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Abstract
A selective agonist radioligand for A2B adenosine receptors (A2BARs) is currently not available. Such a tool would be useful for
labeling the active conformation of the receptors. Therefore, we prepared BAY 60-6583, a potent and functionally selective
A2BAR (partial) agonist, in a tritium-labeled form. Despite extensive efforts, however, we have not been able to establish a
radioligand binding assay using [3H]BAY 60-6583. This is probably due to its high non-specific binding and its moderate affinity,
which had previously been overestimated based on functional data. As an alternative, we evaluated the non-selective A2BAR
agonist [3H]NECA for its potential to label A2BARs. [

3H]NECA showed specific, saturable, and reversible binding to membrane
preparations of Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells stably expressing human, rat, or mouse
A2BARs. In competition binding experiments, the AR agonists 2-chloroadenosine (CADO) and NECA displayed significantly
higher affinity when tested versus [3H]NECA than versus the A2B-antagonist radioligand [

3H]PSB-603 while structurally diverse
AR antagonists showed the opposite effects. Although BAY 60-6583 is an A2BAR agonist, it displayed higher affinity versus
[3H]PSB-603 than versus [3H]NECA. These results indicate that nucleoside and non-nucleoside agonists are binding to very
different conformations of the A2BAR. In conclusion, [3H]NECA is currently the only useful radioligand for determining the
affinity of ligands for an active A2BAR conformation.
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[125I]ABOPX 2-[4-[3-[(4-Amino-3-iodobenzyl)]-2,6-dioxo-

1-propyl-7H-purin-8-yl]phenoxy]acetic acid
ADA Adenosine desaminase
AR Adenosine receptor(s)
BAY 60-6583 2-({6-Amino-3,5-dicyano-4-

[4-(cyclopropylmethoxy)phenyl]pyridin-
2-yl}sulfanyl)acetamide

BSA Bovine serum albumin
CADO 2-Chloroadenosine
CCPA 2-Chloro-N6-cyclopentyladenosine
CGS-15943 9-Chloro-2-(2-furyl)[1,2,4]triazolo-

[1,5-c]chinazoline-5-amine

CGS-21680 (2-p-[2-Carboxyethyl]phenethylamino)-5′-
N-ethylcarboxamidoadenosine

DPCPX 1,3-Dipropyl-8-cyclopentylxanthine
CHO Chinese hamster ovary
Cl-IB-MECA 2-Chloro-N6-(3-iodobenzyl)-9-[5-(methyl-

carbamoyl)-β-D-ribofuranosyl]adenine
DMEM Dulbecco’s modified Eagle’s medium
DMSO Dimethyl sulfoxide
FCS Fetal calf serum
G418 Geneticin
GPCR G protein-coupled receptor
hA2B Human A2B

HEK293 Human embryonic kidney
mA2B Mouse A2B

MgCl2 Magnesium chloride
MRE2029-F20 N-Benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-

1,3-dipropyl-2,3,6,7-tetrahydropurin-
8-yl)-1-methyl-1H-pyrazol-3-yloxy]-
acetamide

MRS-1754 N-(4-Cyanophenyl)2-[4-(2,3,6,7-tetrahydro-
2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-
phenoxy]acetamide

MSX-2 3-(3-Hydroxypropyl)-7-methyl-8-
(m-methoxystyryl)-1-propargylxanthine
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NECA 5′-N-Ethylcarboxamidoadenosine
OSIP-3309391 N-(2-{2-Phenyl-6-[4-(3-phenylpropyl)pipera-

z ine-1-carbonyl] -7H -pyrrolo[2 ,3-d ]
pyrimidin-4-ylaminoethyl)acetamide

PSB-1115 4-(2,3,6,7-Tetrahydro-2,6-dioxo-1-propyl-
1H-purin-8-yl)-benzenesulfonic acid

PSB-298 (8-{4-[2-(2-Hydroxyethylamino)-2-
oxoethoxy]phenyl}-1-propylxanthine

PSB-603 8-(4-(4-(4-Chlorophenyl)piperazine-1-
sulfonyl)phenyl)-1-propylxanthine

rA2B Rat A2B

R-PIA N6-(2-Phenylisopropyl)adenosine
ZM 241385 4-(2-[7-Amino-2-(2-furyl)-[1,2,4]-

