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Abstract

Background/Aims: Osteonecrosis of the femoral head (ONFH) is a devastating orthopedic
disease. Previous studies suggested that stromal-cell-derived factor (SDF)-1 was involved
in osteogenesis and angiogenesis. However, whether SDF-1 potentiates the angiogenesis
and osteogenesis of bone marrow-derived stromal stem cells (BMSCs) in ONFH is not clear.
Methods: BMSCs were transfected with green fluorescent protein (GFP) or the fusion gene
encoding GFP and SDF-1a, and transgenic efficacy was monitored by immunofluorescence.
The expression of SDF-1q, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and
alkaline phosphatase (ALP) at the mRNA level was measured by real-time polymerase chain
reactions (RT-PCR). The expression of SDF-1a, Runx2, OCN, and p-Smad1l/5 were measured
at the protein level by Western blot. Transwell migration assay and tube formation assay were
utilized to detect the angiogenesis in vitro, whereas the in vivo angiogenesis was monitored
by angiography. Immunohistological staining and micro-CT scanning were conducted to
assess the histological changes in morphology. Results: In vitro, SDF-1a overexpression in
BMSCs promoted osteogenic differentiation and upregulated the expression of osteogenic-
related proteins, such as ALP, Runx2, OCN, and p-Smad1/5. In the methylprednisolone induced
ONFH rat model used in our investigation, the overexpression of SDF-1a in BMSCs promoted
significantly more bone regeneration and the expression of OCN and Runx2 as compared with
the effect of vehicle overexpression. Moreover, the morphology of ONFH was ameliorated
after the transplantation of BMSCs with SDF-la overexpression. Furthermore, SDF-la
overexpression in BMSCs significantly increased osteoblastic angiogenesis as indicated by
the increased tube formation ability, CD31 expression, and vessel volume. Conclusion: SDF-
la overexpression in BMSCs promotes bone generation as indicated by osteogenesis and
angiogenesis, suggesting SDF-1a may serve as a therapeutic drug target for ONFH treatment.
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Introduction

Osteonecrosis of the femoral head (ONFH) is a devastating disease, which is
characterized by cellular demise within the femoral head [1], progressive deterioration of
the hip joint [2], and severely lowered quality of life [3, 4]. Although corticosteroid usage [5],
alcohol consumption [6, 7], and trauma [8] have been identified as risk factors for ONFH, its
pathogenesis remains poorly understood. Currently, surgical prevention is the conventional
therapeutic strategy, which is invasive and may decrease the quality of life. Therefore, the
identification of novel nonsurgical modalities is warranted.

Bone marrow-derived stromal stem cells (BMSCs) have been widely used in tissue
regeneration or repair due to their self-renewal potential and multi-differentiation capability
[9-14]. Preclinical study suggested that bone healing after autologous BMSCs treatment for
ONFH begins two weeks after the transplantation, and complete healing is achieved after
nine weeks [15]. A five-year follow-up study revealed that the combination of implantation
of autologous bone marrow cells and auto-iliac cancellous bone grafts generated comparable
clinical results with those of head-preserving procedures in medium-sized lesions [16],
indicating that BMSCs implantation is promising for ONFH treatment. The findings of
a previous investigation demonstrated that the Akt activator and cordycepin promoted
BMSC-induced osteogenesis [17, 18]. Furthermore, P-glycoprotein (P-gp) overexpression
was found to decrease the risk of steroid-induced ONFH [19] . The latter risk was alleviated
by rifampicin likely through enhancing P-gp activity [20], whereas glucocorticoid-induced
ONFH was successfully prevented by treatment with Vitamin K2 [21]. Moreover, augment the
expression of BMP-2 and BFGF in BMSCs promoted bone repair of ONFH [22]. These results
suggest that multiple factors are involved in the therapeutic effects of BMSCs on ONFH,
and additional treatment with drug or transgenic modification may promote their efficacy.
Nevertheless, the underlying mechanisms of these activities are not clearly elucidated.

