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Visual tracking via improving motion
model and model updater
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Abstract
Motion model and model updater are two necessary components for online visual tracking. On the one hand, an effective
motion model needs to strike the right balance between target processing, to account for the target appearance and scene
analysis, and to describe stable background information. Most conventional trackers focus on one aspect out of the two
and hence are not able to achieve the correct balance. On the other hand, the admirable model update needs to consider
both the tracking speed and the model drift. Most tracking models are updated on every frame or fixed frames, so it
cannot achieve the best performance. In this article, we solve the motion model problem by collaboratively using salient
region detection and image segmentation. Particularly, the two methods are for different purposes. In the absence of prior
knowledge, the former considers image attributes like color, gradient, edges, and boundaries then forms a robust object;
the latter aggregates individual pixels into meaningful atomic regions by using the prior knowledge of target and back-
ground in the video sequence. Taking advantage of their complementary roles, we construct a more reasonable confi-
dence map. For model update problems, we dynamically update the model by analyzing scene with image similarity, which
not only reduces the update frequency of the model but also suppresses the model drift. Finally, we use these improved
building blocks not only to do comparative tests but also to give a basic tracker, and extensive experimental results on
OTB50 show that the proposed methods perform favorably against the state-of-the-art methods.
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Introduction

Visual object tracking is an important problem in computer

vision.1–6 It is a task that estimates the trajectory of a target

in a video sequence.7 The tracker has no prior knowledge of

the target to be tracked such as category and shape. Despite

extensive research on visual tracking, it remains challen-

ging problems in handling complex target appearance

changes caused by pose, occlusion (OCC), illumination,

and motion.

An important insight is that the tracking problem should

be considered as a balance between the scene and the tar-

get. Specifically, it is not only accurate description of the

target appearance but also a comprehensive access to the

scene information. Another important vision is that the

video is highly relevant but redundant. And, finding

1School of Computer Science and Technology, Tianjin University, Tianjin,

China
2School of Computer Software, Tianjin University, Tianjin, China

Corresponding author:

Chao Xu, School of Computer Software, Tianjin University, Tianjin

300354, China.

Email: xuchao@tju.edu.cn

International Journal of Advanced
Robotic Systems

January-February 2018: 1–15
ª The Author(s) 2018

DOI: 10.1177/1729881418756238
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

http://orcid.org/0000-0002-6031-9334
http://orcid.org/0000-0002-6031-9334
http://orcid.org/0000-0002-6398-0398
http://orcid.org/0000-0002-6398-0398
http://orcid.org/0000-0002-9157-6050
http://orcid.org/0000-0002-9157-6050
mailto:xuchao@tju.edu.cn
https://doi.org/10.1177/1729881418756238
http://journals.sagepub.com/home/arx
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881418756238&domain=pdf&date_stamp=2018-02-11


another balance between the relevant and redundant is

important for improving tracking speed and accuracy.

How to find these balances of the above issues? We need

to think of the tracking problem itself. The simplest way is

to observe it through the bioinspired perspective. When

people track a target, their eyes will pay more attention

to the target itself, and for the surrounding environment,

they will have a general division. For example, when we

track a pedestrian, we will be more concerned about his

characteristics (such as the color of clothes, the size of the

body, etc.), and for the surrounding environment, we gen-

erally only need to know some rough scenes (such as tall

buildings, trees, etc.). In the process of tracking, we can feel

that we are not very concerned about every moment

because the brain will be very clever to remove some of

the approximate fragment, and focus on the target and

scene changes.

Based on these intuitions, we know that we should solve

the sample selection problem from the perspective of spa-

tial dimension and tackle the tracking process problem

from the perspective of time dimension. And according

to the research of Wang et al., the tracker is composed of

several modules: motion model, feature extractor, observa-

tion model, model updater, and ensemble post-processor.8

In particular, motion model and model updater (MMMU)

contain many details that can affect the tracking result, but

they are rarely considered in most of the tracking methods.

Coincidentally, our above ideas can be used to enrich these

two components and thence this article will focus on them.