triazolo[2,3-a][1,3,5]-
triazin-5-ylamino]ethyl)phenol

Introduction

The G protein-coupled adenosine receptors (ARs) are divided
into four subtypes: A1, A2A, A2B, and A3. While A1 and
A3ARs are coupled to Gi proteins mediating an inhibition of
adenylate cyclase, A2A and A2BARs are coupled to Gs pro-
teins resulting in a stimulation of the enzyme [1]. The A2BARs
can additionally couple to Gq proteins resulting in phospholi-
pase C activation followed by intracellular calcium release [2].
Depending on the structure of agonists and antagonists, dif-
ferent receptor conformations may be induced and stabilized
potentially leading to functional selectivity with regard to dif-
ferent signaling pathways, e.g., G protein activation versus β-
arrestin recruitment [3]. GPCRs can also form homo- or
heteromeric di- or oligomers [4] which may display an altered
pharmacology [5, 6]. ARs are involved in a range of diseases
including cardiovascular, nervous system, pulmonary, and
kidney disorders, and adenosine mediates various effects in-
cluding anti-inflammatory and immune-suppressive activity
[7]. Therefore, ARs represent therapeutic drug targets, and
the development of selective agonists and antagonists for
medical applications has been of great interest. The A2A and
A2BAR subtypes have recently become major targets in
immuno-oncological drug development [8]. The well-
investigated A2AAR subtype is typically activated by relative-
ly low nanomolar concentrations of adenosine, whereas the
A2BAR subtype requires higher micromolar adenosine con-
centrations for activation. Only few selective A2BAR agonists
have been described, the most prominent one being the non-
nucleosidic partial agonist 2-[6-amino-3,5-dicyano-4-[4-
(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide
(BAY 60-6583) [9, 10]. Only very few other potent A2BAR
agonists, all derived from the nucleoside adenosine, have been
reported, mainly by the group of Baraldi’s [11–13], but their
degree of selectivity is unclear since A2BAR data obtained in
cAMP accumulation assays were compared to A1, A2A, and

A3AR radioligand binding data. However, functional assays
are highly dependent on receptor expression levels and recep-
tor reserve [14]. In contrast to the situation with agonists,
many potent and selective A2BAR antagonists have been de-
veloped [13, 15–21] and evaluated in preclinical and initial
clinical trials [22]. PSB-603 is one of the most potent and
selective A2B antagonists, which is frequently used as a tool
compound to study A2BARs [23–26]. In Fig. 1, a selection of
important non-selective and selective A2BAR agonists and
antagonists is depicted including NECA, CADO, BAY 60-
6583, caffeine, PSB-603, and CGS-15943.

Radioligand receptor binding is a powerful method for
the screening of new potential ligands, and the obtained
data provide an ideal basis for structure-activity relation-
ship analyses. Agonist radioligands label an active receptor
conformation which displays high affinity for agonists
while neutral antagonist radioligands bind to active and
inactive receptor conformations with similar affinity.
Inverse agonist radioligands label an inactive receptor con-
formation, for which agonists typically display low affinity
[27]. For competition binding assays, agonist or antagonist
radioligands can be employed, both of which will provide
different information about a test compound. While ago-
nists typically show higher affinity when they are tested
against agonist radioligands (which label the so-called
high-affinity binding site of an active receptor conforma-
tion), they usually display lower affinity for an antagonist/
inverse agonist radioligand-labeled, inactive receptor con-
formation. In some cases, biphasic curves are observed in
competition binding assays of agonists versus antagonist
radioligands, e.g., for the human A1AR [28]. However, at
A2A and A2BARs, no biphasic curves have been observed
and only inactive, low affinity conformations appeared to
be labeled by antagonis t radiol igands [17, 29] .
Consequently, A2AAR agonists were found to display low-
er affinity versus antagonist radioligands than versus ago-
nist radioligands. Thus, agonist radioligands are important
tools to study the affinity of agonists at A2AARs for their
high-affinity binding site in the active receptor conforma-
tion. Radioligand binding studies have also been crucial
for recent X-ray crystallography [30–32] and NMR studies
[33] to prove the correct folding of the receptor proteins
after isolation and purification.

Several crystal structures of the human A2AAR in complex
with agonists [34–36] and antagonists [37–41] have been pub-
lished, but the X-ray structure of the A2BAR has not been
resolved so far. Recently, crystal structures of the A1AR have
been obtained, which provided insights into selectivity among
A1 and A2AAR subtypes [30, 41].

For the A2BAR, potent and selective antagonist
radioligands have been developed [15–18]; however, no se-
lective A2BAR agonist radioligand has been described so far.
The non-selective AR agonist [3H]NECA has been reported to
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label A2BARs [42–45]. But a systematic characterization of
[3H]NECA as a radioligand for A2BARs has not been per-
formed, and the radioligand has not been employed for the
determination of affinities of series of ligands. The goal of the
present study was to establish an agonist radioligand binding
assay at human, rat, and mouse A2BARs. To this end, our
initial strategy was the preparation and utilization of tritium-
labeled BAY 60-6583. However, major difficulties in estab-
lishing an A2BAR binding assay with [3H]BAY 60-6583
promped us to investigate [3H]NECA as an A2BAR
radioligand instead. The radioligand was subsequently used
for characterizing the affinities of ligands, in particular ago-
nists, for the high-affinity conformation labeled by the aden-
osine derivative.

