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Abstract: The first part of the distinctive paper contains brief review of wavelet-based numerical and
semianalytical analysis, particularly with the use of Daubechies scaling functions. The second part of the paper is
devoted to numerical solution of the problem of static analysis of beam on elastic foundation within Winkler
model. Finite element method (FEM) and wavelet analysis (Daubechies scaling functions) are used. Variational
formulation and approximation of the problem are under consideration. Numerical sample is presented as well.
The third part of the paper is dedicated to wavelet based discrete-continual finite element method of beam
analysis with allowance for impulse load. Daubechies scaling functions are used as well.
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AnHoTtauusi: Hacrosimasi ctaTest B CBOSH NMEPBOM YaCTH COJIEPKUT OTHOCUTENLHO KpaTKuil 0030p BeiBIieT-
peanu3anyii YHMCICHHBIX W YHCICHHO-aHAJUTHYECKMX METOJIOB PEUICHHWS KPaeBbIX 3a7ad, B YaCTHOCTH C
UCTIONb30BaHMEM Maciutabupyrommx ¢yHkumi JloGemm. Bropas uwacTe cTaThM NOCBSIIEHA YHCICHHOMY
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TpeTbell 4acTU CTaThU OMMCAH BEHBIET-peanu3anus JUCKPETHO-KOHTHHYAJIbHOIO METOJa KOHEUHBIX 2JIEMEHTOB
JUTS pacdeTta O0aliky IpH yAape Ha OCHOBE HUCITOJIb30BaHUS MacTadupyomux Gyakuuii Jlooemmy.
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1. INTRODUCTION

As is known, the numerical analysis with wave-
let (wavelet-based numerical analysis) received
its first attention in 1992, since then (particular-
ly since the corresponding basic work of I.
Daubechies [1]) researchers have shown grow-
ing interest in it. VVarious methods including so-
called wavelet weighted residual method, wave-
let finite element method, wavelet-based numer-
ical methods of local structural analysis [2-6],
wavelet boundary method, wavelet meshless
method, wavelet-optimized finite difference
method, wavelet-based discrete-continual meth-
ods of local structural analysis [7-15], wavelet-
based multigrid method [16] etc. have acquired
an important role in recent years.

First of all, it should be noted that Daubechies
scaling functions can be effectively employed
within wavelet finite element method or within
wavelet-based numerical and semianalytical
(discrete-continual) methods of local structural
analysis as asapproximate functions in the pro-
cedure of construction of so-called wavelet finite
element [17].

Corresponding compact support property proves
to be more effective in using minimum degrees
of freedom over an element to approximate dis-
placement functions. Moreover, sparseness of
the matrix is a result of the scaling functions,
which have the compactly supported property.
Cancellation property allows one to perfectly
interpolate polynomials of degree up to N by
the scaling function with order N . Correspond-
ing experiments gathered in the wavelet-
Galerkin context indicate that orthogonal proper-
ty satisfies the condition that the matrix is sparse
as well as banded if the global nodes are num-
bered sequentially. Dur to corresponding main
properties, Daubechies wavelets can describe the
details of the problem conveniently and accu-
rately, and the corresponding Daubechies wave-
lets-based element has an enormous potential in
the analysis of the singularity problem [17].

J. Ko, AJ. Kurdila and M.S. Pillant [18] devel-
oped special finite element method based on
application of Daubehies wavelet. Correspond-
ing algebraic eigenvalue problem derived from
the dyadic refinement equation can be solved by
this method. The resulting finite elements could
be considered as several generalizations of the
connection coefficients employed in the corre-
sponding Daubechies wavelet expansion of pe-
riodic differential operators [17].

R.D. Patton and P.C. Marks [19] utilized a
Daubechies scaling function as interpolation
function of one-dimensional finite element. This
element can reduce the computation time and
reduce the number of degrees of freedom, which
is normally needed for correct solution of vibra-
tion and wave propagation problems [17].

J.X. Ma and J.J. Xuee in paper [20] constructed
one-dimensional Daubechies wavelet beam el-
ement [17].

X.F. Chen, S.J. Yang and J.X. Ma [21] extended
such elements to higher dimensions, constructed
two-dimensional Daubechies wavelet element,
derived the corresponding bending equations for
the thin plate based on wavelet finite element,
and solved the L-shape plate stress problems.
Their results show that wavelet finite element
can be effectively used for solution of singulari-
ty problems [17].