First, the motion model generates object proposals, it

samples from the raw input image to forecast the possible

candidate locations so as to confirm the scope of target

searching. An effective sample selection mechanism can

provide high-quality training samples which make the

tracker recovers from failure and estimates appearance

changes accurately. Hence, it is important to get more accu-

rate samples in motion model. We develop a collaborative

method based on image segmentation and salient region

detection to analyze the appearance samples, the former

is used to obtain more comprehensive scene information

and the latter is used to find more accurate target samples.

This method differs significantly from the existing motion

model, such as the sliding window, which is prone to drift-

ing in fast motion (FM) or large deformation (DEF) video.

Specifically, we employ simple linear iterative clustering

(SLIC) algorithm for image segmentation9 and exploit

frequency-tuned saliency analysis algorithm (FT) for sali-

ent region detection.10

Second, it is critical to enhance the model updater of a

tracker that adopts tracking-by-detection approach. Most of

the tracking methods update the observation model in each

frame, it reduces efficiency and more critical is that poor

tracking results can cause the classifier to be contaminated,

thus causing drift. Different from other tracking paradigms

that update model in a fixed manner such as updated every

two frames, we formulate a simple and quick method to

update observation model dynamically with image similar-

ity. It not only improves the tracking speed but also

increases the accuracy. We will introduce a perceptual hash

(pHash) algorithm11 in detail for image similarity.12

The overview of our approach is illustrated in Figure 1.

The original image is subjected to image segmentation pro-

cessing and salient region detection, respectively, in motion

model. Followed by cooperative learning, the processed

information will be sent to the tracking framework. After

getting the tracking result, the current scene and the esti-

mated target will be compared with their own recent stable

values to determine whether to update the classifier in

model updater.

In summary, our main contribution is to address the

traditional tracking problems by effectively ameliorating

the MMMU:

1. In order to make more rational use of the visual

properties of the image, image segmentation is used

to obtain more meaningful atomic regions in the

field of color; salient region detection is used to

describe human’s visual attention mechanism which

involves distance, color, intensity, and texture. We

use both methods to handle tracking scenes and tar-

gets in motion model thus achieving a more

balanced appearance for visual tracking.

2. We propose a novel method to determine whether

the estimated target is reliable in the time dimension

and make a decision whether to update the observa-

tion model by using the hash of image similarity.

Then, we have validated the two components separately

(CT Tracker13 with improved motion model and CF2

Tracker14 with improved model updater) and designed a

basic tracker named MMMU tracking. Experimental

results on OTB5015 show that the improved components

are valid and our basic tracker performs favorably against

most of the state-of-the-art methods.

Related work

Most trackers use statistical learning techniques to take

charge of constructing robust object descriptors and build-

ing effective mathematical models for target identifica-

tion.16–23 As estimated object position is converted into

labeled samples, it is hard to give the accurate estimation

of the object position. Wang et al. used an inverse sparse

representation formulation and a locally weighted distance

metric to propose a sparsity-based tracking algorithm.24

Hare et al.25 integrate the labeling positive and negative

samples procedure into the learner by using online kerne-

lized structured output support vector machine (SO-SVM;

Struck). Choi et al. exploited an arbitration algorithm

between a finite impulse response (FIR) filter and optical

flow by adaptive neuro-fuzzy inference system for tracking

research.26 And there are also many tracking algorithms27
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that focus on appearance and motion model definition to

deal with the complex scene and avoid drifting.

Compressed sensing theory is introduced into visual

object tracking by Zhang et al. CT extracts Haar-like fea-

tures in the compressed domain as the input characteristics to

the classifier. It aims to design an effective appearance

model and first compresses sample images of the foreground

target and the background using the same sparse measure-

ment matrix to efficiently extract the low-dimensional object

descriptors.13

In general, targets are chosen as the positive samples to

update the classifier, and low correlation samples may often

be included since they are not correct enough, which causes

the failure of the updating of the classifier.28 Therefore, sam-

ple selection is an important task for alleviating drift in the

motion model. Additionally, massive amounts of training

samples would hinder the online updating of the classifier

without an appropriate sample selection strategy. Liu et al.

design a sparsity-constrained sample selection strategy to

choose some representative support samples from a large

number of training samples on the updating stage.29 It is nec-

essary to integrate the samples contribution into the optimiza-

tion procedure when observing the appearance of the target.30

Most discriminative trackers apply continuous learning

strategy, where the observation model is updated rigorously

in every frame. Research results show that excessive update

strategy will lead to both lower frame rates and degradation

of robustness because of over-fitting in the recent

frames.31,32 So we refine the strategy of model updater

by analyzing the stability of scene.