Materials and methods

Materials and (bio)chemicals

[3H]NECA (15.9 Ci/mmol) was supplied by Perkin Elmer
Life and Analytical Science (Rodgau-Jügesheim,
Germany). All other chemical reagents were purchased
from Sigma-Aldrich (Taufkirchen, Germany), Tocris
Biosciences (Bristol, UK), or Roth (Karlsruhe, Germany),
unless otherwise stated. BAY 60-6583 was synthesized or
purchased from Tocris Biosciences (Bristol, UK). All cell
culture media and penicillin-streptomycin solutions were
obtained from Invitrogen (Darmstadt, Germany). Fetal calf
serum (FCS) and G418 were purchased from Sigma-
Aldrich (Taufkirchen, Germany). Cell culture materials
(flasks and dishes) were obtained from Labomedic
(Bonn, Germany) and Sarstedt (Nümbrecht, Germany),
respectively.

Retroviral transfection of GP+ env AM12 cells
and infection of CHO-K1 cells

CHO cells stably expressing human, rat, or mouse A2BARs
were generated using a retroviral expression system as previ-
ously described [46].

Cell culture

CHO cells stably transfected with the human, rat, or mouse
A2BAR were maintained in DMEM-F12 medium with 10%
FCS, 100 U/ml penicillin, 100 μg/ml streptomycin, and
0.8 mg/ml G418 at 37 °C and 5% CO2.

Membrane preparations

Membranes of CHO cells stably expressing human, rat, or
mouse A2BARs were prepared as previously described [16,
46]. Membranes from HEK-hA2B cells which were used for
some of the competition binding studies were purchased from
Perkin Elmer (Rodgau-Jügesheim, Germany).

Radioligand receptor binding studies

Preparation of [3H]BAY 60-6583

The radiosynthesis was performed starting from an iodine-
substituted precursor in a single step by iodine-tritium ex-
change catalyzed by palladium black in tetrahydrofurane in
the presence of triethylamine as a base. The product was pu-
rified and analyzed by RP-HPLC using the following condi-
tions: column: PhenomenexAQUAC18, 5μm,mobile phase:
acetonitrile:water (1:1), flow rate of 1 and 5 ml/min, respec-
tively. The analytical HPLC chromatogram with radio

Fig. 1 Structures of the the non-
selective AR agonist NECA (1),
the non-selective AR agonist
CADO (2), the selective (partial)
A2BAR agonist BAY 60-6583 (3),
the non-selective AR antagonist
caffeine (4), the selective A2BAR
antagonist PSB-603 (5), and the
non-selective AR antagonist
CGS-15943 (6)
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detection and UV detection (254 nm) showed high purity of
the product [3H]BAY 60-6583, which was obtained with a
specific radioactivity of 22.7 Ci/mmol (2008.9 MBq/mg) in
high radiochemical purity of > 99% (see Supplemental Fig. 1).

Binding experiments with [3H]BAY 60-6583

Initial binding experiments with [3H]BAY 60-6583 were per-
formed in a final assay volume of 0.5 ml containing test com-
pound dissolved in DMSO (25 μl), 275 μl of assay buffer
(50 mM Tris-HCl, pH 7.4), 100 μl of radioligand solution
(1 nM) in assay buffer, and 100 μl of human A2BAR mem-
brane preparation (30 μg per vial) suspended in assay buffer
containing adenosine deaminase (ADA; 2 U/mg protein,
20 min preincubation at rt). Non-specific binding was deter-
mined in the presence of 1 mM NECA, 10 μM DPCPX, or
10 μM PSB-1115, respectively. After an incubation time of
30 min at rt, the assay mixture was rapidly filtered through
GF/B glass fiber filters using a 24-well Brandel harvester
(Brandel, Gaithersburg, MD). Filters were washed three times
(3 ml each) with ice-cold 50 mM Tris-HCl buffer, pH 7.4.
Then filters were transferred to vials, incubated for 9 h with
2.5ml of scintillation cocktail (LumaSafe plus, Perkin-Elmer),
and counted in a liquid scintillation counter (Tricarb 2700TR)
with a counting efficiency of 53%. For additional experi-
ments, a final volume of 0.5 ml, 2.5% DMSO, GF/C filters,
higher radioligand concentrations (5, 10, 20 nM), and MgCl2
(3 mM) in the incubation buffer were employed. Additionally,
the A2BAR amount was increased to 80 μg of membrane
preparation per vial, and the incubation time was increased
to 140 min at rt. Further experiments were conducted at 4 °C.

