

m2−ε2
2

)

}

= {αi1} ∩ {χ( j3, j4)}
= {αi1} ∩ {χ ′

( j5, j6)
} = {αi1} ∩ {χ( j7, j7)}

= {αi1} ∩ {χ ′
( j8, j8)} = {αi1} ∩ {η} = φ. (2.1)

Since each βi1 has a vertex, fixed by (xy)m2−i1 and (xy)i1(xy−1)m1 , from figures 12 to
25, one can see that none of the homomorphic images contains a vertex fixed by (xy)m2−i1

and (xy)i1(xy−1)m1 . This implies that

{βi1} ∩ {β ′
i3} = {βi1} ∩ {γ j1} = {βi1} ∩ {λ(i3, j2)}

= {βi1} ∩
{

λ(
i4,

m2−ε2
2

)

}

= {βi1} ∩ {χ( j3, j4)}
= {βi1} ∩ {χ ′

( j5, j6)
} = {βi1} ∩ {χ( j7, j7)}

= {βi1} ∩ {χ ′
( j8, j8)} = {βi1} ∩ {η} = φ. (2.2)
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Similarly, it is easy to show that

{β ′
i3} ∩ {γ j1} = {β ′

i3} ∩ {λ(i3, j2)} = {β ′
i3} ∩

{

λ(
i4,

m2−ε2
2

)

}

= {β ′
i3} ∩ {χ( j3, j4)} = {β ′

i3} ∩ {χ ′
( j5, j6)

}
= {β ′

i3} ∩ {χ( j7, j7)}
= {β ′

i3} ∩ {χ ′
( j8, j8)} = {β ′

i3} ∩ {η} = φ, (2.3)

{γ j1} ∩ {
λ(i3, j2)

} = {γ j1} ∩
{

λ(
i4,

m2−ε2
2

)

}

= {γ j1} ∩ {χ( j3, j4)}

= {γ j1} ∩ {χ ′
( j5, j6)

} = {γ j1} ∩ {χ( j7, j7)}
= {γ j1} ∩ {χ ′

( j8, j8)} = {γ j1} ∩ {η} = φ, (2.4)

{λ(i3, j2)} ∩
{

λ(
i4,

m2−ε2
2

)

}

= {λ(i3, j2)} ∩ {χ( j3, j4)} = {λ(i3, j2)} ∩ {χ ′
( j5, j6)

}

= {λ(i3, j2)} ∩ {χ( j7, j7)} = {λ(i3, j2)} ∩ {χ ′
( j8, j8)}

= {λ(i3, j2)} ∩ {η} = φ, (2.5)
{

λ(
i4,

m2−ε2
2

)

}

∩ {χ( j3, j4)} =
{

λ(
i4,

m2−ε2
2

)

}

∩ {χ ′
( j5, j6)

}

=
{

λ(
i4,

m2−ε2
2

)

}

∩ {χ( j7, j7)}

=
{

λ(
i4,

m2−ε2
2

)

}

∩ {χ ′
( j8, j8)}

=
{

λ(
i4,

m2−ε2
2

)

}

∩ {η} = φ, (2.6)

{χ( j3, j4)} ∩ {χ ′
( j5, j6)

} = {χ( j3, j4)} ∩ {χ( j7, j7)}
= {χ( j3, j4)} ∩ {χ ′

( j8, j8)} = {χ( j3, j4)} ∩ {η} = φ,

(2.7)

{χ ′
( j5, j6)

} ∩ {χ( j7, j7)} = {χ ′
( j5, j6)

} ∩ {χ ′
( j8, j8)} = {χ ′

( j5, j6)
} ∩ {η} = φ,

(2.8)

{χ( j7, j7)} ∩ {χ ′
( j8, j8)} = {χ( j7, j7)} ∩ {η} = φ, (2.9)

{χ ′
( j8, j8)} ∩ {η} = φ. (2.10)

From equations (2.1) to (2.10), it is clear that if m1 �= m2, {αi1}, {βi1}, {β ′
i3
}, {γ j1},

{λ(i3, j2)}, {λ(i4,
m2−ε2

2 )
}, {χ( j3, j4)}, {χ ′

( j5, j6)
}, {χ( j7, j7)}, {χ ′

( j8, j8)
} and {η} are mutually dis-

joint.

Remark 5. Let m1 = m2. Then from figures 8 to 15, one can see that βii and β ′
i1

are
the same sets of homomorphic images of (m1,m2). Similarly, figures 19 to 22 show that
χ( j3, j4) and χ ′

( j5, j6)
, χ( j7, j7) and χ ′

( j8, j8)
are pair-wise the same sets of homomorphic images

of (m1,m2).
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Let

�1 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if m1 and m2 are odd
4 if m1 and m2 are even
−1 if m1 is even and m2 is odd
−1 if m1 is odd and m2 is even

, �2 =
{

5 if m1 is odd
8 if m1 is even

.

Now we are in a position to prove our main results.

