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Shadow verification–based waterline
detection for unmanned surface vehicles
deployed in complicated
natural environment

Yangjie Wei1 and Yuqing He2

Abstract
Boundary separation of operational regions would be helpful for unmanned surface vehicles deployed in dynamic outdoor
environments. However, the feasibility and accuracy of current obstacle avoidance methods based on conventional optical
images are comparatively poor for unmanned surface vehicle applications, with complicated natural illumination as one of
the main sources of error. In this article, a new optical waterline detection method is proposed by combining shadow
verification and global optimization (energy minimization). The method is then validated using an actual unmanned surface
vehicle operating in outdoor environments. First, the basic principles of intrinsic image are introduced and then employed
to evaluate the threshold for background segmentation so that the influence of complicated intensity distribution on the
original image is reduced. The properties of different types of shadows are compared, and the basic principles of shadow
verification are used to classify the different object regions. Subsequently, the intensity contrast between the shadow and
non-shadow regions is used to measure the waterline position based on the relationship between the illumination and the
shadow formation. Furthermore, the waterline detection problem is transformed into a problem involving the optimi-
zation of energy (minimization) described using differential equations. Finally, experiments are conducted with a series of
practical images captured by the unmanned surface vehicle. The experimental results demonstrate the feasibility and
robustness of the proposed method.
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Introduction

Boundary detection of the sailing region for unmanned

surface vehicles (USVs) would facilitate automatic naviga-

tion and obstacle avoidance. However, it is difficult for

current optical image–based automation methods to pro-

vide autonomous and accurate feedback on the position

of the waterline to USVs when they traverse complicated

outdoor areas.1–3 This is largely because of the inability of

the methods to rapidly and precisely detect the waterline of

the sailing area in various complex environments.4
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To detect the waterline, laser range finders are one of the

most widely used instruments those emit a laser beam to

the bank, receive the reflected laser beam, and calculate

the position of the waterline based on the determination

time from transmitting to receiving. Laser range finders

have lightweight and small volume; their operation is fast

and accurate. However, their measurement data are sparse

and the measurement distance is limit. Besides, they are

expensive. Compared to laser ranger finders, optical sen-

sors have some marvelous advantages, such as direct and

real-time imaging capability, easy to understand, and

cheap. First, the basic principles of coastline detection

based on images captured using a synthetic aperture radar

(SAR), which is typically mounted on an aircraft or space-

craft,5–9 are explained for the waterline detection of USVs,

because the waterline and the coastline exhibit similar char-

acteristics in terms of the shape, position, and intensity.

These methods are widely used in marine geology because

the field of view of the SAR system is considerable, and

images can be captured day or night, even in stormy

weather and through clouds. However, the resolution

of SAR is relatively low. Thus, the SAR equipped on

a USV system is unsuitable for precise modeling at short

ranges. Second, horizon extraction methods based on

imaging sensors, such as cameras, are used for range-

based vision for navigation and pose estimation,10–12

such as separation, and the sky regions and non-sky

regions for micro air vehicles and unmanned aerial vehi-

cles. However, it is not enough to use vision-based tech-

niques applied to horizon extraction for the navigation

and obstacle avoidance of USVs. This is because the

horizon is considered as a line with the high likelihood

of separating the ground from the sky, rather than separ-

ating the ground from the water, which acts as a reflec-

tor, and thus depends on the proximity of the vehicles to

the shorelines and the illumination conditions to create

different scenarios for segmentation in terms of textures

or object sizes,13–19 especially when the illumination is

bad and large regions of shadows of the shore scenes

distribute on the optical image, it is difficult to precisely

segment the waterline because shadows can influence

both the pixel intensity and the textures.

In an outdoor setting, light sources can be divided into

two types: direct sunlight and diffuse skylight. Shadows are

formed when direct light is partially or completely blocked.