However, the tensor product space should be
constructed firstly [22], which decreases the
computational effectiveness [17].

J.M. Jin, P.X. Xue, Y.X. Xu and Y.L. Shu [23]
built a two-dimensional Daubechies wavelet
directly without tensor product computation and
developed corresponding two-dimensional plate
element [17].

Nevertheless, the wavelet deflection formulation
depends on specific boundary conditions. Be-
sides it is effective only for homogeneous
boundary conditions for square plates. In addi-
tion, only simple boundary conditions were con-
sidered in above mentioned works. Triggered by
this motivation, a modified form of wavelet ap-
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proximation of deflection solution was proposed
for solution of bending problems of beams and
square thin plates by Y.H. Zhou and J. Zhou
[24]. Boundary rotational degrees of freedom
for beams and square plates were explicitly in-
troduced as Daubechies wavelet coefficients in
this paper. Thus variation equations were estab-
lished with the use of corresponding modified
approximations and variation principles. Homo-
geneous and non-homogeneous boundary condi-
tions can betreated in the same way (by analogy
with corresponding versions of conventional
FEM [17].

M. Mitra and S. Gopalakrishnan presented so-
called Daubechies wavelet-based spectral finite
element method (WSFEM) for analysis of elas-
tic wave propagation in one-dimensional and
two-dimensional connected wave guides [25-
27]. First of all, this method transforms the ini-
tial partial differential wave equation to corre-
sponding ordinary differential equations (ODESs)
with the use of Daubechies wavelet approxima-
tion in time domain. Then these ODEs are
solved within FEM by deriving the exact inter-
polating function in the transformed domain.
Spectral element can capture the exact mass dis-
tribution. Therefor the system size required is
very much smaller than the corresponding sys-
tem size within the conventional FEM. Besides,
due to the localized nature of Daubechies wave-
let basis functions, the WSFEM proves to be
more efficient as it removes the wrap around
problem associated with spectral finite element
method for time domain analysis.

M. Mitra and S. Gopalakrishnan [28] later ex-
tended the method and considered problems of
analysis of composite beam with embedded de-
lamination. However, the real-scale structural
wave propagation problem requires more differ-
ent complex spectral elements, interconnections
and flexible in flatable components. In accord-
ance with assessments from paper [17], future
research work will focus on extending the spec-
tral element method for analysis of damaged
structures with more complex geometry [17].
Thus, Daubechies wavelets are used to approx-
imate the displacement and force in the domain,
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where unknown wavelet coefficients can be de-
termined through imposing the essential bound-
ary condition. The Daubechies wavelet finite
elements embodies the properties of locality and
adaptivity. However, because Daubechies wave-
lets lack the explicit function expression, tradi-
tional numerical integrals such as Gaussian in-
tegrals cannot provide desirable precision.
Therefor, the applications of Daubechies wave-
lets are limited by the this weakness [17].

1. WAVELET-BASED NUMERICAL
BEAM ANALYSIS WITH THE USE
OF DAUBECHIES SCALING
FUNCTIONS

1.1. Mathematical (continual) formulation of
the problem of static beam analysis.

The essence of the Winkler model is the as-
sumption that the reaction of the foundation
r(x) atan arbitrary point of the beam x is pro-
portional to deflection at this point r(x) = gy.
Therefore, graphically, such a model can be rep-
resented by springs that are not connected to
each other, each of which has a stiffness propor-
tional to the deflection of the beam at this point
(Figure 1.1).

The stress-strain state of such a beam corre-
sponds to the solution of the problem of the
minimum of the following functional (energy
functional) [29]:

() =5 [(EI(Y"): + )i [a(yex, (1)

where EJ(X) is bending stiffness of beam;
L(x) is Winkler coefficient; q(x) is applied
load.

1.2. Wavelet-based finite element approxima-
tion of the problem of static beam analysis.
Let us divide domain (one-dimensional interval

(0, 1)), occupied by the beam into N, parts (fi-
nite elements);
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Figure 1.2. Sample of finite element.

h =I/N,

is the length of the element.
Each element is also divided into N, parts, for

example, N, =4 (Figure 1.2).
Let us introduce the following notation: i
element number; x,(i,) is coordinate of the

. IS
starting point of the i, -th element; x.(i,) is co-
ordinate of the end point of the i,-th element.