Stromal-cell-derived factor (SDF) 1-alpha is a chemokine that is involved in immune
cell activation, differentiation, and migration [23]; tumorigenesis [24]; wound healing
[25]; corneal epithelium regeneration [26]; and tissue repair [27]. Of note, previous
studies reported that SDF-1a promoted osteoclastogenesis [28] and stem cell survival and
development [29], and regulated osteogenic differentiation [30]. It is noteworthy that the
conditional inactivation of SDF-1 impaired osteoblast development and differentiation [31],
and antagonizing SDF-1/CXCR4 signaling altered fracture repair [32]. Furthermore, the
SDF-1/CXCR4 signaling pathway is of vital importance in mesenchymal stem cell-induced
osteogenic differentiation [33], and the upregulation of CXCR4 enhanced engraftment and
bone mechanics in osteogenesis imperfecta [34]. Moreover, several studies suggested that
SDF-1 is closely associated with angiogenesis, which is essential for osteogenesis [35].
Importantly, the downregulation of SDF-1 achieved by treatment with crude fucoidan extract
lowered the vascularization in osteosarcoma [36]. In addition, melittin was established
to decrease the endothelial progenitor cell-mediated angiogenesis via SDF-1a inhibition
in osteosarcoma [37]. Perrucci et al. reported that the SDF-1/CXCR4 axis was involved in
cyclophilin A-induced neo-angiogenesis [38]. As known, osteogenesis and angiogenesis are
essential for bone regeneration; therefore, it is reasonable to hypothesize that SDF-1 may
play critical roles in ONFH treatment. The present study aimed to reveal the role of SDF-1 in
BMSCs induced bone regeneration for ONFH treatment.

Materials and Methods

Human BMSC isolation and transfection

Bone marrow samples were obtained from patients undergoing hip arthroplasty, and BMSCs were
isolated following the procedures described in previous studies [21, 39]. Cells were maintained with
o-minimum essential medium (a-MEM; Gibco, USA), supplemented with 10% (v/v) fetal bovine serum
(FBS, Hyclone, USA) and 1/100 penicillin-streptomycin in humidified atmosphere of 5% CO,at 37 °C. Cells
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were passaged when they reached 80%-90% confluence. Then, after three to six passages, the cells were
analyzed by flow cytometry and maintained for further use. All patients provided written informed consent,
and the Institutional Review Board of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
(Shanghai, China) approved the experimental procedures.

Third-passage BMSCs were transfected with a lentiviral plasmid carrying the green fluorescent protein
(GFP) and SDF-1a (GeneChem, China) or a lentiviral plasmid carrying GFP only (GeneChem). The transfected
cells were named SDF-1a-GFP-BMSCs or GFP-BMSCs, whereas the non-transfected cells were termed as
control. Seventy-two hours later, flow cytometry was utilized to select stable transgenic cells.

Flow cytometry

For phenotypic characterization, 2 x 105 BMSCs were incubated with fluorescein CD34 (Bioscience
Pharmingen), CD 44 (eBioscience, USA), CD90 (eBioscience), CD29 (Bioscience Pharmingen), or HLA-DR
(eBioscience) at a dilution rate of 1:100 for 30 min at 4 °C. Then, flow cytometry was carried out using
FACSCalibur flow cytometer (Becton Dickinson, USA). Flow]o 7.6.5 software (Tree Star Inc., Ashland, OR,
USA) was used for data analysis.

Transfected BMSCs were trypsinized and suspended in phosphate buffer saline (PBS) containing 10%
FBS. Further, flow cytometry was conducted using a FACSCalibur flow cytometer (Becton Dickinson, USA)
to sort GFP fluorescence-labeled cells. The sorted cells were suspended with culture medium and subjected
for further use.