Competition binding experiments with [3H]NECA

Competition binding experiments with [3H]NECA were per-
formed in a final volume of 1 ml containing 25 μl of test

compound dissolved in DMSO, 775 μl of assay buffer
(50 mM Tris-HCl, 10 mM MgCl2, pH 7,4), 100 μl of
radioligand solution in assay buffer (final concentration
30 nM), and 100 μl of human, rat, or mouse A2BARmembrane
preparation (200–350 μg protein or 30 μg protein (human
A2BARmembranes from Perkin Elmer) per vial in assay buffer
containing ADA (2 U/mg protein, 20 min incubation at rt).
Non-specific binding was determined in the presence of
250 μM NECA. After an incubation time of 4 h at 4 °C, the
assay mixture was rapidly filtered through GF/C glass fiber
filters using a 24-well Brandel harvester (Brandel,
Gaithersburg, MD). Filters were washed four times (3 ml each)
with ice-cold 50 mMTris-HCl buffer, pH 7.4. Then filters were
transferred to scintillation vials, incubated for 9 h with 2.5 ml of
scintillation cocktail (LumaSafe plus, Perkin-Elmer), and
counted in a liquid scintillation counter (Tricarb 2700TR) with
a counting efficiency of 53%.

Kinetic experiments with [3H]NECA

Association experiments were performed at 4 °C with eight
different time points and over a time period of 240 min.
Dissociation experiments were initiated after 240 min of
preincubation by the addition of 250 μM NECA. Three sepa-
rate experiments were performed, each in duplicates. All other
conditions were as described above for competition binding
experiments.

Saturation binding experiments with [3H]NECA

Saturation experiments at recombinant human and rat
A2BARs were conducted to determine the KD values for the
radiolabeled agonist NECA at the different species. Different
amounts of membrane preparation per vial, which were de-
pendent on the receptor expression (200 μg for human and
250 μg for rat), and 7–9 different concentrations of
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Fig. 2 Binding assays with different concentrations of [3H]BAY 60-
6583. Non-specific binding was determined in the presence of 10 μM
DPCPX. Assay conditions were as follows: a final volume of 500 μl
contained 2.5% DMSO, 50 mM Tris-buffer with 3 mM MgCl2, pH 7.4,
as incubation buffer, 5, 10, or 20 nM of [3H]BAY 60-6583, 80 μg of

A2BAR membrane preparation per vial, incubation for 140 min at rt,
filtration through GF/C filters, and washing with 50 mM ice-cold Tris
buffer, pH 7.4. The use of 5 nMof [3H]BAY 60-6583 gave the best results
with 30–40% of specific binding. Data points are means ± SEM of three
(5 nM) or two independent experiments performed in single values
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[3H]NECA in a range of 10–2000 nM were employed. Four
(human) or two (rat) separate experiments were performed,
each in duplicates. All other assay conditions were as de-
scribed above for competition binding experiments.

Competition binding experiments with [3H]PSB-603

Competition binding experiments with the antagonist
radioligand [3H]PSB-603 at human A2BARs were performed
as previously described [16].

Data analysis

All data were analyzed using Graph Pad Prism, version 4.0
(San Diego, CA, USA). KD values from homologous compe-
tition binding experiments were calculated according to the
Cheng and Prusoff equation [47]. In homologous competition
binding experiments, radioligand and competitor are the same;
therefore, KD is equal to Ki, and the Cheng and Prussoff equa-
tion can be simplified to KD = IC50 − [radioligand].

Results

Attempts to establish an A2BAR binding assay
with [3H]BAY 60-6583

The initial goal of the present study was to establish a
radioligand binding assay using the A2BAR agonist
[3H]BAY 60-6583. The 3H-labeled form of BAY 60-6583
was obtained from its iodo-substituted precursor by catalytic
hydrogenation with tritium gas yielding [3H]BAY 60-6583
with a specific radioactivity of 22.7 Ci/mmol and a high ra-
diochemical purity of > 99% (see Supplemental Fig. 1).
Initially employed standard radioligand binding assay condi-
tions with 1 nM of [3H]BAY 60-6583, 30 μg of human