Our approach

Different from most of the appearance-based detection

methods,33 we solve the robustness tracking problem by

improving the model updater and the motion model.

Motion model improvement

Image segmentation. In order to obtain a comprehensive

scene sample, a simple way is to gather the image scene

into several blocks according to a certain rule and then

select the appropriate sample on each block to ensure the

comprehensiveness of the sample set. We use image seg-

mentation to solve this problem.

Image segmentation process clusters pixels by the simi-

larity of their feature and divides the raw image into several

specific regions that may correspond to the tracked object.

Superpixel is a kind of image segmentation algorithm,

which provides a convenient primitive to compute local

image features. SLIC is a popular superpixel algorithm

which is fast, easy to use, and produces high-quality

segmentations.9

We segment the first frame into N superpixels. A color

histogram is extracted as the feature vector fi for each

superpixel spðiÞði ¼ 1; . . . ;NÞ. We choose mean shift to

Figure 1. The overview of our MMMU tracking. By improving the motion model, we employ image segmentation and salient region
detection methods for obtaining comprehensive and accurate sample set. The target samples are in the orange rectangle box, and the
scene samples are in the purple rectangle box. In the model update component, we use image similarity method to get very similar
frames (the green dots) and large difference frames (the red dots). By reducing the update of these frames, the tracking method can
achieve better speed and accuracy. MMMU: motion model and model updater.
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cluster these superpixels. We can obtain n sp ðn sp < NÞ dif-

ferent clusters and each cluster center fcðjÞðj ¼ 1; . . . ; nÞ by

employing mean shift algorithm on the feature pool

F ¼ ffiji ¼ 1; . . . ;Ng.
Each cluster clstðjÞðj ¼ 1; . . . ; n spÞ is the set that

includes its own cluster members ffijfi 2 clstðjÞg. There-

fore, each cluster is represented by fcðjÞ and clstðjÞ in the

feature space. The members of each cluster clstðjÞ corre-

spond to different superpixels in the image region. The

weight wðjÞðj ¼ 1; . . . ; n spÞ is assigned to each cluster cen-

ter fcðjÞ by exploiting a prior knowledge of the targets

bounding box in the first frame, which indicates the like-

lihood that superpixel members of clstðjÞ belong to the

target area. We count two scores for each cluster clstðjÞ:
sþðjÞ and s�ðjÞ.9 The former denotes the size of the over-

lapping area that all superpixel members of each cluster

clstðjÞ cover the bounding box, and accordingly the latter

denotes the size of all superpixel members outside the tar-

get area. The weight is normalized between �1 and 1 and

calculated as follows

wðjÞ ¼ sþðjÞ � s�ðjÞ
sþðjÞ þ s�ðjÞ ; 8j ¼ 1; . . . ; n sp ð1Þ

And positive values indicate high confidence to assign

fcðjÞ to target. To obtain a confidence map for the t th

frame, we first segment a surrounding region of the target

into n sp superpixels and then compute every superpixel

confidence value. The surrounding region of the target is

a square area, and its side length is h
ffiffiffi
S
p

, where h is the

constant parameter to control the size of this surrounding

area and S is the area size of the target. The confidence

value of a superpixel depends on two factors: the distance

between this superpixel and the cluster center in the feature

space, and the weight of the corresponding cluster center.9

CtðiÞ is the confidence value for superpixel i at the t th

frame.9 For 8i ¼ 1; . . . ; n sp, the confidence value of each

superpixel is computed as follows

CtðiÞ ¼ argmax1�j�nfejjftðiÞ�fcðjÞjj � wðjÞg ð2Þ

where ftðiÞ and fcðjÞ denote the feature vector of the i th

superpixel in the t th frame and the j th cluster center in

the first frame, respectively. Intuitively, the nearer the

feature of a superpixel ftðiÞ is close to the targets cluster

center fcðjÞ, the more likely this superpixel belongs to

the target area.

