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Abstract. In this article, we consider the following fractional Hamiltonian systems:

t Dα∞(−∞Dα
t u) + λL(t)u = ∇W (t, u), t ∈ R,

where α ∈ (1/2, 1), λ > 0 is a parameter, L ∈ C(R, R
n×n) and W ∈ C1(R × R

n, R).
Unlike most other papers on this problem, we require that L(t) is a positive semi-definite
symmetric matrix for all t ∈ R, that is, L(t) ≡ 0 is allowed to occur in some finite interval
I of R. Under some mild assumptions on W , we establish the existence of nontrivial weak
solution, which vanish on R \ I as λ → ∞, and converge to ũ in Hα(R); here ũ ∈ Eα

0
is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on
the finite interval I. Furthermore, we give the multiplicity results for the above fractional
Hamiltonian systems.
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1. Introduction

In this paper, we investigate the solvability of the following non homogeneous fractional
Hamiltonian system:

t Dα∞(−∞ Dα
t u) + λL(t)u = ∇W (t, u), t ∈ R, (1.1)

where α ∈ (1/2, 1), W ∈ C(R×R
n, R), the parameter λ > 0, −∞ Dβ

t and t Dβ∞ denote the
left- and right-Liouville–Weyl fractional derivative of order α respectively and are defined
by

−∞ Dβ
t u = d

dt
−∞ I α

t u, t D1−α∞ u = − d

dt
t I 1−α∞ .

and the matrix L satisfies the following conditions:

(L1) L(t) ∈ C(R, R
n×n) is a symmetric matrix for all t ∈ R; there exists a nonnegative

continuous function l : R → R and a constant k > 0 such that

(L(t)u(t), u(t)) ≥ l(t)|u(t)|2,
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and the set {l < k} = {t ∈ R : l(t) < k} is nonempty with C2
α|{l < k}| < 1, where |.| is

the Lebesgue measure and Cα is the Sobolev constant (see §2).
(L2) J = int(l−1(0)) is a nonempty finite interval and J = l−1(0).
(L3) There exists an open interval I ⊂ J such that L(t) ≡ 0 for all t ∈ I.

Fractional differential equations appear naturally in a number of fields such as physics,
chemistry, biology, economics, control theory, signal and image processing, blood flow
phenomena, etc. During the last few decades, the theory of fractional differential equations
is an area intensively developed, mainly due to the fact that fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of various materials
and processes (see [6,7,9,13,21] and the references therein).

Physical models containing left and right fractional differential operators have recently
renewed attention from scientists which is mainly due to applications as models for phys-
ical phenomena exhibiting anomalous diffusion (see [2–5,10,11,17–20]). A strong moti-
vation for investigating the fractional differential equation (1.1) comes from symmetry
fractional advection–dispersion equation. A fractional advection–dispersion equation is a
generalization of the classical ADE in which the second-order derivative is replaced with a
fractional-order derivative. In contrast to the classical ADE, the fractional ADE has solu-
tions that resemble the highly skewed and heavy-tailed breakthrough curves observed in
field and laboratory studies [2,3], in particular in contaminant transport of ground-water
flow [4]. In [4], the authors have stated that solutes moving through highly heterogeneous
aquifer violations violates the basic assumptions of local second-order theories because
of large deviations from the stochastic process of Brownian motion. Moreover, models
involving a fractional differential oscillator equation, which contains a composition of left
and right fractional derivatives, are proposed for the description of the processes of emp-
tying the silo [10] and the heat flow through a bulkhead filled with granular material [17],
respectively. Their studies show that the proposed models based on fractional calculus are
efficient and describe well the processes.

Very recently, in [18] the author considered (1.1), where L ∈ C(R, R
n2

) is a symmetric
matrix-valued function for all t ∈ R, W ∈ C1(R×R

n, R). Assuming that L and W satisfy
the following hypotheses:

(L) L(t) is a positive definite symmetric matrix for all t ∈ R, and there exists an
l ∈ C(R, (0,∞)) such that l(t) → +∞ as t → ∞ and

(L(t)x, x) ≥ l(t)|x |2, for all t ∈ R and x ∈ R
n . (1.2)

(W1) W ∈ C1(R × R
n, R), and there is a constant μ > 2 such that

0 < μW (t, x) ≤ (x,∇W (t, x)), for all t ∈ R and x ∈ R
n \ {0}.