At the boundary points (nodes), we can choose
unknowns y, and y/; at the inner points we can

choose unknowns y;, i =2,3,4. Thus, the total
number of unknowns on an element is equal to

N=N,-1+2-2=N, +3=7.

The number of boundary points for all elements
is equal to

N, =N, +1.

Besides, the number of interior points for all
elements is equal to

N, = N,(N, -1).

Thus, the total (global) number of unknowns is
equal to

Ny =N, +2N,.
We have
Ne
D(y) =D @, (y), (1.2)
=1
where

%5 (ie) %5 (ie)
() =5 [(BI() +py*)dx— [aydx. (1.3)

% (ie) % (ic)
Let us introduce the local coordinates:

t=(X=Xi)) Ny X)) SX<Xg,. (1.4)

In this case, we have the following relations:

X=Xy, =>t=0
X=X, >t=0.25
X=X, =>t=0.5
X=X, =>t=0.75
X=Xs) >t=1

(1.5)
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i_i_dt 1d.
dx dt dx h dt
d® 1 dP (1.6)
dx”  hPdt”’
dx=h,-dt. 1.7)

We can represent displacement (deflection) of
beam y(x) in the form

N
y(X) = w(t) = Zak¢(t +k), Xy S X=Xy
k=0
(1.8)

where ¢(S) is Daubechies scaling function,

[0, N]=supp(¢) .
We substitute (1.8) into (1.2), taking into ac-
count relations (1.5)-(1.7).

X j [E—‘SJ((p"(t-l- Dp"(t+ )+ A, (p(t +i)e(t + j))Jdt—

ZN:a,thgo(tH

i=0

=§(K;a,a)—(ﬁ;aa)=q>a<a)
and finally
o, (y)=0 (a)——(K a,a)-(R:,a), (L9)

where
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K (i, J) =
j('ﬁ‘] (@'t +i)e"(t+ 1)+ ph(p(t+ Dot + J))]dt
(1.10)
RE (i) = i(heq(t)co(t +i))dt. (1.11)

We can define the parameters «, through the

nodal unknowns on the element:

=w(0) = Z%(o(k)

ML=t Zakco (k)

dx h, h, =
=w(0.25) = ZOck(p(k +0.25)
k=0

N
=w(0.5) = o p(k +0.5) (1.12)
k:ON
y, =w(0.75) = Zak(p(k +0.75)
k=0
N
Ys =W(0) =Y ook +1)
k=0
dy, 1
—_— = ! l k 1
dx hew() ekZ;akqo( +1).
Thus, we have
v =Ta, (1.13)
where
d
y* =[y, yl Yo Ya Ya Ys y5]T: (1.14)
a=la, o, @, a3 a, as ae]T ; (1.15)

D=diagl 1/h, 1 1 1 1 1/h);(1.16)

T is matrix, which is defined in accordance
with the following formula:
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»(0) @(1) P2 Q) @) (B  9(6)
P'(0) '@ 9@ 0B (4 90 ¢'(6)
0(0.25) @(1.25) ¢(2.25) ¢(3.25) @(4.25) ¢(5.25) ¢(6.25)
T=D| (05 ¢@05 @25 ¢B5 @45 055 @65 |; (1.17)
9(0.75) @@L.75) @(2.75) @(3.75) @(4.75) @(5.75) @(6.75)
) o2 o3 o4 o5  e6)  @(7)
Lo (@) Q) (4@ G 6 (7) ]
Then we have ing value N=7 we can use the first
_ N, =N,-N+1 values of ¢, defined on the
a=T7y". (1.18)  segment [0,N]=[0,7]. With such a small step,

Taking into account (1.9) and (1.18) we get
— 1 i, -1<i Ao i Ao
®, @)= (KT YT - (RETY) =
1 = T loi oi INT D, ol
=§((F DTKET YY) (T ) Re, YY) =

=§<Kiev‘e,v‘e)—(ﬁiayie)=®ie(v‘e)

and finally

O, (@)=, (V") =

1 igi o ol i (1.19)
=§(Keye,ye)—(Re,ye),
where K" is local stiffness matrix; R* is local
load vector;

Ke=TH)'KET?;, R*=(T")"Rr. (1.20)