Western blot analysis

Proteins were extracted with RIPA lysis buffer (Beyotime, China), and protein concentration was
measured by Bradford assay (BioRed, USA). Equal amounts of protein (20 pg/lane) were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, 8%-12%) and transferred to a PVDF
membrane (Millipore, USA). Then, the membranes were blocked with 5% (w/v) non-fat milk for 1 h at room
temperature and incubated with primary antibodies against Runx2 (Abcam, Cambridge, MA, USA, 1:1, 000),
SDF-1a (Abcam, 1:1, 000), OCN (Abcam, 1:1, 000), p-Smad1/5 (Abcam, 1:1, 000), CD31 (Abcam, 1:1, 000)
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Abcam, 1:1, 000) at 4 °C overnight. Afterwards,
the membranes were incubated with secondary antibodies for 2 h at 37 °C. The proteins were visualized
using enhanced chemiluminescence (ECL, Beyotime), and GAPDH was employed as the reference protein.

Real-time polymerase chain reactions (RT-PCR)

Total RNA was extracted by the TRIzol (Invitrogen, USA) method. RNA was reverse-transcribed to
cDNA according to the manufacturer’s instructions (Takara, Japan). The expression levels of SDF-1, ALP,
OCN, and Runx2 at the mRNA level were measured with TransStart Tip Green qPCR SuperMix (TransGen
Biotech, USA). The following cycling conditions of RT-PCR were utilized: 95 °C for 30 s and 40 cycles at 95
°C for 10 s and at 60 °C for 30 s. The expression of mRNAs was calculated by the 224 method, and B-actin
was used as a reference gene. The primers for RT-PCR are listed in Table 1. All experiments were performed
in triplicate.

Immunofluorescence staining

Approximately 1x10° BMSCs were cultured on glass coverslips for 24 h. Next, the cell medium was
rinsed with cold PBS and fixed with 4% formaldehyde for 30 min. Then, the coverslips were mounted, and
observations were performed under
a laser confocal scanning microscope

(Olympus, Japan). Table 1. The primers sequences used for qRT-PCR

Genes Forward primer sequence (5’-3") Reverse primer sequence (5’-3’)

Induction ofosteogenic diﬁ‘erentia- TTGTTCAGGGCCTTCTCCAG
, SDF-1a ATGAACGCCAAGGTGGTGGT

tion GTA

A total of 2 x 10° GFP-BMSCs, 20% Runx2 CCGAGACCAACCGAGTCATTT AAGAGGCTGTTTGACGCCAT
SDF-1a-GFP-BMSCs (transfected cell/ A
non-transfected cell), or 100% SDF-1a- OCN TCAACAATGGACTTGGAGCCC AGCTCGTCACAATTGGGGTT
GFP-BMSCs were seeded in a 24-well ALP CAAGGATGCTGGGAAGTCCG CTCTGGGCGCATCTCATTGT
plate_ Further, Osteogenic differentiation B-actin GTCATCCATGGCGAACTGGT CGTCATCCATGGCGAACTGG

KARGER

2563


http://dx.doi.org/10.1159%2F000489684

Cellular Physiology Cell Physiol Biochem 2018;46:2561-2575

DOI 10.44094000420084 © 2018 The Author(s). Published by S. Karger AG, Basel

and Biochemistry Published online: May 14, 2018 | www.karger.com/cpb

Yang et al.: SDF-1a Promotes Bone Formation in ONFH

was induced by preconditioned induction medium containing 102 M $-sodium glycerophosphate, 50 pg/mL
L-ascorbic acid, and BMSCs supernatants. The culture medium was replaced every three days.

Chondrogenic differentiation induction

A number of 2 x 10° BMSCs were seeded in a 24-well plate. Then cells were cultured in chondrogenic
differentiation media (Cyagen Biosciences, USA) for 4 weeks according to the manufacturer’s instruction.
The chondrocytes were measured by Toluidine staining and observed under a light microscope (Leica,

Japan).

Adipogenic differentiation induction

For adipogenic differentiation, 2 x 10° BMSCs were seeded in a 24-well plate and maintained with
adipogenic induction medium (Cyagen Biosciences) for 3 weeks in line with manufacturer’s protocol. Then
0Oil red staining was used to detect adipocytes and observed under a light microscope (Leica).

Cell counting kit-8

We seeded 2x 10* BMSCs, GFP-BMSCs and SDF-1a-GFP-BMSCs in 96-well microplates and cells were
cultured for 72 h. At the 24 h and 72 h time points, cell viability was measured by CCK-8 (Beyotime, China)
according to instructions. The optical density was detected at 450 nm with a microplate reader (Bio-Rad,
USA).

