Pramana — J. Phys. (2018) 91:51
https://doi.org/10.1007/s12043-018-1620-3

© Indian Academy of Sciences

@ CrossMark

A reliable analytical algorithm for space—time fractional cubic
isothermal autocatalytic chemical system

KHALED M SAAD!2

' Department of Mathematics, College of Arts and Sciences, Najran University, Najran, Saudi Arabia
2Department of Mathematics, Faculty of Applied Science, Taiz University, Taiz, Yemen
E-mail: kmalhomam @nu.edu.sa, khaledma_sd @hotmail.com

MS received 19 July 2017; revised 8 February 2018; accepted 2 March 2018; published online 16 August 2018

Abstract.

In this paper, we present an algorithm by using the homotopy analysis method (HAM), Adomian

decomposition method (ADM) and variational iteration method (VIM) to find the approximate solutions of the
space—time fractional cubic isothermal autocatalytic chemical system (STFCIACS). The HAM, ADM and VIM
approximate solutions are evaluated and compared by using the computation program Mathematica and excellent

results are obtained.
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1. Introduction

Many physics phenomena, such as biology, chemistry,
ecology, etc., can be described by reaction—diffusion
systems. Merkin ef al [1] considered the reaction—
diffusion travelling waves arising in a coupled system
involving simple isothermal autocatalysis kinetics. They
assumed that reactions take place in two separate and
parallel regions, with, in region I, the reaction is given
by quadratic autocatalysis

A + B — 2B(rate k1ab) (D)
together with a linear decay step
B — C(rate k»b), ()

where a and b are the concentrations of reactant A and
autocatalyst B, k; (i = 1, 2) are the rate constants and
C is some inert product of the reaction. The reaction in
region Il is given by the quadratic autocatalytic step (1)
only. The two regions were assumed to be coupled via a
linear diffusive interchange of the autocatalytic species
B. In this study, we consider a system similar to region
I, but with cubic autocatalysis

A + 2B — 3B(rate kzab?) (3)

together with a linear decay step
B — C(rate k4b). 4

This leads to the system of eqs (5)—(8). The following
problemon 0 < x < L,L > 0 and ¢ > O for the
dimensionless concentrations («p, 81) in region I and
(ae2, B2) in region II of species A and B is considered:

L )
aa_ﬁzl:%JF“lﬂlz—kﬁlﬂ(ﬂz—ﬂl), (6)
e @
%%:%g§+aﬁ§+ywr—&) (8)

with the boundary conditions
o;i(0,1) =a;(L,1) =1,
pi(0,1) = Bi(L,1) =0,

and the initial conditions

o0
a1(x,0)=1-— Zal sin(?)
n=

x cos(0.5u, (L — 2x)),

Bi(x,0) = ibl sin(%">
n=1

(i=12) ©)

(10)
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x cos(O Sun(L — 2x)) | (11)
o (x,0) =1 — Zaz sm(”zn)

x cos(O.S,un(L —20)), (12)
Bo(x,0) = ibz sin(%)

:ZCIOS(O.S,UM(L ~2x)), (13)

where w, = (nw)/L. The dimensionless constants k
and y represent the strength of the autocatalyst decay
and the coupling between the two regions, respectively.

Recently, the fractional diffusion—reaction equations
have been studied by several authors [2]. In this paper,
we consider space—time fractional cubic isothermal
autocatalytic chemical system (STFCIACS) of the form

0%ay 32/3051

S = gaF bl (14)
a;,z] - aaZﬂzﬂﬁl +afi —kBi+y(B2—B1). (1)
8;32 = % —af, (16)
a;t[jfz - 8:355 +oaBs+y(Br—P).0<a B

a7

Numerical methods for STFCIACS are quite limited.
In this work, we utilise the homotopy analysis method
(HAM), Adomian decomposition method (ADM) and
variational iteration method (VIM) for finding the ana-
Iytical approximate solution of STFCIACS.

The HAM was introduced by Lio [3-7]. The HAM is
a powerful analytical method for solving the linear and
nonlinear fractional differential equations.

This method has attracted the interest of many
researchers and has been developed to solve many lin-
ear and nonlinear equations. El-Tawil and Huseen [8,9]
have suggested an extension of the HAM known as
g-homotopy analysis method (q-HAM) to discuss the
nonlinear mathematical models. This developed method
was then merged with standard integral transform oper-
ators to study the nonlinear equations appearing in
science and engineering [10—13].

Adomian proposed a new method called the ADM for
evaluating the solutions of the nonlinear equations [14—
16]. Several authors have investigated the convergence
of Adomain’s method [17-19].

Recently, it has been proved that the ADM is a very
effective method and it could be applied successfully
for many problems such as systems of ordinary and
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partial differential equations and also integral equations
[20-26].

The principles of the VIM and their applicability for
various kinds of differential equations are given in [22—
32]. The aim of this paper is to obtain the approximate
analytic solutions of the STFCIACS by HAM, ADM
and VIM, and to determine the accuracy of these meth-
ods in solving STFCIACS. Also, we will make some
comparisons between these methods through finding the
approximate solutions. These methods were applied on
a variety of fractional time, fractional space, fractional
space—time reaction—diffusion equations [33—46].

More recently, Caputo and Fabrizio [47] suggested
a new fractional derivative based on the exponential
decay law, which is a generalised power law func-
tion [48-53]. Abdon Atangana and Dumitru Baleanu
introduced a fractional derivative with non-local kernel
based on the Mittag—Leffler function (this function is,
of course, the more generalised exponential function)
and described the complex physical problems that fol-
low the power and exponential decay law at the same
time [54-70].