1.3. Numerical implementation and sample of
static beam analysis.

The presented algorithm can be implemented
using the tools of MATLAB. In particular, the
reference to the standard function

wavefun ('db10',0)

allows researcher to get the values of the scaling
Daubeshi  function ¢ on the interval

[0,19] =supp(¢) with steps h =1/256 =27,
Let us denote N, =256 = 2°. For the consider-

100

it will be natural to compute the derivatives in
the form of finite differences:

/ D1 —Pa
t zd =,
@'(t,) =~ do, oh

(1.21)

" ¢+ 2¢ Dy
¢(tk)~d:2¢k k+1 2k kl,
k ——1, 2,..., Nl, (122)

where (1.23)

o =ot); t =k-h.
If t, [0,19] then ¢, = p(t,)=0.
When computing the coefficients of the local
stiffness matrix (formulas (10) and (20)), one
can use the simplest quadrature formulas for
numerical integration, in particular, midpoint
quadrature rule with step 2h, .

Let us consider (as a model sample) analysis of
beam on an elastic foundation with the follow-
ing parameters: q(xX)=Po(x—-L/2), P =100
kN is the load specified at the midpoint (Figure
6); L=4m; h,=1.3m; b, =1m; E =2560-10"

kN/m?; k =75-10°kN/m?.
In this case, we can consider the following
boundary conditions:

{y(o) = y”(O) =0 (1.24)

y(L)=y"(L)=0.

Thus, we consider beam hinged on both sides
(simply supported beam).
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Figure 1.3. Daubechies scaling function.
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Figure 1.4. The first-order difference derivative of Daubechies scaling function.

-2

Let N, =8 be a number of elements. Then the h,=L/N,=4/8=0.5.

total number of unknowns is equal to
Distance between coordinates of nodes (step) is

N, =N, +2N, =3-8+2-(8+1) =42. equal to

The length of the element is defined by formula h,=h,/4=1/8=0.125.
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Figure 1.5. The second-order difference derivative of Daubechies scaling function.
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Figure 1.6. Considering beam.
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Figure 1.7. Finite element discretization of beam (based on cubic parabola).

As is known, for comparison, we can use the
conventional finite element method, where the
unknown function of the deflection on the ele-
ment is represented as a cubic parabola. In this
case, the finite element discretization is shown
in Figure 7.

Adequate beam approximation requires 32 ele-
ments. In this case, the total number of un-
knowns is equal to

N, =2-(32+1)=66.

102

Graphical comparison of results of analysis is
shown in Figure 8. The following notation is
used: Ydb is the result obtained using
Daubechies scaling function; Y fem is the result
obtained on the basis of a cubic parabola.

As is obvious, the results obtained are almost
the same. However, the wavelet-based algo-
rithm of the finite element method based on the
Daubechies scaling function leads to a decrease
in the number of unknowns.
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Figure 1.8. Comparison of results of analysis.

2. WAVELET-BASED SEMIANALYTICAL
BEAM ANALYSIS WITH THE USE
OF DAUBECHIES SCALING
FUNCTIONS

2.1. Mathematical (continual) formulation of
the problem of dynamic beam analysis.

Let us consider the problem of dynamic beam
analysis (Figure 2.1). Corresponding impulse
load is applied in the middle of the beam. Math-
ematical formulation of the problem has the
form:

2%y o'y

=— + F(x,1),
ot? %aﬂ (x.)
O<x<¥, t>0,

wa0=yw0=0:¥t20 2.1)

y'(0,t)=y"(4,t)=0
y(%,0) =Yy, (x)=0

2 (x0) = yi(x =0 ==t

Volume 15, Issue 2, 2019

where y(x,t) is the deflection of a beam at a
point X at a time t; X is the coordinate along
the length of the beam, 0<x</; t is time co-
ordinate, t>0; B,=EJ/p; EJ is bending
stiffness of beam; p is density of the beam ma-
terial; F(x,t)=P-0(x—¢/2)o(t) is function
simulating the transverse impact of the impact
on the beam at a point; 5(x—¢/2) and o(t) are
Dirac delta functions.

2.2. Wavelet-based discrete-continual ap-
proximation of the problem of dynamic beam
analysis.

Discere-continual finite element method (dis-
crete-analytical approach) is used for solution of
the considering problem. Within this method we
use finite element approximation along the X
axis, and a continual problem is considered
along the time axis t.