Shadows can be classified into self-shadow, which is the

part of a subject that is not illuminated by direct light, and

cast shadow, formed by the projection of a subject onto

other surfaces. When direct light is completely blocked,

the cast shadow is termed as the umbra shadow, whereas

the cast shadow is termed as the penumbra shadow when

direct light is only partially blocked. The illumination on

non-shadow region is daylight (direct sunlight and diffused

skylight), on penumbra is skylight and part of sunlight, and

on umbra is only skylight. Since skylight is a component of

daylight, pixel intensity in shadow must be lower than that

in non-shadow background. Due to this property, shadows

bring some undesired problems to threshold-based segmen-

tation and detection.

In this article, an optical waterline detection method

is proposed combining shadow verification and energy

minimization to realize automatic navigation and obsta-

cle avoidance for USVs. Unlike the existing waterline

detection methods used in USVs, the proposed method

is novel in that the analysis is conducted considering

the illumination properties of near-range images cap-

tured by the USV, and the intensity distribution result-

ing from different types of shadows is used to measure

the waterlines, rather than removing the shadow as

observed in conventional edge detection methods. First,

the proposed method uses an intrinsic grayscale image

to evaluate the segmental threshold of background seg-

mentation, including the sky and water surface. Subse-

quently, the proposed method is used to evaluate the

waterline information of the dynamic image sequence

with mathematical energy minimization using differen-

tial equations when the USV is operating in an outdoor

environment. In the proposed detection method, differ-

ent types of shadows are employed, and the intensity

contrast between the shadow and non-shadow regions

and the energy required to separate the different regions

are considered. The proposed method is more robust

and practical compared to the conventional boundary

line methods based on image intensity or structures.

Furthermore, the proposed method considers all types

of shadows resulting from different capture times and

positions in the outdoor environment. The proposed

method can be potentially used for practical applica-

tions in USVs.

The remainder of this article is organized as follows.

The second section introduces the basic principles of intrin-

sic image transformation from a single image containing

shadows. The third section presents the proposed position

measurement and waterline detection algorithm, which are

based on shadow verification and energy minimization

with respect to optical images. The fourth section presents

the experimental results of the proposed method. The fifth

section presents the conclusions.

Intrinsic image principle

For an outdoor image captured by USVs, except for the

object regions where the waterline may exist, the back-

ground areas including the sky area and some water areas

will increase the computing burden of the proposed water-

line detection method. To segment the background areas

precisely, in this article, an intrinsic image is introduced to

transform an red-green-blue (RGB) image into a gray

image. The principle of the intrinsic image transformation

is introduced in the following.
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First, according to the linear model inside and outside

the shadows in the study by Tian et al.,20 the pixel intensity

in a non-shadow area is

TH ¼ aH tH þ bH ð1Þ

where tH represents the pixel intensity in the shadow area;

H represents the channel of an RGB image, in the shadow

area, H can be replaced by r, g, or b, and in the non-shadow

area, it can be replaced by R, G, or B; aH and bH represent

the parameters of the linear relationship and the value of

them is related to the spectral power distribution.

We can write equation (1) as

TH �
bH

1 � aH

¼ aH tH �
bH

1 � aH

� �
ð2Þ

By taking logarithms of both sides of equation (2) and

separating the RGB channels, we can arrive to

log R � b1

1 � a1

0
@
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Then, we can conclude

log R � b1

1 � a1

0
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1
A þ log G � b2
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ð4Þ

where

h ¼ logða1Þ
logða2Þ

þ logða2Þ
logða3Þ

From equation (4), we could find that the pixel intensities in

the shadow and non-shadow regions are equal if we subtract the

pixel intensities in R, G, and B channel with b1/(1� a1), b2/(1

�a2), andb3/(1�a3), respectively, and take logarithms. That

means the intensity difference between a shadow region and a

non-shadow region could be eliminated in an intrinsic image;

therefore, with the help of this intrinsic transformation, the

influence of shadows in the background segmentation could

be reduced. Furthermore, the logarithmic computation could

compress the dynamic intensity range and overcome the prob-

lem of over-segmentation of the background area.