For EA. Hy926 cell viability assay, approximately 2 x 10* EA. Hy926 cells were seeded in 96-well
microplates and cells were cultured with the supernatants of BMSCs, 20% SDF-1a-GFP-BMSCs and
100% SDF-1a-GFP-BMSCs in with or without MP for 72 h. Then, cell viability was detected by CCK-8 as
aforementioned.

Cell apoptosis

Post transfection of GFP or SDF1-a in BMSCs, about 1x 105 BMSCs, GFP-BMSCs and SDF-1a-GFP-BMSCs
were collected. Then cells were incubated with Annexin V-FITC/Pl apoptosis detection kit (Becton Dickinson)
according to instructions. Then, flow cytometry was carried out using FACSCalibur flow cytometer (Becton
Dickinson). Flow]o 7.6.5 software (Tree Star Inc.) was used for data analysis.

ALP staining
Seven days after the induction of osteogenic differentiation, the expression of ALP was measured
according to the manufacturer’s protocols (Beyotime, China).

Alizarin red staining
Twenty-one days post-osteogenic differentiation induction, cells were fixed with 4% paraformaldehyde
and stained with alizarin. Then, the cells were visualized under a light microscope (Olympus, Japan).

Transwell migration assay

Approximately 2 x 10° GFP-BMSCs, 20% SDF-1a-GFP-BMSCs (transfected cell/ non-transfected cell),
or 100% SDF-1a-GFP-BMSCs preconditioned with or without methylprednisolone (MP, Pfizer, USA) in
serum free medium were plated in Matrigel-coated Transwell in filter chambers (in the upper chamber).
A culture medium containing 10% FBS, placed in the lower chamber, was used as a chemoattractant. The
concentration of MP was 5x10° M for all in vitro studies. Twenty-four hours later, the membranes were fixed
with ethanol and stained with crystal violet. Then, the membranes were mounted and observed under a
light microscope (Olympus, Japan), and the migrated cells were counted in five random fields.

Tube formation assay

EA. Hy926 cell obtained from the American Type Culture Collection (Rockville, MD) was used for tube
formation assay. Briefly, matrigel (BD, USA) was plated in a 12-well plate and kept at room temperature to
allow it solidification. A number of 2 x 10° Hy926 cells were collected, re-suspended with cell supernatants
of 20% SDF-1a-GFP-BMSCs (transgenic cell/normal cell), 100% SDF-1a-GFP-BMSCs, or GFP-BMSCs,
and seeded to matrigel-coated plates. Twenty-four hours later, tube formation was observed with a light
microscope (Olympus, Japan).
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Animal model and grouping

Specific pathogen-free Sprague-Dawley (SD) rats, weighing 260 = 20 g, were obtained from the Chinese
Science Academy and divided into five groups: control, MP, MP, MP + GFP-BMSCs, and MP+SDF-1a-GFP-
BMSCs. Next, the rats were intramuscularly injected with MP (20 mg/kg/d) for three continuous days per
week for three weeks. A number of 1x107 GFP-BMSCs or SDF-1a-GFP-BMSCs were injected into the tibia of
the rats in the experimental groups, whereas the rats in the control group received no treatment. The use of
animals was approved by the Animal Research Committee at Shanghai Jiao Tong University Affiliated Sixth
People’s Hospital.

Micro-CT scanning

Bone morphologic changes were detected by micro-CT scanning as previously described [21]. In
brief, the femoral head was scanned with a micro-CT scanner (Brooke, Germany), and 2-D images were
analyzed by CTAn software. Data of the trabecular bone parameters, such as bone mineral density (BMD),
bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) were
collected.

Angiography

Angiography was performed as previously described [21]. Briefly, cardia was perfused, and Microfil
(Flow Tech, Inc,, Inc., Carver, MA, USA) was injected, after which, the rats were placed on the bed for one
hour to ensure contrast agent polymerization. Femoral heads were fixed and decalcified. Finally, the samples
were scanned, and the femoral head vessels were reconstructed.