In the t th frame, each pixel shares the same confidence

value CtðiÞ. The surrounding area of the target is scanned

with a sliding window that has the same size as the bounding

box. At each position, the sum of the confidence value in this

sliding window is computed, which demonstrates evidence

for separating the target from the background. Then, the

location of sliding window with the maximum value

response will be selected as the new candidate location.9

From the visualization in Figure 2, the objects with the

same attributes in the scene are aggregated together, such

as lawns, shrubs, leaves, and “baby monster.” Thus, we can

select the comprehensive scene samples easily. Although

this method can obtain image regions with a certain com-

mon trait, and these regions can provide comprehensive

and reasonable scene samples, but it is not suitable for

dividing the target area. For example, it often mixes some

parts from the scene and target. Therefore, we need other

way to solve the target sample selection.

Salient region detection. Through the above analysis, the

superpixels result is not stable, it only provides a coarse

over-segmented image. So, we need an effective method to

focus on the target appearance. And, saliency is intention-

ally regarded as visual attention, and it is determined as the

local contrast of an image region with respect to its neigh-

borhood.10 The study of saliency detection comes from

biological research. It is utilized to interpret complex

scenes now. Scene analysis technique is integrated into

visual tracking pipeline, which will significantly improve

the performance, because it can separate the target from the

background using high-quality saliency maps.

Frequency-tuned saliency analysis algorithm (FT)

method can emphasize the largest salient objects and uni-

formly highlight whole salient regions.10 The frequency-

tuned saliency analysis is formulated as follows

Stðx; yÞ ¼ jjI� � Iohcðx; yÞjj ð3Þ

where I� is the mean image feature vector of color and

luminance, Iohcðx; yÞ is the corresponding image pixel

vector value in the Gaussian blurred version of the orig-

inal image (after testing, we used a 5� 5 separable

binomial kernel), jj � jj is the L2 norm, and the color

space is LAB.

As shown in Figure 3, we can intuitively observe that the

kite surfer’s pants receives the maximum response, and his

body gets the maximum response, and legs and torso also

have the high correlation. It basically constitutes the target.

It is worth noting that the spray and the water are well

distinguished, and these meaningful distinctions help us

to choose samples exactly.

After analyzing the two components, we need to com-

bine the motion model with the model updater.

Figure 2. Dragon baby processed by SLIC. SLIC: simple linear
iterative clustering.
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To select high-quality samples, we construct a target–

background confidence map according to the similarity

of superpixels in the surrounding region of the target

between new frame and the first frame. Then it is

refined by salient region detection result, and the confi-

dence map can facilitate tracker to distinguish the target

and the background accurately.34 Finally, to accelerate

the tracker, we control the model updater by judging the

stability of scene and computing image similarity

between frames.

As shown in Figure 2, the result of superpixels is not

stable. It only provides a coarse over-segmented image. To

get the likelihood that superpixel members whether belong

to the target area, we still need the prior knowledge of the

targets bounding box in the first frame. Figure 3 shows that

salient region detection provides the probability of each

pixel belonging to the foreground target, the result can be

used to refine confidence map, we know that each pixel of

the i th superpixel in the t th frame shares the same confi-

dence value CtðiÞ, and each pixel has a sailency value in

map St. Therefore, the fusion weight C mapt can be formu-

lated as follows

C mapt ¼ fw ctðiÞ þ ð1� fÞw st ð4Þ

where w ctðiÞ and w st are the min–max normalization of

CtðiÞ and St, respectively; here, we use a simple linear

fusion method. After several tests, we determined f ¼ 0:5.

Model updater improvement

Image similarity. We have integrated superpixels segmenta-

tion and salient region detection into motion model, and

this procedure improves the performance of the base

model. However, there is a computational overhead,

which will slow down the base model. And another obvi-

ous fact is that update classifier frame-by-frame not only

reduces the tracking speed but also may “pollute” the

classifier.

So we refine the strategy of model update to accelerate

our tracker, the classifier will only be updated when the

scene is not stable (background significantly changes).