Waterline detection based on
shadow verification

The algorithm employed in the proposed method can be

divided into two steps: image preprocessing and waterline

detection. We explain these procedures and their relation-

ships in detail in the following sections.

Image preprocessing

Intrinsic transformation. To improve the precision and reduce

the running time of the proposed waterline detection

method, it is reasonable to remove the background area,

such as the sky. Due to intensity variation resulted from

different shadows, we conduct the intrinsic transformation

before background segmentation.

Here, we use equation (4) to transform the original

image into an intrinsic image. Figure 2 shows the intrinsic

image of the original image shown in Figure 1. Here, we

choose b1 � 25, b2 � 15, and b3 � 8; a1 � 2.2, a2 � 2.0,

and a3 � 1.7 according to the parameter calculation pro-

cess in the study by Tian et al.20 Therefore, b1/(1 � a1) �
�20, b2/(1 � a2) � �15, b3/(1�a3) � �11, and h � 2.

Equation (4) could be rewritten as

log R � b1

1 � a1

0
@

1
A þ log G � b2

1 � a2

0
@

1
A � h � log B � b3

1 � a3

0
@

1
A

� log
ðR þ 20Þ
ðB þ 11Þ �

ðG þ 15Þ
ðB þ 11Þ

0
@

1
A ¼ log

ðr þ 20Þ
ðb þ 11Þ �

ðg þ 15Þ
ðb þ 11Þ

0
@

1
A

ð5Þ
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From equation (5), we could find that both in the shadow

regions and the non-shadow regions, the pixel intensities of

the intrinsic image are mainly determined by the intensity

ratios of the R channel to the B channel and the G channel

to the B channel. The regions whose color is close to red or

green will become bright, while the regions with color

close to blue will become dark in the intrinsic image; there-

fore, the intrinsic transformation is appropriate for separa-

tion of the sky area and the bright water area. Besides, due

to the logarithm calculation, the little color difference

among the trees has been eliminated; therefore, the prob-

lems resulted from uneven intensity distribution will be

alleviated, and the accuracy of the background segmenta-

tion in the following step will be improved.

Background segmentation. To evaluate the segmentation

threshold, we first generated a histogram for the intrinsic

image, shown in Figure 2, and analyzed its intensity prop-

erty considering that the intensity distribution of the

intrinsic image is uniform. Figure 3 shows the histogram

of the intrinsic image. The horizontal axis represents the

intensity varying from 0 to 255; and the vertical axis rep-

resents the intensity in terms of pixels. In Figure 3, there

are two peaks in the range 0–255 and an evident gap

between the peaks. The gap represents the threshold range

from which a threshold can be chosen to divide the orig-

inal image into two subareas, as shown in Figure 4. In

practice, the segmentation threshold can be automatically
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Figure 3. Histogram of the intrinsic image in Figure 2.

Figure 2. The image after the intrinsic transformation of Figure 1.

Figure 1. Original RGB image full of different types of dark shadows.
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chosen through the trough detection method from the his-

togram curve, as shown in Figure 3, in which there is a

triangle on the curve.

Waterline detection with shadow verification and
mathematical optimization

In Figure 4, we could find that self-shadows and cast sha-

dows are distributed in the result image after preprocessing.

The self-shadows are largely part of the trees those are not

illuminated by direct light, and the cast shadows on the

water surface are projection of the trees on the water bank;

the upper half of the boundary line of the cast shadow

represents the waterline position. However, it is difficult

to detect the waterline using intensity or texture analysis,

because its sides have similar characteristics as follows.

The self-shadow is distributed nonuniformly in the

region above the waterline, which is denoted as Ru in this

article. Apart from a few small areas with self-shadows,

most of the area denoted by Ru does not contain shadows

and correspond to images of the scenes on the water bank.

The cast shadow, including penumbra and umbra, is

formed entirely from the projection of the scenes on the

water surface, and the region below the waterline, termed

Rd, contains only cast shadows.