A2BAR protein per vial, 30 min incubation time at rt, filtration
through GF/B filters, and washing with 50 mM Tris pH 7.4
buffer resulted in high non-specific binding of 80–90% for
[3H]BAY 60-6583 (see Supplemental Fig. 2). The addition
of 0.1% bovine serum albumin (BSA) to the washing buffer
did not reduce non-specific binding (see Supplemental Fig. 3).
Further experiments performed at 4 °C with an incubation
time of 120 min did not show any increase in specific binding
of [3H]BAY 60-6583 (see Supplemental Fig. 4). For subse-
quent experiments, a final volume of 0.5 ml, 2.5% DMSO,
GF/C filters, higher radioligand concentrations (5, 10, 20 nM),
and the addition of MgCl2 (3 mM) to the incubation buffer
were tested. Mg2+ may shift the A2BAR to an active confor-
mation to which agonists show high affinity as observed for
the A2AAR [48]. Under these conditions and with 5 nM of
[3H]BAY 60-6583, an increased degree of specific binding of
30–40% could be achieved (Fig. 2). With higher radioligand
concentrations, non-specific binding was much higher as
could be expected. The moderate specific binding of
[3H]BAY 60-6583 was too low to establish a reliable
radioligand binding assay, which would require at least 50%,
preferably 70% of specific binding. Therefore, different wash-
ing buffers were tested. But non-specific binding could not be
further reduced, neither by the addition of 5% DMSO nor by
adding 5% ethanol to the washing buffer. Many further mod-
ifications were tried, including preincubation of the filters in
1% aqueous polyethylenimine solution for 30 min,
preincubation of the filters in 0.1% BSA solution, or
preincubation of the filters in 50 μM BAY 60-6583 solution,
but none of the numerous experiments resulted in increased
levels of specific [3H]BAY 60-6583 binding, even in cell
membranes with very high expression levels of ca. 10 pmol/
mg protein. Because of major difficulties in establishing an
A2BAR binding assay with [3H]BAY 60-6583, we subse-
quently investigated and characterized [3H]NECA as an
A2BAR agonist radioligand instead.

Fig. 3 Binding kinetics of [3H]NECA (30 nM) tomembrane preparations
of CHO cells recombinantly expressing human A2BARs. Non-specific
binding was determined in the presence of 250 μM NECA. a
Association experiment. b Dissociation experiment. Dissociation was

induced after 240 min of pre-incubation by the addition of 250 μM of
unlabeled NECA. Data points are means ± SEM of three separate
experiments performed at 4 °C

Purinergic Signalling (2018) 14:223–233 227



Radioligand receptor binding studies with [3H]NECA
at recombinant human, mouse, and rat A2BARs

Radioligand binding assays provide quantitative information
about receptor expression (Bmax) and the affinity of ligands
(Ki, KD) at a defined receptor. Three basic protocols, kinetic,
saturation, and competition experiments were performed to
determine these parameters.

Kinetic experiments

Due to the expected moderate affinity at the human A2BAR
and fast dissociation of NECA from the A2BAR, kinetic ex-
periments were performed at 4 °C using 30 nM of [3H]NECA,
which gave sufficiently high specific binding (see below). All
experiments were best fitted using a single binding site model
(Fig. 3a, b). Association (Fig. 3a) reached equilibrium within
less than 30 min with a t1/2 of 9.7 ± 1.0 min. Equilibrium
binding was stable for at least 240 min. After the addition of
a high concentration of unlabeled NECA (250 μM),
[3H]NECA binding was rapidly reversed as shown in
Fig. 3b. Because the dissociation (t1/2 = 0.4 ± 0.1 min) was
very fast, much faster than the association, it was not possible
to calculate a kinetic KD value from the kon and koff values.

Next we performed saturation binding experiments to de-
termine KD and Bmax values.

Saturation experiments

Saturation binding experiments were carried out using
[3H]NECA on membrane preparations recombinantly ex-
pressing A2BARs of different species, human and rat.
[3H]NECA binding was saturable, and the obtained data were
in all cases best fitted to a monophasic curve. For the human
A2BAR, a KD value of 441 ± 169 nM and a Bmax value of
2150 ± 449 fmol/mg protein were determined (Fig. 4a). The

calculated KD value was 4-fold lower than the Ki value deter-
mined for NECA in competition assays versus the antagonist
radioligand [3H]PSB-603 at human A2BARs (1890 nM) [16].
At rat A2BARs, a KD value of 325 ± 144 nM was determined
for [3H]NECA, and a Bmax value of 2680 ± 472 fmol/mg pro-
tein was calculated (Fig. 4b). Again, the determined KD value
was about 3-fold lower than the Ki value determined for
NECA in competition binding assays versus the antagonist
radioligand [3H]PSB-603 at rat A2BARs (1110 nM) [46].

Competition binding experiments

Next, we performed homologous competition binding exper-
iments measuring concentration-dependent inhibition of unla-
beled NECAversus [3H]NECA to determine and compare the
KD and Bmax values at the different A2BAR species with those
obtained in the saturation experiments. At the employed
radioligand concentration of 30 nM, specific binding
amounted to 50–70% of total binding depending on the har-
vesting conditions, washing steps, temperature, and mem-
brane preparation. The homologous competition binding ex-
periments resulted in KD values that were in the same range as
those obtained from saturation binding experiments. The cal-
culated KD and Bmax values were 663 ± 87 nM and 2220 ±
71 fmol/mg protein for human A2BARs (Fig. 5a), 532 ±
65 nM and 4400 ± 1500 fmol/mg protein for rat A2BARs,
and 465 ± 104 nM and 1480 ± 451 fmol/mg for mouse
A2BARs (Fig. 5b). The competition binding assay conditions
were subsequently used for the determination of the affinities
of a structurally diverse set of A2BAR ligands, agonists, and
antagonists.