(W2) |∇W (t, x)| = o(|x |) as x → 0 uniformly with respect to t ∈ R.
(W3) There exists W̄ ∈ C(Rn, R) such that

|W (t, x)| + |∇W (t, x)| ≤ |W (x)| for every x ∈ R
n and t ∈ R.

The author showed that (1.1) has at least one nontrivial solution via Mountain pass theorem.
By using the genus properties of critical point theory, Zhang and Yuang in [23], generalized
the result of [18] and established some new criterion to guarantee the existence of infinitely
many solutions of (1.1) for the case that W (t, u) is sub-quadratic as |u| → +∞.

As is well-known, the condition (L) is the so-called coercive condition and is a little
demanding. In fact, for a simple choice like L(t) = s I dn , the condition (L) is not satisfied,
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where s > 0 and Idn is the n ×n identity matrix. Considering this in [24], the recent results
of [18,23] are generalized and significantly improved. More precisely, in [24], the authors
considered the case that L(t) is bounded in the sense that

(L)′ there are constants 0 < τ1 < τ2 < +∞ such that

τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 for all (t, u) ∈ R × R
n .

By using the genus properties of critical point theory, the authors proved that (1.1) has
infinitely many nontrivial solutions. Xu et al. [22] by using the fountain theorem of critical
point theory, have established the existence of infinitely many solutions of (1.1) for the
case that W (t, u) is subquadratic as |u| → 0 and superqudratic as |u| → ∞.

Motivated by these previous results, we consider problem (1.1) where the symmetric
matrix L is positive semi-definite and we study the existence of nontrivial weak solutions
when W is sub-quadratic. Furthermore, we shall explore the phenomenon of concentrations
of weak solution as λ → ∞, which seems to be rarely concerned in the previous studies
of solutions for fractional Hamiltonian systems. To reduce our statements, we make the
following assumptions on W :

(W1) W ∈ C1(R × R
n, R) and there exist a constant p ∈ (1, 2) and a function ξ(t) ∈

L
2

2−p (R, R
+) such that

|∇W (t, u)| ≤ ξ(t)|u|p−1, for all (t, u) ∈ R × R
n . (1.3)

(W2) There exist three constants η, δ > 0 and ν ∈ (1, 2) such that

|W (t, u)| ≥ η|u|ν, ∀ t ∈ I and |u| ≤ δ. (1.4)

On the existence of solutions we have the following result.

Theorem 1.1. Assume that the conditions (L1), (L2), (W1) and (W3) hold. Then there
exists 
 > 0 such that for every λ > 
, problem (1.1) has at least one weak solution uλ.

For technical reasons, we consider that there exists 0 < T < +∞ such that I = (0, T),
where I is given by (L3). On the concentration of solutions, we have the following result.

Theorem 1.2. Assume that the conditions (L1), (L3), (W1) and (W3) hold. Let uλ be a
solution of problem (1.1) obtained in Theorem 1.1, then uλ → ũ strongly in Hα(R) as
λ → ∞, where ũ is a nontrivial weak solution of the equation

t Dα
T0 Dα

t u = ∇W (t, u), t ∈ (0, T),

u(0) = u(T) = 0. (1.5)

We recall that, in particular, if α = 1, (1.1) reduces to the standard second order Hamil-
tonian systems

u′′ − L(t)u + ∇W (t, u) = 0, (1.6)

where W : R × R
n → R is a given function and ∇W (t, u) is the gradient of W at u.

The existence of homoclinic solution is one of the most important problems in the history
of that kind of equations, and has been studied intensively by many mathematicians. By
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assuming that L(t) and W (t, u) are independent of t , or T -periodic in t or L(t) and
W (t, u) are neither autonomous nor periodic in t , many authors have studied the existence
of homoclinic solutions for (1.6) via critical point theory and variational methods (see
[12,14]). Furthermore, recently a second-order Hamiltonian system like (1.6) with positive
semi-definite matrix was considered in [16]. Assuming that W ∈ C1(R × R

n, R) is an
indefinite potential satisfying asymptotically quadratic condition at infinity on u, Sun and
Wu [16] with a little mistake in their embedding results, have proved the existence of two
homoclinic solutions of (1.6).