Let us divide domain (one-dimensional interval
(0, 1)), occupied by the beam into N, parts (fi-

nite elements);
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h, =1/N,

is the length of the element.

Each element is also divided into N, parts, for
example, N, =4.

Once again we can use the following notation:
I, is element number; x,(i,) is coordinate of
the starting point of the i, -th element; x.(i,) is
coordinate of the end point of the i, -th element.
At the boundary points (nodes), we can choose
unknowns y, and y/; at the inner points we can
choose unknowns vy., i =2,3,4. Thus, the total

number of unknowns on an element is equal to

N=N,-1+2-2=N, +3=7.

The number of boundary points for all elements,
the number of interior points for all elements
and the total number of unknowns are equal to

N, =N, +1; Np =N,.(N, -1);
N, =N, +2N,.

We can also introduce the local coordinates

X — Xy
1)
—— Xy S XX

e

t =

5(ie) (22)

with corresoinding relations

X=Xy =>t=0
X=X, =>t=0.25
X=X, =>t=05
X=X, =>t=0.75
X=Xgy >t=1
d d d_1d,
dx dt dx h, dt’
d? 1.d°
dxP  hP dt”’
dx=h,-dt.

(2.3)

(2.4)

(2.5)

104

We can represent displacement (deflection) of
beam y(x,t) for agiven t in the form

N-1
y(x,) =w(q) = Zakw(q +k), XiGy) S XS X0
k=0
(2.6)

where ¢(s) is Daubechies scaling function,

[0, N] = supp(e) -

We substitute (2.6) into the quadratic part of the
corresponding energy functional, taking into
account relations (2.3)-(2.5). Then we have

Xs (i
6 yJ
cio\ X’
NN
ZO:Z; 3oz,ocJ

= (K;a,

[ (wydq =

m:§J|H

n

(@"(@+De"(a+ j))da=(2.7)

o'—.»—\

K

We can define the parameters «, through the

corresponding nodal unknowns on the element
=Y, (t) = y(x,1):

~w(0)= iam(k)

dy, 1
2= = w(0)= k
T WO ezkolakm)

y, =W(0.25) = Zak(o(k +0.25)
k=0

— w(0.5) =iak(p(k+0.5) 2.8)
y, = w(0.75) :Oi a,p(k +0.75)
=w(l) = Zak(p(k +1)
O('ji;: = kD,
Thus, we have
Ve =Ta, (2.9)
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C0(0) o) 9@ e @)  eB)  @6) |
?'0) @ 0@ Q) 9@ @B ¢(6)
9(0.25) ¢(1.25) ¢(2.25) @(3.25) @(4.25) @(5.25) @(6.25)
T=D| 9(0.5) ¢(15 @25 ¢35 @45 @55 ¢(6.5)
9(0.75) @@L.75) @(2.75) @(3.75) @(4.75) @(5.75) @(6.75)
Q) »(2) »(3) @(4) @(5) »(6) @(7)
LoD (D @) @) (B @) () |

y(t) =cos(VAt)y, +
AT sin(JAL) Y, +

X dx

(2.10)

(2.19)

a=la, a4 a, a; a, a; a;]" ; (2.12)
D=diagl 1/h, 1 1 1 1 1/h).(2.13)

Then we have

a=T7'y". (2.14)

Substituting (2.14) into (2.9), we get
(KiTH98T7yh) =(K g, 5%),  (215)

where Ke=(THTK:T™ (2.16)

is local stiffness matrix.

We can use the simplest quadrature formulas of
numerical integration for computing of coeffi-
cients of the local stiffness matrix.

Let us denote

YO =[y.®) Y, - vy, OT. (2.17)

We can obtain the resultant system of finite el-
ement equations in the matrix form

+\/Fjsin JA(t-7)E(r)dz.

In accordance with formulation of the consider-
ing problem we have

F(xt)=P-8(x—(12)5t)  (2.20)

and consequently
F(t)=5()F; (2.21)
F, (i) = P-{Ol,’ ':t((ugg 111))//22 (2.22)

Substituting (2.22) into (2.19) and taking into
account the initial conditions, we obtain the fi-
nal form of the solution of the problem:

y(t) =A™ sin(VAL)E,.

(2.23)
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