As shown in the study by Xu et al. for an RGB image,15

the pixel intensity of the non-shadow region is higher than

that of the shadow region. In the following, a waterline

detection method is proposed to separate Rd and Ru on the

basis of the difference in the theoretical pixel intensity

between the shadow and the non-shadow regions.

First, according to the shadow verification principles in

the study by Tian et al.,20 a real shadow region can be

judged by

Yes: if ½�I sNSR
�I sNSG

�I sNSB� � ½�I sSR
�I sSG

�I sSB� � ½e1 � R e2 � R�
No: if ½�I sNSR

�I sNSG
�I sNSB� � ½�I sSR

�I sSG
�I sSB�⊄ ½e1 � R e2 � R�

�

ð6Þ

where [IsR IsG IsB] represents the vector of a pixel intensity

in Is, [IsNSR IsNSG IsNSB] represents the pixel intensity vector

in the non-shadow region, [IsSR IsSG IsSB] represents the

pixel intensity vector in the shadow region, R ¼ [(b1 �
1)�r þ a1, (b2 � 1)�g þ a2, (b3 � 1)�b þ a3], and e1 and

e2 represent the empirical coefficients.

From equation (6), we could find that there is an

intensity difference between a shadow region and a cor-

responding non-shadow region. Based on equation (6)

and the intensity property of shadow regions, it is clear

that the average intensity of Ru is greater than that of Rd,

and when the average intensity difference between them

is maximal, the separation line between Ru and Rd is the

desired waterline. The measurement process of the opti-

mal position where the intensity difference of both sides

is maximal can be theoretically expressed with the cost

energy.

In practice, it is reasonable to assume that the waterline

could be approximated by a straight line. Then, based on

the previous theoretical analysis, the waterline detection in

this article can be realized by the mathematical model of

the cost energy

E ¼
ð ð

y> axþ b

�
I sðx; yÞ � c1

�2

dx dy

þ
ð ð

y< axþ b

�
I sðx; yÞ � c2

�
2 dx dy ð7Þ

where Is(x, y) represents the intensity value of the pixel

(x, y) in the segmented image, a and b represent the para-

meters of the straight waterline y ¼ ax þ b, and c1 and c2

represent the average intensity of the regions on two sides

of the waterline.

For simplification, introducing function H to replace the

judging condition in equation (7)

HðzÞ ¼
1; if z � 0

0; if z < 0

�
ð8Þ

Figure 4. Result after background segmentation with the intrinsic image in Figure 2 and its histogram in Figure 3.
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Then equation (7) becomes

E ¼
ð ð
O

�
I sðx; yÞ � c1

�2

Hðy � ax � bÞ dx dy

þ
ð ð
O

�
I sðx; yÞ � c2

�2

Hðax þ b � yÞ dx dy

ð9Þ

When E is equal to the minimum, the following require-

ments should be fulfilled

@E

@a
¼ 0;

@E

@b
¼ 0

@E

@c1

¼ 0;
@E

@c2

¼ 0

8>>>><
>>>>:

ð10Þ

Introducing a mute variable t, a(t) and b(t) are both

varying with t. Then, combining equations (9) and (10), the

following equations can be obtained

daðtÞ
dt

¼ �
ðw
0

�
I s

�
x; aðtÞ þ b

�
� c1

�2

x dx

þ
ðw
0

�
I s

�
x; aðtÞ þ b

�
� c2

�2

x dx

dbðtÞ
dt
¼ �

ðw
0

�
I s

�
x; aþ bðtÞ

�
� c1

�2

dx

þ
ðw
0

�
I s

�
x; a þ bðtÞ

�
� c2

�2

dx

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð11Þ

where w represents the width of I, c1 and c2 can be denoted

as

c1

�
aðtÞ; bðtÞ

�
¼

ð ð
O

I s � H
�

y � aðtÞx � bðtÞ
�

dx dy

ð ð
O

H
�

y � aðtÞx � bðtÞ
�

dx dy

ð12Þ

c2

�
aðtÞ; bðtÞ

�
¼

ð ð
O

I s � H
�

aðtÞx þ bðtÞ � y
�

dx dy

ð ð
O

H
�

aðtÞx þ bðtÞ � y
�

dx dy

ð13Þ

If T > 0, d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aðtÞ

�2

þ
�

bðtÞ
�2

r !,
dt ¼ 0. Then t�

T,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aðtÞ

�2

þ
�

bðtÞ
�2

r
¼ const.