We analyze the stability of scene by comparing the simi-

larity of incoming frame with the previous frames. Here,

we use a pHash algorithm11 to get the fingerprints of

images which has several properties: Images can be scaled

larger or smaller, have different aspect ratios, even minor

coloring differences.35

But, these images will still match similar images. The

fingerprint result will not vary as long as the overall struc-

ture of the image remains the same.35 The main steps of

pHash are summarized in algorithm 1, and we can compare

the difference of images by computing hamming distance

of their hash vector.

We use Basketball sequence to show the advantages of

pHash in achieving stable scenes and target. This sequence

mainly describes the Celtics player Rajon Rondo’s defense

process in an NBA game. As illustrated in Figure 4, Ron-

do’s entire defense process is divided into 11 scenes by his

movements such as turning, jogging, running, landing,

defense, and so on. Take scene 3 (about from frames

#140 to #180) in Figure 4 as an example, when the oppo-

nent took the ball and ready to attack, Rondo quickly ran

back to the defensive position. For easy observation, we

select the scene range which is twice the target size and has

the same center. We plot the Hamming distance of each

frame with its previous two frames by using pHash, as

shown in Figure 5; we find that the distribution of these

data is consistent with the analysis of the video sequence

changes in Figure 4. In particular, some data anomalies

such as frames #650, #678, and #707. Besides the short-

comings of the algorithm, we know that this phenomenon

occurs because the color and shape of the image have

undergone great changes, as illustrated in Figure 4

“specialness.”

Update strategy. Let ht represents the image’s hash vector

calculated by algorithm 1 in frame t, and pt denotes the

hamming distance of current frame with its previous two

frames, it is predicted by

pt ¼ jht �
ht�1 þ ht�2

2
j; t � 3 ð5Þ

Algorithm 1. pHash algorithm.

1. Resize the input image to 32 � 32;
2. Reduce the image to grayscale;
3. Separate the image into a collection of frequencies and scalars;
4. Get the lowest frequencies that just keep the top-left 8� 8 of

the above output;
5. Calculate the average of the output in step 4, and set the 64

hash bits by this strategy: If the value is less than the average,
the hash bits of the corresponding position will be set to 0,
otherwise it is set to 1;

6. Construct the 64 bits into a vector.

Figure 3. After processing by saliency analysis algorithm, the
target becomes more pronounced. And it is easier to obtain
accurate target samples.
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Figure 5. Hamming distance of each frame’s scene with its previous two frames in Basketball sequence.

Figure 4. Several major changes to the target in Basketball sequence.

Figure 6. The success plots and precision plots for our improved CT and CT (without image segmentation, salient region detection,
and image similarity).
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It is worth noting that when t < 3, pt is meaningless.

Based on this, we can define p tt and p ts, respectively,

which is used to represent the hamming distance of the

target and the scene. Then, we define the threshold fc, and

when it has a value of 1, the classifier updates, and when it

has a value of 0, the classifier pauses the update. Our

Figure 7. The success plots (left column) and precision plots (right column) between our improved CT tracker and some other classic
trackers.

Xue et al. 7



update strategy is based on the facts as follows: First, if the

images are sufficiently similar, we do not make changes;

second, if the difference between images is particularly

large, we still stop updating the classifier. So, we set the

update strategy as follows

� when 1 � t < 3, fc ¼ 1;

� when 3 � t < 5

fc ¼

d � p tt � e
1 &

d � p ts � e
0 otherwise

8>>><
>>>:

ð6Þ

when 5 � t

fc ¼

d � p tt � min e;

Xt

i¼3

ptt

t � 3

8>>><
>>>:

9>>>=
>>>;

1 &

d � p ts � min e;

Xt

i¼3

pts

t � 3

8>>><
>>>:

9>>>=
>>>;

0 otherwise

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ

where e is a threshold for the similarity between images and

d is a threshold for the difference between images. Based

on the above strategy, we reduce the update of very similar

frames to achieve faster-tracking speed and avoid updating

the frame with very large difference to ensure that the

classifier will not be mistakenly trained. As a result, our

strategy can reduce the loss of target drift.

Tracking framework

Basic tracker MMMU. We build our tracking framework based

on the works of Wang et al.8 We also divide the tracking

framework into five parts: motion model, model updater,

feature extractor, ensemble post-processor, and observation

model.8 We have already elaborated on MMMU. As for the

feature extractor, we choose (HOG þ Raw Color) and this

feature representation simply concatenates the Histogram of

Oriented Gradient (HOG) and raw color features. In ensemble

post-processor section, we use Online Trajectory

Optimization methods, which is from the study by Bailer

et al.36 Our observation model is inspired by Struck25 which

exploits SO-SVM.