For agonists determined versus the agonist radioligand
[3H]NECA, the following rank order of potency at human
A2BARs was determined: NECA > CADO > BAY 60-6583
(Figs. 5a–d and 6, Supplemental Table 1). For agonists deter-
mined versus the antagonist radioligand [3H]PSB-603, a

Fig. 4 Saturation binding experiments of [3H]NECA a at human and b at
rat A2BARs. Non-specific binding was determined in the presence of
250 μM NECA. A KD value of 441 ± 169 nM and a Bmax value of
2150 ± 449 fmol/mg protein were determined for human A2BARs, and

a KD value of 325 ± 144 nM and a Bmax value of 2680 ± 472 fmol/mg
protein were determined for rat A2BARs. Data points are means ± SEM of
four (human) or two (rat) independent experiments each performed in
duplicates
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different rank order of potency at human A2BARs was ob-
served: BAY 60-6583 > NECA > CADO (Fig. 6,
Supplemental Table 1).

For 2-chloroadenosine (CADO), a monophasic curve
was obtained (Fig. 5c), and the determined Ki value versus
[3H]NECA was about 3-fold lower than that determined
versus the antagonist radioligand [3H]PSB-603 (Fig. 6).
Likewise, the Ki value determined for NECA at human
A2BARs was significantly (4-fold) lower when determined
versus [3H]NECA as compared to the value obtained ver-
sus the antagonist radioligand [3H]PSB-603 (Fig. 6). In
contrast, displacement of [3H]NECA by BAY 60-6583 at
human, mouse, and rat A2BARs showed a lower apparent
affinity of BAY 60-6583 in comparison with the Ki value
determined versus [3H]PSB-603 (Figs. 5d and 6,
Supplemental Table 1).

As a next step, competition binding experiments for the
structurally diverse A2BAR antagonists caffeine, PSB-603,
and CGS-15943 versus the antagonist radioligand [3H]PSB-
603 and versus the agonist radioligand [3H]NECA were

per formed (Fig . 7 , Supplementa l F ig . 5a , b , c ,
Supplementary Table 1), and the following rank order of po-
tency was determined: PSB-603 > CGS-15943 > caffeine.
Data from competition binding experiments of the antagonists
versus [3H]NECAwere best fitted to a monophasic equation
(Supplemental Fig. 5a, b, c). All Ki values determined versus
the agonist radioligand [3H]NECA were significantly higher
when compared to the Ki values determined versus the antag-
onist radioligand [3H]PSB-603. For caffeine, the determined
Ki value versus [

3H]NECAwas 3-fold higher than that deter-
mined versus the antagonist radioligand [3H]PSB-603
(Fig. 7). Likewise, the Ki value determined for PSB-603 at
human A2BARs was significantly (4-fold) higher when deter-
mined versus [3H]NECA as compared to the value obtained
versus the antagonist radioligand [3H]PSB-603 (Fig. 7). The
largest difference was observed for the adenine-like antagonist
CGS-15943 (12-fold difference). All three investigated antag-
onists were not able to fully block [3H]NECA binding (see
Supplemental Fig. 5a, b, c) in contrast to the agonists, which
completely displaced [3H]NECA binding.

Fig. 5 Homologous competition binding experiments: concentration-
dependent inhibition of radioligand binding (30 nM [3H]NECA) by
unlabeled NECA at membrane preparations of CHO cells
recombinantly expressing a human, b rat, or mouse A2BARs. The
calculated KD and Bmax values were a for human A2BARs: 663 ±
87 nM and 2220 ± 71 fmol/mg protein, b for rat A2BARs: 532 ± 65 nM
and 4400 ± 1500 fmol/mg protein, and for mouse A2BARs: 465 ± 104 nM
and 1480 ± 451 fmol/mg protein. Data points are means ± SEM of three
to five independent experiments performed in duplicates. c Competition
binding of CADO versus 30 nM [3H]NECA at human A2BARs. A
monophasic curve was obtained, and a Ki value of of 8570 ± 1110 nM

was determined. Data points are means ± SEM of four independent
experiments each performed in duplicates. d Competition binding of
BAY 60-6583 versus 30 nM [3H]NECA at human, mouse, and rat
A2BARs. The curves were best fitted by monophasic isotherms. At
human A2BARs, a Ki value of 31,400 ± 7750 nM, at mouse A2BAR, a
Ki value of 10,300 ± 3400 nM, and at rat A2BAR, a Ki value of 10,400 ±
3430 nM were determined. In all experiments, non-specific binding was
determined in the presence of 250 μM NECA. Data points are means ±
SEM of two (mouse), three (rat), or five (human) independent
experiments performed in duplicates (curves were extrapolated because
of low solubility of the compound at concentrations > 30 μM)
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Discussion