Histology and Immunohistochemistry (IHC)

After the mice were sacrificed, their femoral heads were harvested, decalcificated, and sectioned at
a thickness of 4 pm in the coronal plane. A part of the sections were subjected to hematoxylin and eosin
(H&E) staining to evaluate the trabecular structure. The expression levels of OCN, Runx2, and CD31 were
detected by immunohistochemistry. Tissue paraffin sections were dewaxed and heat-treated with citrate
buffer (pH 6.0) for 10 min. Endogenous peroxidase activity was inhibited using 0.1% hydrogen peroxide,
and the non-specific-binding sites were blocked with serum goat for 1 h. Then, incubation with primary
antibodies against OCN (Abcam, 1:100), Runx2 (Abcam, 1:100), and CD31 (Abcam, 1:100) was conducted
overnight at 4 °C. The bound antibodies were detected by the biotin-linked secondary antibodies and DAB
chromogen-conjuncted streptavidin-conjugated HRP enzymes (Beyotime). Finally, the color was developed
by 3-3’-diaminobenzidine, counterstaining was performed with hematoxylin, and the slides were observed
under a laser confocal scanning microscope (Olympus).

Statistical analysis

Data were presented as mean * standard deviation (SD). Comparisons between groups were performed
using one-way ANOVA. All data were analyzed with SPSS 19.0 (SPSS, Chicago, IL, USA), a two tailed P-value
less than 0.05 was considered statistical significant.

Results

SDF-1a overexpression in BMSCs promoted angiogenesis and endothelial cell recruitment

in vitro

The characteristics of isolated cells were determined by flow cytometry (Fig. 1a). The
cells were positive for CD 44, CD 90, and CD29, but negative for CD 34 and HLA-DR, which are
typical biomarkers for BMSCs. Next, the multi-lineage differentiation potential of BMSCs was
detected, as shown in Fig. 1b, BMSCs could be differentiated to chondrocytes, osteoblasts
and adipocytes, which indicated the stemness of BMSCs. Then, BMSCs were infected with
lentiviral vectors carrying the SDF-1a gene and GFP or only GFP, and stable transgenic GFP-
BMSCs and SDF-1a-GFP-BMSCs cells were sorted and confirmed by immunofluorescence
(Fig. 1c). The expression of SDF-1a was measured at both the mRNA and protein level, the
results of which suggested that cells were successfully transfected with the SDF-1a gene
(Fig. 1d-e). Further, the proliferation and apoptosis trend after SDF-1a transfection were
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investigated. As depicted in Fig. 1f, SDF-1a transfection in BMSCs had no significant impact
on cell proliferation compared with non-transfected BMSCs and GFP-BMSCs. Moreover, SDF-
latransgenic BMSCs exhibited comparable cell apoptosis ratio in contrast to non-transfected
BMSCs and GFP-BMSCs, with a death ratio at about 10% (Fig. 1g-h).

Previous studies reported that SDF-1 was closely associated with angiogenesis and
endothelial cell recruitment [35]. Therefore, EA. Hy926 cells were used to evaluate the tube
formation activity of transgenic BMSCs. As expected, SDF-1a-GFP-BMSCs had a significant-
ly higher tube formation ability than GFP-BMSCs, which was exerted in a dose-dependent
manner (Fig. 2a-d). Then, MP was used to mimic osteonecrosis in vitro. After the post-MP
treatment, the tube formation ability was attenuated; however, SDF-1a overexpression sig-
nificantly increased its formation ability compared with MP treatment alone (Fig. 2a-d).
Moreover, SDF-1a-GFP-BMSCs significantly promoted EA. Hy926 cell proliferation in a dose-
dependent manner compared with control both in the absence and presence of MP (Fig. 2e).
In line with the results obtained in the tube formation assay, SDF-1a-GFP-BMSCs promoted
significantly higher cell migration compared with GFP-BMSCs. Moreover, MP lowered the
number of migrated cells, and SDF-1a-GFP-BMSCs reversed the effects induced by MP (Fig.
2f-g). Additionally, the expression of CD31, an indicator for angiogenesis, was measured.
EA. Hy926 cells were cultured in the supernatants of BMSCs, 20% SDF-1a-GFP-BMSCs and
100% SDF-1a-GFP-BMSCs with or without MP for 5 days. Results suggested that CD31 was
significantly augmented in dose-dependent way both in the absence and presence of MP
(Fig. 2h). These results suggest that SDF-1a overexpression promotes angiogenesis in vitro.
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Osteogenic-related proteins were upregulated post SDF-1a overexpression in BMSCs