The rest of the paper is organized as follows: In §2, we describe the Liouville–Weyl
fractional calculus and we introduce the fractional space that we use in our work and some
propositions are proven which will aid in our analysis. In §3, we prove Theorem 1.1. In §4,
we prove Theorem 1.2. Finally, in section §5, we comment about the multiplicity result
for the fractional Hamiltonian systems (1.1).

2. Preliminary results

2.1 Liouville–Weyl fractional calculus

We first introduce some basic definitions of fractional calculus. The Liouville–Weyl frac-
tional integrals of order 0 < α < 1 are defined as

−∞ I α
x u(x) = 1

�(α)

∫ x

−∞
(x − ξ)α−1u(ξ)dξ, (2.1)

and

x I α∞u(x) = 1

�(α)

∫ ∞

x
(ξ − x)α−1u(ξ)dξ. (2.2)

The Liouville–Weyl fractional derivative of order 0 < α < 1 are defined as the left-inverse
operators of the corresponding Liouville–Weyl fractional integrals

−∞ Dα
x u(x) = d

dx
−∞ I 1−α

x u(x), (2.3)

and

x Dα∞u(x) = − d

dx
x I 1−α∞ u(x). (2.4)

Furthermore, if u(x) is defined on (−∞,∞), then the Fourier transform of the Liouville–
Weyl integral and differential operator satisfies

̂−∞ I α
x u(x)(w) = (iw)−α û(w), ̂x I α∞u(x)(w) = (−iw)−α û(w), (2.5)

̂−∞ Dα
x u(x)(w) = (iw)α û(w), ̂x Dα∞u(x)(w) = (−iw)α û(w). (2.6)
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2.2 Fractional derivative space

Our aim is to establish a variational structure that enables us to reduce the existence of
solutions of (1.1) to finding critical points of the corresponding functional, and it is nec-
essary to construct appropriate function spaces. We denote by L p(R, R

n), p ∈ [2,+∞],
the Banach space of functions endowed with the norm

‖u‖L p =
(∫

R

|u(t)|pdt

)1/p

,

and L∞(R, R
n) is the Banach space of essentially bounded functions equipped with the

norm

‖u‖∞ := ess sup{|u(t)| : t ∈ R}.
Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p

0 is defined by the
closure of C∞

0 ([0, T ], R
n) with respect to the norm

‖u‖α,p =
(∫ T

0
|u(t)|pdt +

∫ T

0
|0 Dα

t u(t)|pdt

)1/p

, ∀ u ∈ Eα,p
0 .

This space can be characterized by Eα,p
0 = {u ∈ L p([0, T ], R

n)/0 Dα
t u ∈ L p([0, T ], R

n)

and u(0) = u(T ) = 0}. Moreover (Eα,p
0 , ‖.‖α,p) is a reflexive and separable Banach

space (see [8]).
For α > 0, define the semi-norm |u|I α−∞ = ‖−∞ Dα

x u‖L2 , and the norm

‖u‖I α−∞ = (‖u‖2
L2 + |u|2I α−∞

)1/2
, (2.7)

and let

I α−∞(R, R
n) = C∞

0 (R, Rn)
‖.‖Iα−∞ ,

where C∞
0 (R, R

n) denotes the space of infinitely differentiable functions from R into R
n

with vanishing property at infinity.
On the other hand, we define the fractional Sobolev space Hα(R, R

n) in terms of the
Fourier transform. Choose 0 < α < 1 and define the semi-norm

|u|α = ‖|w|α û‖L2 (2.8)

and the norm
‖u‖α = (‖u‖2

L2 + |u|2α
)1/2

,

and let

Hα(R, R
n) = C∞

0 (R, Rn)
‖.‖α

.

Moreover, we note a function u ∈ L2(R, R
n) belongs to I α−∞(R, R

n) if and only if
|w|α û ∈ L2(R, R

n) and we have

|u|I α−∞ = ‖|w|α û‖L2 . (2.9)

Therefore I α−∞(R, R
n) and Hα(R, R

n) are equivalent with equivalent semi-norm and
norm.