The initial goal of the present study was to establish a
radioligand binding assay with the A2BAR agonist [3H]BAY
60-6583 as a tool for labeling an active A2BAR receptor con-
formation. BAY 60-6583 had previously been reported to dis-
play an EC50 value in the low nanomolar range (3–10 nM) at
the human A2BAR as determined in a gene reporter assay [49]
combined with high selectivity versus the other AR subtypes
(EC50 > 10 μM). However, in radioligand binding assays ver-
sus the antagonist radioligand [3H]PSB-603, it had shown aKi

value of only 114 nM [50]. Functional assays are highly de-
pendent on receptor expression levels and receptor reserve,
and are therefore often not comparable with a compound’s
receptor affinity. Because of major difficulties in establishing
an A2BAR binding assay with [3H]BAY 60-6583 mainly due
to its low affinity and high non-specific binding which could
not be further reduced with different optimization steps, the
compound was not suitable as an agonist radioligand at
A2BARs (see Fig. 2, Supplemental Figs. 2, 3, 4).

Therefore, we characterized the binding of the tritiated non-
specific A2BAR agonist NECA at membrane preparations of
CHO or HEK cells stably transfected with human, mouse, or
rat A2BARs. Kinetic experiments at human A2BARs demon-
strated that both association and dissociation are monophasic
(Fig. 3a, b). Although the experiments were conducted at
4 °C, the association (t1/2 = 9.7 ± 1.0 min) and in particular
the dissociation (t1/2 = 0.4 ± 0.1 min) were very fast. This rel-
atively fast dissociation is consistent with the moderate affin-
ity of NECA for this receptor subtype. Similarly, fast binding
kinetics of [3H]NECA at bovine A2BARs were reported by
Casado et al. [42].

Saturation binding experiments at human and rat A2BARs
were best fitted using a single site binding model (Fig. 4a, b).
The determined KD values of 441 ± 169 nM at human
A2BARs and 325 ± 144 nM at rat A2BAR were in the same
range as those determined in homologous competition binding
experiments (Fig. 5a, b). For mouse A2BARs, a KD value of
465 ± 104 nM was determined in homologous competition
binding experiments (Fig. 5b). The Bmax values determined
with [3H]NECA at membrane preparations of recombinant
cell lines expressing human, mouse, or rat A2BARs were
around 2000 fmol/mg protein and thus higher than those de-
termined with the antagonist [3H]PSB-603 at human (502 ±
57 fmol/mg protein) and mouse (645 ± 51 fmol/mg protein)
A2BARs [16]. In a native cell system, when no agonist is
present, there are generally more receptors in the G protein-
uncoupled, inactive conformational state than in the G pro-
tein-coupled, active state. It is believed that neutral antagonists
bind to all affinity states with similar affinity, whereas inverse
agonists preferably bind to an inactive receptor state. Full
agonists prefer or even shift the equilibrium to an active re-
ceptor conformation, which they stabilize [51]. One reason for
the higher Bmax value determined with [3H]NECA is probably
the fact that MgCl2 was included in the agonist assays. Mg2+

ions increase the coupling of the A2BARs to G proteins and
therefore promote the active receptor conformation [52]. At
A2AARs, it was found that MgCl2 increased agonist radioli-
gand binding, e.g., for [3H]NECA and [3H]CGS21680, and
reduced non-specific binding [53].

In contrast, PSB-603 is an inverse agonist detecting the
inactive receptor state. The affinity of the adenosine deriva-
tives NECA and CADO was approximately 3–4-fold higher
when tested versus the agonist radioligand than versus

Fig. 7 Competition binding experiments of the antagonists caffeine,
PSB-603, and CGS-15943 versus [3H]NECA or [3H]PSB-603 at
human A2BARs. Non-specific binding was determined in the presence
of 250 μM NECA ([3H]NECA) or 10 μM DPCPX ([3H]PSB-603). The
calculated Ki values versus [3H]NECA were 83,700 ± 6000 nM for
caffeine, 1.89 ± 0.78 nM for PSB-603, and 357 ± 107 nM for
CGS15943. The calculated Ki values versus [

3H]PSB-603 were 33,800
± 1200 nM for caffeine [16], 0.553 ± 0.103 nM for PSB-603 [16], and
30.0 ± 3.9 nM for CGS-15943 [16]. Literature data were from our
laboratory performed under the same conditions

Fig. 6 Affinities of AR agonists determined in competition binding
experiments using the agonist radioligand [3H]NECA and the
antagonist radioligand [3H]PSB-603 at human A2BARs. Non-specific
binding was determined in the presence of 250 μM NECA
([3H]NECA) or 10 μM DPCPX ([3H]PSB-603). The calculated Ki

values versus [3H]NECA were 663 ± 87 nM for NECA, 8570 ±
1110 nM for CADO, and 31,400 ± 7750 nM for BAY 60-6583. The
calculated Ki values versus [3H]PSB-603 were 1890 ± 240 nM for
NECA [16], 21,400 ± 5700 nM for CADO [16], and 114 ± 36 nM for
BAY 60-6583 [50]. Literature data were from our laboratory performed
under the same conditions
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[3H]PSB-603, which would be expected for agonists. In con-
trast, the determined A2BAR affinities for structurally diverse
antagonists were higher when tested versus the antagonist as
compared to agonist radioligand (Fig. 7, Supplemental
Table 1).