Osteogenic proteins, OCN, Runx2 and ALP are essential for osteogenesis and their up-
regulation is a positive indicator for osteogenesis [19, 21]. Hence, the expression of these
proteins was measured in our examination. Expectedly, the expression of ALP, Runx2, and
OCN in the SDF-1a overexpression group at the mRNA level was significantly upregulated
compared with that in the control group (Fig. 3a-c). Their expression was attenuated by MP,
and SDF-1a overexpression in BMSCs reversed the effects induced by MP (Fig. 3a-c). The
expression of OCN and Runx2 at the protein level was in line with their mRNA level (Fig.
3d). p-Smad1/5, another indicator of osteogenic protein [40], was also upregulated (Fig. 3d).
Furthermore, the expression of ALP was decreased by MP, and this inhibition was signifi-
cantly reversed by SDF-1a-GFP-BMSCs in a dose-dependent manner (Fig. 3e). Alizarin red
staining revealed that more calcium nodules were available in SDF-1a-GFP-BMSCs than in
the GFP-BMSCs and control groups. In contrast, fewer calcium nodules were observed post-
MP treatment; therefore, SDF-1a-GFP-BMSCs significantly increased the quantity of nodules
in a dose-dependent manner (Fig. 3f). These results indicate that SDF-1a overexpression in
BMSCs promoted osteogenesis in vitro.
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Fig. 2. SDF-1a overexpression in BMSCs promoted angiogenesis in vitro. (a) Cell supernatants of SDF-
1a-GFP-BMSCs promoted significantly higher tube formation in a dose-dependent manner as compared
with GFP-BMSCs (control group). Tube formation was attenuated by methylprednisolone (MP), whereas
SDF-1a-GFP-BMSCs reversed the effects caused by MP in a dose-dependent manner. The changes of (b)
total tube length, (c) closed structures, and (d) branching points were in line with the results observed for
tube formation. (e) The SDF-1a-GFP-BMSCs promoted EA. Hy926 cell proliferation in a dose-dependent
manner in the absence or presence of MP. (f) Cell supernatants of SDF-1-GFP-BMSCs promoted significantly
more pronouncedly endothelial cell recruitment in a dose-dependent manner as compared with GFP-
BMSCs (control group). Endothelial cell recruitment efficacy was attenuated by methylprednisolone (MP),
whereas SDF-1a-GFP-BMSCs reversed the effects caused by MP in a dose-dependent manner. (g) Cell count
of migrated cells. (h) The expression of CD 31 in EA. Hy926 cells was measured by western blot. Each
experiment was performed at least three times. *P<0.05.
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Fig. 3. Osteogenic-related proteins were upregulated by SDF-1 overexpression in BMSCs in vitro. The ex-
pression levels of osteogenic-related proteins (a) ALP, (b) OCN, and (c) Runx2 were upregulated at the
mRNA level in SDF-1a-GFP-BMSCs. MP decreased the expression of ALP, OCN, and Runx2, and their expres-
sion was restored by SDF-1 overexpression. (d) The expression levels of p-Smad1/5, OCN, and Runx2 were
increased in SDF-1a-GFP-BMSCs in a dose-dependent manner, whereas their expression in SDF-1a-GFP-
BMSCs was not affected by MP. (e) The expression of ALP was determined by ALP staining. ALP expression
was increased by SDF-1a.-GFP-BMSCs in a dose-dependent manner, and the MP-decreased ALP expression
was reversed by SDF-1a overexpression in BMSCs. (f) SDF-1a-GFP-BMSCs induced the formation of a higher
number of calcium nodules than that in the control group in a dose-dependent manner which was evidenced
by Alizarin red staining. Fewer calcium nodules were observed in the MP group than in the control group;
the mineralization of BMSCs was significantly improved in SDF-1a overexpression BMSCs. Each experiment
was performed at least three times. *P<0.05.
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SDF-1a overexpression in BMSCs accelerates osteogenesis in an ONFH rat model