We define an arbitrary sample s as follows in frame t:

s ¼ ðx; y; rÞT
, where the coordinate points of the tracking

rectangle are denoted by ðx; yÞT
and its scale is r. Unlike

the maximum likelihood FIR filter proposed by Pak et al.37

Although their approach to obtain the filter by maximizing

the likelihood function is innovative, we think a linear

model F can produce higher scores to samples in our

framework. Here,
_

sj is used to estimate the state of the

target

_

sj ¼ arg max
s

Fðt; sÞ ¼ hw;fðt; sÞi ð8Þ

where fðt; sÞ represents the feature map of sample s, and w

is the appearance parameter. We want the target score

Figure 9. The success plots of OPE (top row) and the area under
receiver operating characteristic curve (AUC) scores over 11
attributes (bottom row) made by improved CF2 tracker (model
updater) and CF2 on OTB50. OPE: one-pass evaluation.

Figure 10. Under the same CPU conditions, the MMMU and occ
aware tracker operating speed comparison.

Figure 8. Under the same GPU conditions, the CF2 with
improved model updater (CF2 with IMU) and CF2 operating
speed comparison.
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hw;fðt; _

sjÞi to be higher than others. Assuming that the

minimum margin of this difference is Dð _

sj; sÞ. At this

point, we define the loss term as

LðwÞ ¼
X

j

max
s6¼_

sj

Dð
_

sj; sÞ � w � dfjðt; sÞ
" #

þ
ð9Þ

where dfjðt; sÞ ¼ fðt; _

sjÞ � fðt; sÞ, and we define Dð _

sj; sÞ
to represent the structural loss which can rescale the margin

of each sample by the bounding box overlap ratio

Dð _sj; sÞ ¼ 1� Areað _sj \ sÞ
Areað_sj [ sÞ ð10Þ
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Success plots of OPE - occlusion (27)
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Success plots of OPE - out-of-plane rotation (37)
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Success plots of OPE - scale variation (27)

MMMU [0.565]

DSST [0.532]

SCM [0.510]

ASLA [0.442]

Struck [0.432]

KCF [0.423]

TLD [0.411]

VTD [0.400]

VTS [0.393]

CXT [0.380]

Figure 11. Success plots of OPE for MMMU and top 10 classic trackers in OTB50. In particular, we present success plots for 11
attributes. OPE: one-pass evaluation; MMMU: motion model and model updater.
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Therefore, the optimal state
_

sj is learned by the single

objective function

min
w

1

2
jjwjj22 þ CLðwÞ ð11Þ

where C is scalar parameter and jjwjj22 is the regularized

term.

Experiment

Data Sets and evaluation methodology

We validate our methods on OTB50, which covers com-

mon challenges, such as illumination variation, scale varia-

tion (SV), OCC, DEF, motion blur, FM, in-plane rotation

(IPR), out-plane rotation, out-of-view, background clutters,
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Precision plots of OPE - deformation (17)
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Precision plots of OPE - in-plane rotation (29)
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Precision plots of OPE - occlusion (27)
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Precision plots of OPE - out-of-plane rotation (37)
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Figure 12. Precision plots of OPE for MMMU and top 10 classic trackers in OTB50. In particular, we present precision plots for 11
attributes. OPE: one-pass evaluation; MMMU: motion model and model updater.
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and low resolution (LR).15 To better evaluate and analyze

our methods, we mainly use this evaluation: one-pass eva-

luation (OPE).

Components test

Comparison of the CT with improved motion model. As a

classic tracking method, CT13 exhibits poor performance in

tracking performance because of simple feature representa-

tion and simple motion model. Therefore, CT is suitable for

verifying the effectiveness of our improved motion model. To

evaluate the impact of improved motion model, we compare

our model with the standard CT on OTB5015 and get OPE to

verify the performance. The results shown in Figure 6 confirm

that our method significantly outperforms the baseline tracker

CT in OPE protocol, and the score has increased by about

50%. And we only reduced by 1.836 frames/s in MATLAB

R2014b on a PC with Intel i5 CPU 2.6 GHz.