Let C(R, R
n) denote the space of continuous functions from R into R

n . Then we obtain
the following Sobolev theorem.
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Theorem 2.1 [18]. If α > 1
2 , then Hα(R, R

n) ⊂ C(R, R
n) and there is a positive constant

Cα such that

‖u‖∞ ≤ Cα‖u‖α. (2.10)

In what follows, we introduce a new fractional space in which we will construct the
variational framework of (1.1). Let

Xα =
{

u ∈ Hα(R, R
n)

∣∣∣∣
∫
R

[|−∞Dα
t u(t)|2 + (L(t)u(t), u(t))

]
dt < ∞

}
,

then Xα is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =
∫
R

[−∞Dα
t u(t) · −∞Dα

t v(t) + (L(t)u(t), v(t))]dt

and the corresponding norm

‖u‖2
Xα = 〈u, u〉Xα .

For λ > 0, we also need the following inner product

〈u, v〉λ =
∫
R

[−∞Dα
t u(t) · −∞Dα

t v(t) + λ(L(t)u(t), v(t))]dt,

and the corresponding norm ‖u‖2
λ = 〈u, u〉λ. It is clear that ‖u‖Xα ≤ ‖u‖λ for λ ≥ 1. Set

Xλ = (Xα, ‖.‖λ).

Lemma 2.1. Suppose that (L1) and (L2) hold. Then, the embedding Xα ↪→ Hα(R, R
n)

is continuous.

Proof. By (L1), (L2) and (2.10), we have
∫
R

|u(t)|2dt =
∫

{l<k}
|u(t)|2dt +

∫
{l≥k}

|u(t)|2dt

≤ ‖u‖2∞|{l < k}| + 1

k

∫
R

l(t)|u(t)|2dt

≤ C2
α|{l < k}|

(∫
R

(|−∞Dα
t u(t)|2 + |u(t)|2)dt

)

+ 1

k

∫
R

(L(t)u(t), u(t))dt.

Therefore

‖u‖2
L2 ≤ max

{
C2

α|{l < k}|, 1
k

}
1 − C2

α|{l < k}| ‖u‖2
Xα . (2.11)

Then, by (2.11) we get

‖u‖2
α ≤

(
1 + max{C2

α|{l < k}|, 1
k }

1 − C2
α|{l < k}|

)
‖u‖2

Xα , (2.12)

which implies that the embedding Xα ↪→ Hα(R) is continuous . �
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Lemma 2.2. Suppose that (L1) and (L2) hold. Then, there exists 
 > 0 such that, for all
λ ≥ 
, the embedding Xλ ↪→ Lr (R, R

n) is continuous for all 2 ≤ r < ∞.

Proof. Let 
 = 1
kC2

α |{L<k}| . Using the same ideas of the proof of Lemma 2.1, for all λ ≥ 
,

we also obtain

‖u‖2
L2 ≤ C2

α|{L < k}|
1 − C2

α|{L < k}|‖u‖2
λ = 1

θ0
‖u‖2

λ, (2.13)

where θ0 = 1−C2
α |{L<k}|

C2
α |{L<k}| . Furthermore, using (2.13), for each r ∈ (2,∞) and λ ≥ 
 we

have
∫
R

|u(t)|r dt ≤ ‖u‖r−2∞
∫
R

|u(t)|2dt

≤ Cr−2
α

(∫
R

|−∞D∞
t u(t)|2 + |u(t)|2dt

) r−2
2 C2

α|{l < k}|
1 − C2

α|{l < k}|‖u‖2
λ

≤ 1

θ
r/2
0 |{l < k}| r−2

2

‖u‖r
λ.

Therefore, for all r ∈ (2,∞),

‖u‖r
Lr ≤ 1

θ
r/2
0 |{L < k}| r−2

2

‖u‖r
λ. (2.14)

�

In order to prove Theorem 1.1, we use the following result by Rabinowitz [15]

Lemma 2.3. Let E be a real Banach space and � ∈ C1(E, R) satisfy the (PS)-condition.
If � is bounded from below, then c = infE � is a critical value of �.

3. Proof of Theorem 1.1

In this section, we are going to prove our main theorem. For that purpose, we note that
associated to problem (1.1) we have the functional Iλ : Xλ → R defined by

Iλ(u) = 1

2
‖u‖2

λ −
∫
R

W (t, u)dt.