Therefore, the straight line at time T is the detected

waterline

LðTÞ ¼ aðTÞx þ bðTÞ ð14Þ

In order to solve the waterline detection problem, it is

necessary to introduce an iteration algorithm, which can

start from the initial separation line y ¼ a0x þ b0 until the

cost energy in equation (9) is less than the threshold value.

Following are the steps involved in the waterline detec-

tion algorithm, obtained by combining the supplements

outlined earlier:

1. initializing the optimization parameters, including

the optimization threshold e and the iteration steps

of a and b, denoted by at and bt, respectively;

2. transforming input colorful image I into a gray

intrinsic image using equation (4);

3. segmenting the background region using an adaptive

segmentation threshold from the histogram analysis;

4. initializing the waterline with a straight line L0 ¼
a0x þ b0;

5. computing equations (12) and (13); and

6. computing equation (9). Ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðanþ 1 � anÞ2 þ ðbnþ 1 � bnÞ2

q����
���� � e, the

algorithm stops; otherwise computing the following

equation with at and bt and returning to step (5).

@L

@t
¼ � E0ðLÞ ð15Þ

The flow diagram of our algorithm is shown in Figure 5.

Experimental results

In our operation test experiments, the video images cap-

tured from a forward facing camera onboard an actual USV

system operating on an outdoor water surface, shown in

Figure 6, and the VS250DH camera is from the MicroVi-

sion Company (Redmond, Washington, USA). A series of

optical images have been taken from the onboarded camera

at different time of days under different conditions, and the

proposed method is then used to measure and detect the

waterlines in these optical images. The parameters of our

USV system and the vision sensor used on this USV system

are listed in Tables 1 and 2, respectively.

Experiment under different conditions

In this section, the waterlines of three groups of optical images

captured under different conditions were detected with our

method to verify the precision and robustness of our method.

In experiment I, we used the optical images those were

captured at different time of a day when the USV was

operating in a natural lake outside the city. Figures 7(a),

8(a), and 9(a) are the original images captured by our USV,

6 International Journal of Advanced Robotic Systems



and Figures 7(b), 8(b), and 9(b) are the detection results

obtained with our waterline detection method. Figure 7(a)

shows an image captured near sunset; therefore, almost all

the sunlight is blocked by the scenes on the water bank, and

the illumination is so bad that the entire image is very dark.

In Figure 8(a), the diffused sunlight is uniformly distributed

on the image, and the color of the image is influenced by

the faint halos, especially in the area near the sun.

Furthermore, there is a large area of dark shadow on the

water surface, and the self-shadow of the tree leaves is also

very heavy. In addition, the color of the trees and cast

shadow projected onto the water surface is too dark to

separate them with the naked eyes. In Figure 9(a), there

is a boat on the surface. From Figures 7(b), 8(b), and 9(b),

we can conclude that the detection result is not influenced

by the dark shadows or the faint halos in the original

images; even the color of the water area is highly influ-

enced by the light reflection.

In experiment II, we used the optical images those were

captured at different time of a day when the USV was

operating in a man-made lake in a park where the back-

ground is more complex than that of experiment I. Figures

10(a), 11(a), and 12(a) are the original images captured by

our USV, and Figures 10(b), 11(b), and 12(b) are the

detection results obtained with our waterline detection

method. The tourists, some small boats, and a telegraph

pole are all in Figure 10(a), therefore the color of the

image is complex; there is a very bright area near the

camera in Figure 11(a) because of the light reflection,

while the other regions are very dark and there is an arch

bridge far away from the USV system; and in Figure

12(a), the USV was operating near the river guardrails.