For the A2AAR, similar differences between agonists and
antagonists had previously been observed [52]: Ki values of
agonists determined versus the antagonist radioligand
[3H]MSX-2 were 3–7 times higher than Ki values determined
versus the agonist radioligand [3H]CGS-21680 [29]. Also, for
the A1AR, it was shown that there is a significant rightward
shift in agonist binding curves, most pronounced for rat brain
A1ARs, when using an antagonist radioligand rather than an
agonist radioligand (Supplemental Table 2), and this discrep-
ancy may be used to functionally characterize A2AAR ligands
for differentiation between agonists and antagonists. For hu-
man recombinant A1ARs, however, this observation could not
be confirmed [54]. It appears that the decrease in affinity may
be species or cell context-dependent.

Although BAY 60-6583 is a potent A2BAR agonist [9], it
showed a large rightward shift in affinity when tested versus
the agonist radioligand [3H]NECA as compared to binding
studies versus the antagonist/inverse agonist radioligand
[3H]PSB-603 (Figs. 5d and 6, Supplemental Table 1). Thus,
BAY 60-6583 behaved like the antagonists, not like the ago-
nists. Because it is structurally very different from adenosine
derivatives, which are characterized by a nucleoside structure
featuring a ribosyl residue (see Fig. 1), the (partial) agonist
BAY 60-6583 might stabilize a very different receptor confor-
mation than the full agonist NECA.

Moreover, it was observed that [3H]NECA binding could
not be fully displaced by the antagonists, while [3H]PSB-603
binding was fully blocked by the compounds. This may sug-
gest different binding modes of nucleosides (adenosine-
derived agonists) on the one hand and antagonists on the other
hand (see Supplemental Fig. 5a, b, c). Another more likely
explanation would be the presence of a previously described
NECA-binding protein designated adenotin [55, 56].
Adenotin, which was later identified as heat shock protein
paralog Grp94 [57], was reported to display submicromolar
affinity for NECA and to lack affinity for adenosine receptor
antagonists [55, 56]. Saturation analysis with soluble and
membrane-derived adenotin had shown a KD value for
NECA of 220 nM (soluble) and 210 nM (membrane-
derived) [56]. In a previous study performed in chromaffin
plasma cell membranes, the xanthine antagonist DPCPX had
shown complete inhibiton of [3H]NECA binding [42], which
might be due to the lack of expression of the NECA-binding
protein adenotin in the employed cell line. Binding to non-
transfected HEK cell membranes showed some specific bind-
ing, which was, however, moderate and may be at least partly
due to the endogenous expression of A2BARs [58] (see SI
Fig. S6). In order to avoid effects that are due to binding of

[3H]NECA to potentially present adenotin/Grp94, it may be
advisable to use an A2BAR antagonist for the determination of
non-specific binding.

Conclusions

[3H]BAY 60-6583, a potent and functionally selective A2BAR
(partial) agonist, was prepared and examined as a tool for
labelling an active A2BAR conformation. However, despite
excessive efforts, we have not been able to establish a
radioligand binding assay with this compound mainly due to
its high non-specific binding. Nevertheless, [3H]BAY 60-
6583 may still be useful for studying in vivo distribution and
metabolism of the drug. For the labeling of human, rat, and
mouse A2BARs, we subsequently investigated binding of the
non-selective agonist [3H]NECA as an alternative. This
adenosine-like agonist labeled A2BARs with an affinity in
the higher nanomolar range and showed acceptable non-
specific binding due to its high polarity. [3H]NECA is current-
ly the method of choice for radioligand binding studies aimed
at labeling the “high-affinity” active conformation of
A2BARs. Nevertheless, the development of more potent and
selective A2BAR agonists would be highly desirable. It has to
be pointed out that different agonists are most likely binding to
and stabilizing different receptor conformations. This was ob-
served in the present study for adenosine derivatives in com-
parison to the non-nucleoside (partial) agonist BAY 60-6583,
an aminopyridine derivative. Moreover, large affinity differ-
ences may be measured for compounds dependent on the
structure of the radioligand that is used for affinity determina-
tion, since each radioligand may label (induce, stabilize) a
specific receptor conformation. X-ray structures of the
A2BAR (active conformation) in complex with nucleoside
and non-nucleoside agonists would be of great value to further
elucidate the receptor’s activation mechanisms.
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