In addition, we compare our tracker with seven tracking

algorithms on OTB50, and these trackers are proposed almost

the same period with CT. They are CSK,38 SCM,39 Struck,25

ASLA,40 TLD,41 MIL,42 and CT. The results in Figure 7 also

show that our method almost get the best performance.

Comparison of the CF2 with improved model updater. In order

to verify the validity of the improved model update, we

employ CF2 tracker,14 which exploits rich feature hierarchies

of Convolutional Neural Networks (CNNs) as the experimen-

tal object. As a result of the richer feature, CF2 has perfect

tracking performance, but also because it uses CNNs to make

CF2 tracker relatively poor. Therefore, we optimize CF2 with

improved model updater and name the new tracker CF2 with

Improved Model Updater (IMU). In addition, after repeated

tests from a large-scale data set, we define e ¼ 3 and d ¼ 15.

We compare the speed and accuracy of the two trackers.

As we known, CF2 is an excellent performance tracker, but

runs slowly. We experimented on the Graphics Processing

Unit (GPU) server, and their respective running speed is

shown in Figure 8. Experiments show that CF2 with

improved model updater in the running speed has indeed

been significantly improved. And even more gratifying is

that in addition to speed up 1/3, its tracking effect has also

been improved to some extent. As shown in Figure 9, we

can see that the improved tracker has improved on 8 attri-

butes (there are 11 attributes in total). Experiments show

that our approach not only reduces the number of classifier

updates but also avoids the classifier incorrectly updating.

Basic tracker test

Our basic tracker MMMU will be tested in MATLAB on a

2.6-GHz Intel Core i5 CPU with 8-GB memory by

Table 1. Compare with occ_aware tracker in success and
precision plots of OPE.a

Success plots of OPE Precision plots of OPE

MMMU occ_aware MMMU occ_aware

IV 0.578 0.566 0.78 0.812
OPR 0.603 0.591 0.877 0.856
SV 0.565 0.563 0.803 0.81
OCC 0.622 0.59 0.849 0.855
DEF 0.684 0.628 0.927 0.922
MB 0.589 0.538 0.736 0.739
FM 0.612 0.507 0.791 0.691
IPR 0.564 0.584 0.803 0.851
OV 0.626 0.524 0.749 0.67
BC 0.582 0.579 0.77 0.832
LR 0.433 0.525 0.533 0.661

OPE: one-pass evaluation; MMMU: motion model and model updater; IV:
illumination variation; OPR: out-plane rotation; SV: scale variation; OCC:
occlusion; DEF: deformation; MB: motion blur; FM: fast motion; IPR: in-
plane rotation; OV: out-of-view; BC: background clutter; LR: low
resolution.
aThe best results are denoted in italics.
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Figure 13. Success & precision plots of OPE for MMMU tracker and occ aware tracker in OTB 50.
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quantitative comparison and qualitative comparison. For

quantitative comparison, we have chosen some representa-

tive trackers, such as Struck,25 ASLA,40 SCM,39 TLD,43

CXT,44 VTD,45 VTS,46 LSK,47 CSK,48 DFT,49 MTT,50

OAB,51 MIL,42 CPF,52 KCF,53 and occ aware.54 For qua-

litative comparison, we choose seven trackers, including

CT,13 TLD,43 KCF,53 MIL,42 C-COT,55 MUSTer,56 and

DSST.57 All tests were performed on TB50.15

Figure 14. Tracking frames results on several typical examples. (a) Deer, (b) Jumping, (c) CarScale, and (d) Freeman3.
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Quantitative comparison. As shown in Figure 11, Our tracker

is ahead of all other tracking methods on all attributes in

OPE success plots, especially in this DEF attribute,

MMMU leads the best performance of KCF approximately

29.545%. The results from Figure 12 show that MMMU is

significantly ahead of the opponents in 10 attributes except

LR in OPE precision plots and just reduced by 2.201%.

Therefore, as shown in Figures 11(a) and 12(a), our

MMMU has shown a greater advantage both in the success

and precision plots of OPE protocol.