Furthermore, the image was captured in the backlighting

of the camera. From Figures 10(b), 11(b), and 12(b), we

could find that the detection result is not influenced by the

light reflections and the complex background properties in

the original images.

In experiment III, we used the optical images captured

when the USV was operating in a river inside a city.

Figures 13(a) and 14(a) are the original images captured

by our USV, and Figures 13(b) and 14(b) are the detection

results obtained with our waterline detection method. In

these captured images, the objects include some high-rise

buildings, bridges, and their shadows, as well as light

reflections. Especially in Figure 13(b), the shadows and

the reflections both exist on the water surface, and the

intensity of the water surface flickers. From Figures

13(b) and 14(b), it can be seen that our detection method

can detect the waterlines precisely, no matter what shapes

of these buildings are and how far these buildings to our

USV system are.

Table 1. Parameters of the USV in our experiment.

Length Width Height Max velocity Payload

2800 mm 700 mm 370 mm 35 km/h 70 kg

USV: unmanned surface vehicle.

Figure 6. The USV system in our experiments. USV: unmanned
surface vehicle.

Figure 5. The flow diagram of our method.

Table 2. Specification of vision sensor (VS250DH).

Specification Value

Version vs-250DH
Focal length 20 mm
Aperture F1.6
Imaging plane size 1/300

Resolution 704 	 288 pixels
Angle of view 49.3


Field of view 0.51 m
Power DC-12V

Wei and He 7



Figure 9. Waterline detection result for cast shadow colors close to colors of the cast objects on the bank. (a) The original image
before waterline detection and (b) The image after waterline detection.

Figure 8. Waterline detection for image captured at earlier time of a day than that of Figure 7(a). (a) The original image before
waterline detection and (b) The image after waterline detection.

Figure 10. Waterline detection for image with complex background. (a)The original image before waterline detection and (b)The
image after waterline detection.

Figure 7. Waterline detection for image captured near sunset. (a) The original image captured near sunset and (b) The image after
waterline detection.
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To evaluate the precision of our method quantitatively,

we manually detected the waterlines in Figures 7(a) and

9(a) point-to-point and defined the manually detected result

as the ground truth, because it is difficult to obtain the true

waterlines in real-time images. The manual detection result

is shown in Figure 15. The green lines in Figure 15(a) and

(b) are the true waterlines of Figures 7(a) and 9(a), respec-

tively. Subsequently, the average error between the detec-

tion result of our method and the ground truth was

calculated with the following equation

e ¼

Xn

i¼ 1

jLe;i � Lt;ij

n
ð16Þ

where Le,i represents the detected vertical coordinate of the

ith point on the waterline, Lt,i denotes the true vertical

coordinate of the ith point on the waterline, and n repre-

sents the point number on the waterline.

Through calculation with equation (16), it can be concluded

that the average error of our detection method with Figures 7(a)

and 9(a) is 1.27 pixels and 1.44 pixels, respectively. Therefore,

the result of the proposed waterline detection method is very

close to the ground truth, and the average error of the proposed

method using different images is about 1.35 pixels.

Comparison with other methods

In this section, some steps of our method were replaced by

the conventional methods, and the waterline detection

Figure 12. Waterline detection for image captured in the backlighting. (a)The original image before waterline detection and (b)The
image after waterline detection.

Figure 11. Waterline detection for image with strong light reflection. (a) The original image before waterline detection and (b) The
image after waterline detection.

Figure 13. Waterline detection for image with complex reflections. (a) The original image before waterline detection and (b) The
image after waterline detection.
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results were compared with those obtained using our pro-

posed methods for the same sample image. First, we

applied the traditional grayscale image to replace the intrin-

sic image evaluating the threshold of background segmen-

tation, and the other steps of our method were remained.