Under our assumptions we can prove that the functional Iλ is of class C1 in Xλ, and

I ′
λ(u)ϕ =

∫
R

[
−∞ Dα

t u · −∞Dα
t ϕ + λ(L(t)u(t), ϕ(t))

]
dt −

∫
R

(∇W (t, u), ϕ)dt.

Furthermore, critical points of the functional Iλ are weak solutions of problem (1.1). We
begin our analysis by consider some useful lemmas.

Lemma 3.1. Assume that (L1), (L2), (W1) and (W2) hold. Then, for all λ ≥ 
, Iλ is
bounded from below in Xλ.
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Proof. By (W1), (2.13) and Hölder inequality, we get

Iλ(u) ≥ 1

2
‖u‖2

λ − 1

p

∫
R

ξ(t)|u(t)|pdt

≥ 1

2
‖u‖2

λ − 1

p
‖ξ‖

L
2

2−p
‖u‖p

L2

≥ 1

2
‖u‖2

λ − 1

pθ
p/2
0

‖ξ‖
L

2
2−p

‖u‖p
λ ,

which implies that Iλ(u) → +∞ as ‖u‖λ → +∞, since 1 < p < 2. Thereofore Iλ is a
functional bounded from below in Xλ. �

Lemma 3.2. Suppose that L1, L2, (W1) and (W2) are satisfied. Then Iλ satisfies the (PS)-
condition for each λ ≥ 
.

Proof. Let {un} ∈ Xλ be a sequence such that Iλ(un) is bounded and I ′
λ(un) → 0 as

n → ∞. By the previous lemma, it is clear that {un} is bounded in Xλ. Thus, there exists
a constant C > 0 such that

‖un‖Lr ≤ 1

θ
1/2
0 |{L < k}| r−2

2r

‖un‖λ ≤ C, for all λ ≥ 
, (3.1)

where r ∈ [2,∞]. Then up to a subsequence if necessary, we may assume that un ⇀ u

weakly in Xλ. For any ε > 0, since ξ ∈ L
2

2−p (R), we can choose T > 0 such that

(∫
|t |>T

|ξ(t)| 2
2−p dt

) 2−p
2

< ε. (3.2)

Moreover, since un → u in L∞
loc(R, R

n), we get un → u in L2
loc(R, R

n). Hence

lim
n→∞

∫
|t |≤T

|un(t) − u(t)|2dt = 0. (3.3)

Therefore, from (3.3), there exists n0 ∈ N such that

∫
|t |<T

|un(t) − u(t)|2dt < ε2, for n ≥ n0. (3.4)
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Hence, by (W1), (3.1), (3.4) and the Hölder inequality, for any n ≥ n0, we have

∫
|t |≤T

|∇W (t, un(t)) − ∇W (t, u(t))||un(t) − un(t)|dt

≤
(∫

|t |≤T
|∇W (t, un(t)) − ∇W (t, u(t))|2

)1/2(∫
|t |≤T

|un(t) − u(t)|2dt

)1/2

≤ ε

(∫
|t |≤T

2(|∇W (t, un(t))|2 + |∇W (t, u(t))|2)dt

)1/2

≤ 2ε

(∫
|t |≤T

|ξ(t)|2
(
|un(t)|2(p−1) + |u(t)|2(p−1)

)
dt

)1/2

≤ 2ε[‖ξ‖
L

2
2−p

(‖un‖2(p−2)

L2 + ‖u‖2(p−1)

L2 )]1/2

≤ 2ε[‖ξ‖2

L
2

2−p
(C2(p−1) + ‖u‖2(p−1)

L2 )]1/2. (3.5)

On the other hand, by (3.1), (3.2), (3.4) and (W1), we have

∫
|t |>T

|∇W (t, un(t)) − ∇W (t, u(t))||un(t) − u(t)|dt

≤ 2
∫

|t |>T
|ξ(t)|(|un(t)|p + |u(t)|p)dt

≤ 2ε
1

θ
p/2
0

(‖un‖p
λ + ‖u‖p

λ )

≤ 2ε

θ
p/2
0

(Kp + ‖u‖p
λ ). (3.6)

Since ε is arbitrary, combining (3.5) and (3.6), we have

∫
R

|∇W (t, un(t)) − ∇W (t, u(t))||un(t) − u(t)|dt < ε, (3.7)

as n → ∞. Hence, since 〈I ′
λ(un) − I ′

λ(u), un − u〉 → 0 and the following identity hold:

〈I ′
λ(un) − I ′

λ(u), un − u〉 = ‖un − u‖2
λ +

∫
R

(∇W (t, un(t))

−∇W (t, u(t)))(un(t) − u(t))dt, (3.8)

we get that un → u strongly in Xλ which implies that Iλ satisfies the (PS)-condition. �

Proof of Theorem 1.1. From Lemmas 2.3, 3.1, 3.2, we know that

cλ = inf
Xλ

Iλ(u)

is a critical value of functional Iλ, namely, there exists a critical point uλ ∈ Xλ such that
Iλ(uλ) = cλ.
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Finally, we show that uλ �= 0. Let u0 ∈ (W 1,2
0 (I) ∩ Xλ) \ {0} and ‖u0‖∞ ≤ 1. Then by

(W2), we have

Iλ(su0) = 1

2
‖su0‖2

λ −
∫
R

W (t, su0(t))dt

≤ s2

2
‖u0‖2

λ −
∫
I

W (t, su0(t))dt

≤ s2

2
‖u0‖2

λ − ηsν

∫
I

|u0(t)|νdt, 0 < s < δ. (3.9)

Since 1 < ν < 2, it follows from (3.9) that Iλ(su0) < 0 for s > 0 small enough. Hence
Iλ(uλ) = cλ < 0, therefore, uλ is a nontrivial critical point of Iλ and so uλ is a nontrivial
weak solution of problem (1.1). The proof is complete. �

4. Concentration of solutions

In the following, we study the concentration of solutions for problem (1.1) as λ → ∞.
Define

c̃ = inf
w∈Eα

0

Iλ|Eα
0
(w),

where Iλ|Eα
0

is a restriction of Iλ on Eα
0 ; that is,

Iλ|Eα
0
(w) = 1

2

∫
T

0
|0 Dα

t w(t)|dt −
∫

T

0
W (t, w(t))dt,

for w ∈ Hα(R, R
n). Following the same way as in the proof of Theorem 1.1, we can show

that c̃ < 0 can be achieved. Since Eα
0 ⊂ Xλ for all λ > 0, we get

cλ ≤ c̃ < 0, for all λ > 
.

Proof of Theorem 1.2. We follow the arguments in [1]. For any sequence λn → ∞, let
un = uλn be the critical point of Iλn obtained in Theorem 1.1. Thus

Iλn (un) ≤ c̃ < 0 (4.1)

and

Iλn (un) = 1

2
‖un‖2

λn
−

∫
R

W (t, un(t))dt

≥ 1

2
‖un‖2

λn
− 1

pθ
p/2
0

‖ξ‖
L

2
2−p

‖u‖p
λn

,

which implies that

‖un‖λn ≤ C, (4.2)
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where the constant C > 0 is independent of λn . Therefore, we may assume that un ⇀ ũ
in Xλ and un → ũ in L p

loc(R) for 2 ≤ p ≤ ∞. By Fatou’s lemma, we have
∫
R

l(t)|ũ(t)|2dt ≤ lim inf
n→∞

∫
R

l(t)u2
n(t)dt

≤ lim inf
n→∞

∫
R

(L(t)un(t), un(t))dt

≤ lim inf
n→∞

‖un‖2
λn

λn
= 0,

thus ũ = 0 a.e. in R \ J, ũ ∈ Eα
0 by (L2). Now for any ϕ ∈ C∞

0 ((0, T), R
n), since

〈I ′
λn

(un), ϕ〉 = 0, it is easy to check that

∫
T

0
0 Dα

t ũ · 0 Dα
t ϕdt −

∫
T

0
(∇W (t, ũ(t)), ϕ(t))dt = 0,

that is, ũ is a weak solution of (1.5) by the density of C∞
0 ((0, T), R

n) in Eα
0 .

Next, we show that un(t) → ũ(t) in L p(R) for 2 ≤ p < ∞. Otherwise, by the vanishing
lemma (see Lemma 2.1 in [19]), there exists δ > 0, R0 > 0 and tn ∈ R such that

∫ tn+R0

tn−R0

(un − ũ)2dt ≥ δ.