In particular, we compare our MMMU to occ_aware

tracker54 which is a superior performance tracking algo-

rithm. As shown in Figure 13, the two methods have their

own advantages in the OPE protocol: in the precision plots

of Figure 13(a), occ_aware is better than MMMU; in the

success plots of Figure 13(b), MMMU has better perfor-

mance. As shown in Table 1, our MMMU is superior to

occ_aware in nine attributes of the success plots and four

attributes of the precision plots. Therefore, MMMU is

slightly dominant than occ_aware in OPE protocol.

However, in terms of running speed, MMMU occupy an

absolute advantage, as shown in Figure 10; MMMU is 44

times faster than occ_aware in the same platform.

Qualitative comparison. FM is a typical problem in tracking

research, such as Deer sequence in Figure 14(a), CT loses its

target since frame #0007, TLD drifts completely since frame

#0014, KCF incorrectly locates the target since frame #0035,

and MIL also loses the target after the next several frames.

Because of the rapid movement, the target will be far away

from current position, but the range of current frame samples

selection is fixed (generally rectangular or circular areas

centered on the target). These samples, especially nontarget

samples, may not represent the next frame target and its

surrounding appearance; therefore, the samples of the cur-

rent frame selected by this method are not suitable for train-

ing the classifier. This is the main reason why all other four

trackers fail. Our method does not fix the sample selection

region; hence, MMMU in this video series has good robust-

ness. The same situation appears in Jumping sequence

shown in Figure 14(b), CT and KCF lose their targets since

frame #0027 and frame #0096, respectively.

In OTB50, there are many moving car videos that involve

SVs. We choose one of the typical examples for analysis.

CarScale video is challenging for scale variation and clut-

tered background, as shown in Figure 14(c).15 From frames

#0001 to #0085, each tracker has a good performance

because the scale of the car changes very little. After frame

#86, due to the SV, CT, TLD, and MIL have an unstable

track. When a tree appears in front of the camera in frame

#0155, OCC directly leads to CT and TLD failure. In frame

#242, DSST partly drift. Our MMMU is still excellent.

Face tracking is a common tracking problem, SV, IPR,

and out-of-plane rotation are usually the characteristics of

this problem. From the results in Figure 14(d), Freeman3

sequence, we find that MIL and CT have bad track from

frame #47. In frame #102, when the target turns around,

MIL tracks an erroneous target. In frame #437, KCF loses

its target because of SV and IPR. Finally, TLD and MIL

also retracks to the target, but MMMU maintains the cor-

rect trace all the time.

Conclusion

In this article, we propose efficient methods for conventional

visual tracking in MMMU. Our method more comprehen-

sively considers the visual-spatial attention factors in the

appearance template, such as color, distance, intensity, and

texture. Through cooperation between salient region detec-

tion and image segmentation, we get an effective motion

model which has the right balance between target processing

and scene analysis. Inspired by the biological memory sys-

tem, we further develop an effective online model updater

using fast image similarity to measure the rationality of the

estimated target and current scene in the time dimension for

reducing the frequency of the model update and the prob-

ability of classifier error updates. The experimental results

prove that the MMMU performs favorably against most

trackers in terms of efficiency and accuracy.
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52. Pérez P, Hue C, Vermaak J, et al. Color-based probabilistic

tracking. In: European conference on computer vision, Berlin

Heidelberg: Springer, 2002, pp. 661–675.

53. Henriques JF, Caseiro R, Martins P, et al. High-speed track-

ing with kernelized correlation filters. IEEE Trans Pattern

Anal Mach Intell 2015; 37(3): 583–596.

54. Sun C, Wang D and Lu H. Occlusion-aware fragment-based

tracking with spatial-temporal consistency. IEEE Trans

Image Process 2016; 25(8): 3814–3825.

55. Danelljan M, Robinson A, Khan FS, et al. Beyond correlation

filters: learning continuous convolution operators for visual

tracking. In: European conference on computer vision. Cham:

Springer, 2011, pp. 472–488.

56. Hong Z, Chen Z, Wang C, et al. Multi-store tracker (muster):

a cognitive psychology inspired approach to object tracking.

In: Proceedings of the IEEE conference on computer vision

and pattern recognition. pp. 749–758.
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