The experimental image is shown in Figure 7(a), and the

detection result is shown in Figure 16(a), where it can be

seen that when a dark cast shadow is projected onto the

water surface, the detection result is far from the ground

truth because the precision of the background segmentation

is influenced by the cast shadow due to the fact that the

traditional grayscale image is sensitive to shadows. Next,

we applied the shadow detection method based on hue-

saturation-value (HSV) color space transformation to

detect the shadow regions first, and then used our iteration

method to detect the waterline in the obtained shadow

regions. The image we used is shown in Figure 11(a); the

result is shown in Figure 16(b), where the detected result

also deviates from the ground truth. The reason is the seg-

mented shadow regions do not include the areas with self-

shadows. Furthermore, due to the light reflections and

waves, the segmented shadow regions scatter into a few

clusters, which also reduce the precision of our iteration

method.

Figure 15. Manual waterline detection result for Figures 7(a) and 9(a). (a) Manual waterline detection for Figure 7(a) and (b) Manual
waterline detection for Figure 9(a).

Figure 14. Waterline detection for image with different background buildings. (a) The original image before waterline detection and (b)
The image after waterline detection.

Figure 16. Waterline detection result with the traditional gray image and the shadow detection method using the image in Figures 7(a)
and 11(a). (a) Waterline detection with the traditional grey image for Figure 7(a) and (b) Waterline detection with shadow detection for
Figure 11(a).
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Besides, we compared the vertical coordinates of eight

sample points on the detected waterlines in Figures 7(b)

and 11(b) to the vertical coordinates corresponding to the

same horizontal coordinates in Figure 16(a) and (b), respec-

tively. The comparison result is given in Tables 3 and 4. In

Table 3, we could find that when the traditional grayscale

image was used to replace the intrinsic image evaluating

the threshold of background segmentation, the average

coordinate distance between two waterlines, detected by

the changed method and our method, is 54.28 pixels. In

Table 4, when the HSV color space transformation instead

of our shadow verification is used to detect the shadow

regions, the average distance of the vertical coordinates

between two methods is 193.46 pixels.

Discussion and outlook

The time required to process a complete RGB optical

image (279 	 695 pixels) is 18 s on a 3.40-GHz machine

with 8-GB random access memory using MATLAB [ver-

sion R2015b] implementation. The most intensive process

is the searching for the waterline using the global optimiza-

tion method, since it needs to run many times of iterations

for the cost energy function to get a stable result. Further-

more, the initial definition of the waterline, the iteration

steps, and the optimization threshold all influence the run-

ning time. A future work is to accelerate the optimization

method from these aspects.

All types of shadow areas are the basement of our opti-

mization; therefore, we choose these shadow areas as the

object area. If there are no shadows in original images, our

method will stop working after the preprocessing step. Fig-

ure 12(a) shows an image with low contrast and no sky

area; therefore, the background segmentation with the his-

togram can’t automatically choose the segmentation

threshold and we start the waterline searching step with the

entire image. Although the precision of our method has not

been influenced, the running time has been improved.

Therefore, methods for fully automated and robust

waterline detection need to be studied in the future.

Furthermore, in this article, the initial definition of our

waterline is a straight line; however, it is not reasonable

to describe all the water boundaries by a linear mathemat-

ical equation in real environments, especially when the

waterline is close to the camera on the USV. Thus, intro-

ducing an adaptive mathematical function to describe the

waterlines in all possible environments is also a key

research issue in our future work.

Conclusion

In this article, we proposed an optical waterline detection

method by combining shadow verification and energy

minimization. The method was validated using practical

optical images captured by a USV system. The first con-

tribution of the proposed method is the introduction of an

intrinsic image such that the intensity region is com-

pressed compared to the conventional gray image trans-

formation and the background is easily segmented. The

second contribution is the classification of the regions

with different shadows and utilization of the intensity

contrast between the shadow and non-shadow regions to

locate the waterline. The third contribution is the trans-

formation of the position measurement and waterline

detection problem into an optimization problem involving

mathematical energy minimization described by differen-

tial equations. Finally, experiments were conducted with

a series of practical images captured by the USV operat-

ing in an outdoor environment. The experimental results

demonstrate the feasibility and robustness of the proposed

method.
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Table 4. Comparison on vertical coordinates when HSV color space transformation is used.