Moreover, tn → ∞, hence |(tn − R0, tn + R0) ∩ {l < k}| → 0. By the Hölder inequality,
we have ∫

(tn−R0,tn+R0)∩{l<k}
|un − ũ|2dt

≤ |(tn − R0, tn + R0) ∩ {l < k}|‖un − ũ‖2∞ → 0.

Therefore

‖un‖2
λn

≥ λnk
∫

(tn−R0,tn+R0)∩{l≥k}
|un(t)|2dt

= λnk
∫

(tn−R0,tn+R0)∩{l≥k}
|un(t) − ũ(t)|2dt

= λnk

(∫
(tn−R0,tn+R0)

|un(t) − ũ(t)|2dt

−
∫

(tn−R0,tn+R0)∩{l<k}
|un(t) − ũ(t)|2dt

)
+ o(1)

→ ∞,

which contradicts (4.2). By virtue of 〈I ′
λn

(un), un〉 = 〈I ′
λn

(un), ũ〉 = 0 and the fact that
un → ũ strongly in L p(R) for 2 ≤ p < ∞, we have

lim
n→∞ ‖un‖2

λn
= ‖ũ‖2

λn
.

Hence, un → ũ strongly in Xλ. Moreover, from (4.1), we have ũ �= 0. This completes the
proof. �
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5. Remark about the multiplicity of weak solutions

In this section, we comment about the multiplicity result of weak solutions for (1.1). Our
main result in this section is

Theorem 5.1. Let conditions (L1), (L3), (W1) and (W2) hold, and W satisfies the fol-
lowing condition:

(W3) W (t, u) = −W (t,−u) for all (t, u) ∈ R × R
n.

Then problem (1.1) possesses infinitely many nontrivial solutions.

In order to find infinitely many solutions of (1.1) under the assumptions of Theorem
5.1, we shall use the ‘genus’ properties. Therefore, we recall the following definition and
result (see [15]).

Let B be a Banach space, I ∈ C1(B, R) and c ∈ R. We set

� = {A ⊂ B \ {0} : A is closed in B and symmetric with respect to 0},
Kc = {u ∈ B : I (u) = c, I ′(u) = 0}, I c = {u ∈ B : I (u) ≤ c}.

DEFINITION 5.1

For A ∈ �, we say genus of A is j (denote by γ (A) = j) if there is an odd map
ψ ∈ C(A, R

j \ {0}), and j is the smallest integer with this property.

Lemma 5.1. Let I be an even C1 functional on B and it satisfies the (PS) condition. For
any j ∈ N, set

� j = {A ∈ � : γ (A) ≥ j}, c j = inf
A∈� j

sup
u∈A

I (u).

(1) If � j �= φ and c j ∈ R, then c j is a critical value of I .
(2) If there exists r ∈ N such that

c j = c j+1 = ... = c j+r = c ∈ R

and c �= I (0), then γ (Kc) ≥ r + 1.

Remark 5.1. From Remark 7.3 of [15], we know that if Kc ∈ � and γ (Kc) > 1, then
Kc contains infinitely many distinct points, that is, I has infinitely many distinct critical
points in B.

Proof of Theorem 5.1. From Lemma 3.1 and 3.2, we know that Iλ ∈ C1(Xλ, R) is bounded
from below and satisfies the (PS)-condition. Furthermore, from (W3), Iλ is even and
Iλ(0) = 0. In order to apply Lemma 5.1, we prove that

for any j ∈ N, there exists ε > 0 such that γ (I −ε
λ ) ≥ j. (5.1)

Let {e j }∞j=1 be the standard orthogonal basis of Xλ, that is,

‖e j‖λ = 1 and 〈ei , ek〉λ = 0, 1 ≤ i �= k. (5.2)
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For any j ∈ N, define

X j
λ = span{e1, e2, . . . , e j }, S j = {u ∈ X j

λ : ‖u‖λ = 1}.