Theorem 12. There are

{
1
4 {(m1+m2)

2+4(m1+m2)+�1} if m1 > m2

1
4 {3m2

1+4m1+�2} if m1 =m2
distinct homo-

morphic images of (m1,m2) obtained by contracting all the pairs of vertices in (m1,m2).

Proof. Let us contract the following pairs vertices:

(i) u3m1 and u3i1+1.

(ii) u3m1 and v3i1+1.

(iii) v3m2 and u3i3+1.

(iv) u3m1 and u3 j1+1.

(v) u3i3+1 and v3 j2 .

(vi) u3i4+1 and v3(
m2−ε2

2 )
.

(vii) u3 j3+1 and u3 j4 .

(viii) v3 j5+1 and v3 j6 .

(ix) u3 j7+1 and u3 j7 .

(x) u3 j8+1 and u3 j8 .

(xi) u3m1 and v3m2 .

Then by Theorems 1 to 11 and Remarks 4 and 5, we obtain the set

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

αi1 , βi1 , β
′
i3
, γ j1 , λ(i3, j2), λ

(
i4,

m2−ε2
2

), χ( j3, j4),

χ ′
( j5, j6)

, χ( j7, j7), χ
′
( j8, j8)

, η

⎫
⎬

⎭
if m1 > m2

{αi1, βi1 , λ(i3, j2), λ
(
i4,

m2−ε2
2

), χ( j3, j4), χ( j7, j7), η} if m1 = m2

of homomorphic images of (m1,m2), and there are

S = 3(m2
2 + 3m2 − 2) + 3

2
(m2

2 + 3m2) + 3

2
(m2

1 + 3m1 − 4)

+3(m2 + 2)(m1 − m2 − 1) + 6(m1 − 1)(m2 − (ε2 + 2))

+
{

6(m1 − 1) if m2 ≡ 0 mod 2

12(m1 − 1) if m2 ≡ 1 mod 2
+ 3(m2

1 − 3m1 + 2)

+3(m2
2 − 3m2 + 2) + 3(m1 − 1) + 3(m2 − 1)

+
{

6(m2 + 1) if m1 > m2

3m1 if m1 = m2



Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:13 Page 23 of 26 13

u1

u2

u3 u4

u5

u6

v 6

v 5

v 4v 3

v 2

v 1

Figure 26. Graph of the circuit (2, 2).

Figure 27. Graph of the homomorphic image α0.

Figure 28. Graph of the homomorphic image α1.

pairs of vertices to compose homomorphic images in F . Since S = (3(m1+m2)
2

)
is the total

number of pairs of vertices in (m1,m2), it implies that F contains all the homomorphic
images of (m1,m2). Also,

|F | =
{

1
4 {(m1 + m2)

2 + 4(m1 + m2) + �1} if m1 > m2

1
4 {3m2

1 + 4m1 + �2} if m1 = m2
.
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Figure 29. Graph of the homomorphic image β0.

Figure 30. Graph of the homomorphic image β1.

Figure 31. Graph of the homomorphic image λ(1, 1).

Figure 32. Graph of the homomorphic image χ(1, 1).

Thus, there are

{
1
4 {(m1 + m2)

2 + 4(m1 + m2) + �1} if m1 > m2

1
4 {3m2

1 + 4m1 + �2} if m1 = m2

distinct homomorphic images of (m1,m2) obtained by contracting all the pairs of vertices
in (m1,m2). �
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Figure 33. Graph of the homomorphic image η.

3. Conclusion

There are
(3(m1+m2)

2

)
pairs of vertices in (m1,m2), in order to compose all the homomorphic

images of (m1,m2). Out of those only

{
1
4 {(m1 + m2)

2 + 4(m1 + m2) + �1} if m1 > m2

1
4 {3m2

1 + 4m1 + �2} if m1 = m2

pairs of vertices are important. There is no need to contract the pairs which are not men-
tioned in Theorem 12. Because, if we contract those, we obtain a homomorphic image,
which we have already obtained by contracting ‘important’ pairs.

Example 2. Consider a circuit (2, 2) (figure 26).
By Theorem 12, the set of homomorphic images of (2, 2), evolved by contracting all

the pairs of vertices in (2, 2), is {α0, α1, β0, β1, λ(1,1), χ(1,1), η}.
The homomorphic images α0, α1, β0, β1, λ(1,1), χ(1,1) and η of (2, 2) are obtained by

contracting u6 and u1 (figure 27), u6 and u4 (figure 28), u6 and v1 (figure 29), u6 and
v4 (figure 30), u4 and v3 (figure 31), u4 and u3 (figure 32), and, u6 and v6 (figure 33)
respectively.

The total number of vertices in (2, 2) are 12, implying that there are 66 pairs of vertices
in (2, 2). Theorem 12 assures us that, in order to create all homomorphic images of (2, 2),
we just have to contract 7 pairs (mentioned in Theorem 12). There is no need to contract
the remaining 59 pairs.
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