Parameter variation

Number of the sample points

1 2 3 4 5 6 7

HSV (pixel) 397.99 393.08 388.16 383.24 378.32 373.41 368.49
Our method (pixel) 225.64 213.68 201.73 189.78 177.83 165.88 153.93

Table 3. Comparison on vertical coordinates when grayscale image is used.

Parameter variation

Number of the sample points

1 2 3 4 5 6 7

Gray image (pixel) 226.17 229.99 233.82 237.65 241.48 245.31 249.14
Our method (pixel) 187.60 186.19 184.78 183.37 181.96 180.55 179.14
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6. Alonso M, López-Martı́nez A, and Mallorquı́ JJ. Edge

enhancement algorithm based on the wavelet transform for

automatic edge detection in SAR images. IEEE Trans Geosci

Remote Sens 2011; 49(1): 222–235.

7. Niedermeier A, Romaneessen E, and Lehner S. Detection of

coastlines in SAR images using wavelet methods. IEEE

Trans Geosci Remote Sens 2009; 38(5): 2270–2281.

8. Sheng GF, Yang W, Deng XP, et al. Coastline detection in

synthetic aperture radar (SAR) images by integrating

watershed transformation and controllable gradient vector

flow (GVF) snake model. IEEE J Oceanic Eng 2012;

37(3): 375–383.

9. Wang ZG. Coastline detection algorithms based on super-

pixel for SAR images. Master Thesis, Dalian Maritime

University, Dalian, China, May 2017.

10. Bao GQ, Xiong SS, and Zhou ZY. Vision-based horizon

extraction for micro air vehicle flight control. IEEE Trans

Instrum Meas 2005; 54(3): 1067–1072.

11. Wang L and Zhang ZJ. Automatic detection of wind turbine

blade surface cracks based on UAV-taken images. IEEE

Trans Ind Electron 2017; 64(9): 7293–7303.

12. Ahmad T, Bebis G, Regentova EE, et al. A machine learning

approach to horizon line detection using local features. Adv

Vis Comput 2013; 8033: 181–193. Berlin, Heidelberg:

Springer.

13. Silveira M and Heleno S. Separation between water and land

in SAR images using region-based level sets. IEEE Geosci

Remote Sens Lett 2009; 6: 471–475.

14. Wei YJ and Zhang YW. Effective waterline detection of

unmanned surface vehicles based on optical images. Sensors

(Basel) 2016; 16(10): 1590.

15. Xu L, Qi FH, and Jiang RJ. Shadow removal from a single

image. In: Proceedings of 6th intelligent systems design and

applications, Machine intelligence research labs, Porto, Por-

tugal, 16–18 December 2006, pp. 1049–1054.

16. Finlayson G, Hordley S, Schaefer G, et al. Illuminant and

device invariant colour using histogram equalization. Pattern

Recognit 2005; 38: 179–190.

17. Leone A and Distante C. Shadow detection for moving

objects based on texture analysis. Pattern Recognit 2007;

40(4): 1222–1233.

18. Salvador E, Cavallaro A, and Ebrahimi T. Cast shadow seg-

mentation using invariant color features. Comput Vis Image

Underst 2004; 95(2): 238–259.

19. Barnard K and Finlayson G. Shadow identification using col-

our ratios. In: Proceedings of color and image conference,8th

color imaging conference final program and proceedings,

Society for imaging science and technology, Sun Burst Resort,

Scottsdale, Arizona, 7–10 November 2000, pp. 97–101.

20. Tian JD, Sun J, and Tang YD. Tricolor attenuation model for

shadow detection. IEEE Trans Image Proc 2009; 18(10):

2355–2363.

12 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0001-6615-5484
https://orcid.org/0000-0001-6615-5484
https://orcid.org/0000-0001-6615-5484


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