Next, the role of SDF-1a in ONFH was established in an MP-induced ONFH rat model.
The ONFH model was successfully generated as indicated by femoral head osteonecrosis
(Fig. 4a). BMSCs transplantation partially promoted osteogenesis, whereas SDF-1a
overexpression in BMSCs significantly enhanced the osteogenesis in ONFH (Fig. 4a). The
expression levels of OCN and Runx2 were decreased by MP, and their expression at protein
and mRNA level was restored by SDF-1a-GFP-BMSCs transplantation in the femoral
head tissues (Fig. 4b-d). The presence of the transplanted BMSCs was confirmed by GFP
fluorescence, and the results suggested that transgenic BMSCs were successfully located in
the femoral head (Fig. 5a). The trabecular changes in the subchondral area of the femoral
heads were visualized by micro-CT scanning. Six weeks post-MP treatment, osteonecrosis of
the femoral head was obvious, whereas SDF-1a-GFP-BMSCs significantly attenuated the MP-
induced osteonecrosis (Fig. 5b). MP significantly lowered BMD values in the experimental
rats, whereas the transplantation of SDF-1a-GFP-BMSCs significantly increased them (Fig.
5¢). In addition, other bone parameters, such as BV/TV, Tb.Th, and Tb.N, were improved
in SDF-1a-GFP-BMSCs-injected rats as compared with rats injected with MP + GFP-BMSCs
or MP alone (Fig. 5d). These results indicate that SDF-1a overexpression accelerates the
osteogenesis of ONFH in vivo.
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Fig. 4. SDF-10-GFP-BMSCs promote osteogenesis in vivo. (a) The overexpression of SDF-1a in BMSCs at-
tenuated the morphological changes induced by MP as indicated by H&E staining. Triangle indicates bone
necrosis. (b) SDF-1a-GFP-BMSCs promoted the expression of Runx2 and OCN in spite of the presence of MP.
Arrows indicate the expression of OCN (upper lane) or RUNX2 (lower lane). (c) Density evaluation of OCN.
(d) Density evaluation of Runx2. Each experiment was performed at least three times. *P<0.05.
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Angiogenesis was promoted by SDF-1a overexpression

Previous results suggested that SDF-1a overexpression in BMSCs promoted in vitro
angiogenesis, which is essential for osteogenesis. However, its function in vivo remains
unexplored. We utilized angiography to directly visualize angiogenesis in vivo. As shown
in Fig. 6a, MP not only deteriorated the structure of the femoral head, but also destroyed
its vessels. In contrast, SDF-1a-GFP-BMSCs transplantation resulted in obvious signs of
angiogenesis and significantly increased the vessel volume compared with that in the control
group (Fig. 6a, d). The expression of CD31, an indicator for angiogenesis [41], was also
examined. CD31 expression was significantly decreased by MP; nevertheless, the inhibition
effect was reversed post-SDF-1a-GFP-BMSCs transplantation (Fig. 6b-c). Therefore, SDF-1a
overexpression in BMSCs promotes angiogenesis in rats with ONFH.

Discussion

Previous studies suggested that multiple factors play roles in BMSC-induced osteogenesis
[17, 19, 21]; however, the underlying mechanism is not fully understood. By introducing the
lentiviral vectors expressing SDF-1a into BMSCs, the present study illustrated that SDF-1«
promoted the efficacy of BMSC-induced bone formation by angiogenesis and osteogenesis.
For the first time, these results provide evidence that SDF-1a may be a potential therapeutic
target against ONFH.