Then, for any u ∈ X j
λ, there exists κi ∈ R, i = 1, 2, . . . , j , such that

u(t) =
j∑

i=1

κi ei (t) for t ∈ R, (5.3)

which implies that

‖u‖Lθ =
(∫

R

|u(t)|θ
)1/θ

=
⎛
⎜⎝

∫
R

∣∣∣∣∣∣
j∑

i=1

κi ei (t)

∣∣∣∣∣∣
θ

dt

⎞
⎟⎠

1/θ

(5.4)

and

‖u‖2
λ =

∫
R

[|−∞Dα
t u(t)|2 + (L(t)u(t), u(t))

]
dt

=
j∑

i=1

κ2
i

∫
R

[|−∞Dα
t ei (t)|2 + (L(t)ei (t), ei (t))

]
dt

=
j∑

i=1

κ2
i ‖ei‖2

λ =
j∑

i=1

κ2
i . (5.5)

On the other hand, in view of (L3) and (W2), for any bounded open set I, there exists
η > 0 (dependent on I) such that

W (t, u) ≥ a(t)|u|θ ≥ η|u|θ , (t, u) ∈ I × R
n . (5.6)

As a result, for any u ∈ S j , we can take some I0 ⊂ R such that

∫
R

W (t, u(t))dt =
∫
R

W

⎛
⎝t,

j∑
i=1

κi ei (t)

⎞
⎠dt ≥ η

∫
I0

∣∣∣∣∣∣
j∑

i=1

κi ei (t)

∣∣∣∣∣∣
θ

dt = � > 0.

(5.7)

Indeed, if not, for any bounded open set I ⊂ R, there exists {un}n∈N ∈ S j such that

∫
I

|un(t)|θdt =
∫
I

∣∣∣∣∣∣
j∑

i=1

κinei (t)

∣∣∣∣∣∣
θ

dt → 0, as n → 0,
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where un = ∑ j
i=1 κinei such that

∑ j
i=1 κ2

in = 1. Because
∑ j

i=1 κ2
in = 1, we have

lim
n→+∞ κin =: κi0 ∈ [0, 1] and

j∑
i=1

κ2
i0 = 1.

Hence, for any bounded open set I ⊂ R,

∫
I

∣∣∣∣∣∣
j∑

i=1

κi0ei (t)

∣∣∣∣∣∣
θ

dt = 0.

The fact that I is arbitrary yields that u0 = ∑ j
i=1 κi0ei (t) = 0 a.e. on R which contradicts

the fact that ‖u0‖λ = 1. Hence, (5.7) holds true.
In addition, since all norms of a finite dimensional norm space are equivalent, there is

a constant c̃ > 0 such that

c̃‖u‖λ ≤ ‖u‖Lθ , ∀u ∈ X j
λ. (5.8)

Consequently, according to (W3) and (5.3)–(5.8), we have

Iλ(su) = s2

2
‖u‖2

λ −
∫
R

W (t, s
j∑

i=1

κi ei (t))dt

≤ s2

2
‖u‖2

λ − sθ

∫
R

a(t)

∣∣∣∣∣∣
j∑

i=1

κi ei (t)

∣∣∣∣∣∣
θ

dt

≤ s2

2
‖u‖2

λ − ηsθ

∫
I0

∣∣∣∣∣∣
j∑

i=1

κi ei (t)

∣∣∣∣∣∣
θ

dt

≤ s2

2
‖u‖2

λ − �sθ = s2

2
− �sθ , u ∈ S j ,

which implies that there exists ε > 0 and δ > 0 such that

Iλ(δu) < −ε for u ∈ S j . (5.9)

Let

Sδ
j = {δu/ u ∈ S j }, � =

⎧⎨
⎩(κ1, κ2, . . . , κ j ) :

j∑
i=1

κ2
i < δ2

⎫⎬
⎭ .

Then it follows from (5.9) that

Iλ(u) < −ε, ∀u ∈ Sδ
j ,

which, together with the fact that Iλ ∈ C1(Xα, R) and is even, yields that

Sδ
j ⊂ I −ε

λ ∈ �.
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On the other hand, it follows from (5.3) and (5.5) that there exists an odd homeomorphism
mapping ϕ ∈ C(Sδ

j , ∂�). By some properties of the genus, we obtain

γ (I −ε
λ ) ≥ γ (Sδ

j ) = j, (5.10)

so (5.1) follows. Set

c j = inf
A∈� j

sup
u∈A

I (u),

then, from (5.10) and the fact that Iλ is bounded from below on Xλ, we have

−∞ < c j ≤ −ε < 0,

that is, for any j ∈ N, c j is a real negative number. By Lemma 5.1 and Remark 5.1, Iλ
has infinitely many nontrivial critical points, and consequently, (1.1) possesses infinitely
many solutions. �
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