Stem cell transplantation has been widely used for the treatment of diseases , such as
leukemia [42], diabetic neuropathy [43], and erectile dysfunction [44]. However, satisfactory
efficacy is not always achieved by the application of transplantation of stem cells alone. In
previous investigations, it has been found that the combination of stem cell transplantation
with other therapeutic methods could affect the efficiency of stem cell transplantation [45-
48]. On the other hand, BMSCs transplantation has been revealed as a promising strategy
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Fig. 6. SDF-10-GFP-BMSCs promote angiogenesis in vivo. (a) SDF-1a overexpression in BMSCs promotes
vascularization as indicated by angiography. Triangles indicate vessels in bones. (b) The expression of an-
giogenesis indicator, CD31, was upregulated by SDF-1a-GFP-BMSCs despite the presence of MP. Triangles
indicate the expression of CD 31. (c) Density evaluation of CD31. (d) Vessel volume calculation. Each experi-
ment was performed at least three times. *P<0.05.

for ONFH treatment; however, only patients with medium-size lesions could benefit from
its application [15, 16]. The findings of other studies suggested that the treatment with SC-
79 (an Akt activator) and Vitamin K2 significantly improved the efficacy of osteogenesis in
animals [17, 21]. Furthermore, transgenic overexpression of P-glycoprotein or VEGF165 in
BMSCs significantly increased stem cell-induced osteogenesis as well [19, 20]. In addition,
SDF-1 was found to be closely associated with osteogenesis and angiogenesis [49, 50]. In
the present study, we showed that SDF-1a overexpression in BMSCs significantly promoted
bone regeneration by osteogenesis and angiogenesis. To the best of our knowledge, this is
the first report evidencing that SDF-1 promotes BMSCs differentiation towards osteogenesis
and angiogenesis in ONFH treatment.

Runx?2 is essential in BMSC differentiation [51]. In the present study, we discovered that
the expression of Runx2 was decreased post-MP treatment, whereas it was upregulated after
the transplantation of SDF-1a-GFP-BMSCs, which is consistent with the results of previous
studies [52, 53]. Linggian et al. reported that the cotherapy with the parathyroid hormone
(PTH) and SDF-1 promoted osteogenic differentiation of human periodontal ligament stem
cells by enhancing OCN expression and ALP activity [54], which is in line with the findings
of the present study. Osteoblast differentiation is key to bone formation, in which bone
morphogenetic protein-2/Smad signaling pathway is involved [55]. As shown in Fig. 3d, in
our study, SDF-1a overexpression activated Smad1/5 phosphorylation, suggesting that SDF-
la activates osteoblast differentiation in vitro. Micro-CT scanning directly and H&E staining
indirectly showed that SDF-1a overexpression in BMSCs significantly reversed BP-induced
osteonecrosis. Furthermore, trabecular bone parameters, such as BMD, BV/TV, Tb.Th, and
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Tb.N were increased in SDF-1a-GFP-BMSCs. Therefore, we could reasonably conclude that
multiple factors were involved in SDF-1a-stimulated bone regeneration in ONFH.

In addition to osteogenesis, BMSCs enhance vascularization and blood vessel
regeneration, processes which are critical to the survival of newly formed bone tissues and
bone regeneration [56]. Recent studies have shown that SDF-1 not only participates in cell
migration, but also promotes angiogenesis in damaged and wounded tissues [57-59]. The
present study revealed that SDF-1a overexpression in BMSCs promoted tube formation and
endothelial cell recruitment in vitro. In addition, we further confirmed that SDF-1a-GFP-
BMSCs increased the vascularization and angiogenesis, as directly evidenced by angiography,
as well as the vessel volume. Furthermore, the expression of CD31, a well-known biomarker
for angiogenesis, was enhanced. These results suggest that SDF-1a overexpression in BMSCs
can potentiate BMSCs angiogenesis both in vitro and in vivo, indicating that angiogenesis is
involved in SDF-1 promotion of bone regeneration.

In conclusion, our results indicate that SDF-1a overexpression had beneficial effects
in BMSCs transplantation for the treatment of ONFH by promoting angiogenesis and
osteogenesis. Our findings suggest that targeting SDF-1a is a potential therapeutic strategy
for ONFH treatment. However, further studies are warranted to reveal the function of SDF-1
in larger animal models of ONFH.
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