The present paper is organised as follows: §2-5 are
devoted to the basic idea of both the fractional calculus
and the basic idea of standard HAM, ADM and VIM,
respectively. Sections 6—8 are devoted to applying the
HAM, ADM and VIM on STFCIACS, respectively. Sec-
tion 9 is devoted to the numerical results. In the last
section, conclusion is presented.

2. Fractional calculus

Here, we give some basic definitions and properties of
fractional calculus theory [71-74].

DEFINITION 2.1

If f(t) € Li(a, b), the set of all integrable functions and
a > 0, then the Riemann—Liouville fractional integral
of order «, denoted by J, , is defined by

1 t
S f 0 = s [ =0 foa (18)

DEFINITION 2.2

For o > 0, the Caputo fractional derivative of order «,
denoted by CDZ‘ |, is defined by

‘D¢ O =5 / (t — )" 'D" f(r)dr,
(19)

where n is suchthatn — 1 < o < nand D = d/dz.
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If o is an integer, then this derivative takes the ordinary
derivative

DY, =D% a=1,2,3,.... (20)

Finally, the Caputo fractional derivative on the whole
space R is defined by

DEFINITION 2.3

For @ > 0, the Caputo fractional derivative of order «
on the whole space, denoted by CDZ‘ ., 18 defined by

_
I'h—oa)

X f (x— & DM pE) e @)

DY, f(x) =

3. Basic idea of HAM

The principles of the HAM and their applicability for
various types of differential equations are givenin [3,4,
75,76]. Also, new results were obtained in [77-84] using
the HAM. For convenience, we shall present a review of
the HAM [4]. To describe the basic idea of the standard
HAM, we consider the nonlinear differential equation

Nu)] =0, (22)

where N is a nonlinear differential operator and u(z) is
an unknown function. Liao [3] constructed the so-called
zeroth-order deformation equation:

(1 =) Llg(t; ¢) —uo()] = ghHON 9 (t; 9], (23)

where g € [0, 1]is an embedding parameter, # # 01is an
auxiliary parameter, H (¢) # 0 is an auxiliary function,
L is an auxiliary linear operator, ¢ (f; ¢) is an unknown
function and uo(¢) is an initial guess for u(¢), which
satisfies the initial conditions. It should be emphasised
that one has great freedom in choosing the initial guess
yo(t), L, hand H (). Obviously, wheng = O0andg = 1,
the following relations hold, respectively:

¢ 0) =uo(r), ¢(; 1) =u(1).

Expanding ¢ (t; ¢) in Taylor series with respect to ¢,
one has

t>0,

Gt q) = uo®) + Y um()g™, (24)

m=1
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The auxiliary parameter /, auxiliary function H(¢),
initial approximation ug(¢#) and auxiliary linear oper-
ator £ are selected such that the series (24) converges at
g = 1, and one has

() = uo(t) + Y un(t).

m=1

(25)

We can deduce the governing equation from the zero-
order deformation equation by defining the vector

l_in = {MO(I)’ M](l), u2(t)7 AR un(l)}-

Differentiating (23) m times with respect to ¢, and then
setting ¢ = 0 and dividing by m!, we obtain, using (3),
the so-called mth-order deformation equation:

Ll (t) — Ymitm—1()] = RH () R (-1 (1)),

m=1,2,3,...,n, (26)

where

- 1 = IN[o(t;
Rn(iim 1) = [P(t; 4)] @7)

(m—1)! ag™m— 7=0

and

)]0, m=<1.
X =11, m> 1.

More detailed analysis of HAM and its modified version
with various applications could be found in [13,85-91].

4. Basic idea of the ADM

In this section, we present the basic idea of the ADM
[92] by considering the following nonlinear partial dif-
ferential equation:

L(u(x, 1)) + R(u(x, 1)) + N(u(x, 1) =0, (28)
u(x,0) = f(x), (29)
where L is the highest-order derivative, which is
assumed to be invertible, R is the remaining linear opera-

tor and N represents a nonlinear operator. Now, applying
the inverse operator L ™! to both sides of (28), we obtain

ux,t) = f(x) — L' R@u(x, 1)) + Nu(x,1). (30)

Let

ulx,t) = i Um(x,1) (31)

and "

N =3 An, (32)
m=0



51 Page4of 17

where A,, are Adomin polynomials which depend upon
u. In view of eqs (31) and (32), eq. (30) takes the form

D (e, ) = fx) = LT R(u(x, 1)
m=0
+ D An(u(x. D). (33)
m=0
We set
uo(x, 1) = f(x), (34)

Umg1(x,1) = — L7 (R(u(x, D)+ Y An(u(x, t)),

m=0
m=0,1,..., (35)
where
Ap(u(x, 1)) = [—'(n—mN<Zu (x, t)wﬂ .
A=0
(36)

Hence, (34)—(36) lead to the following recurrence rela-
tions:

ug(x,0) = f(x),
U1 (x, 1) = — L™ (R(u(x, 1))
+ A (u(x, 1)) .

The solution u(x, t) can be approximated by the trun-
cated series

(37

k—1
P (x, 1) = Zouma,r), Jim g = u(x0).

5. Basic ideas of the VIM

In order to introduce the VIM, let us consider the fol-
lowing differential equation:

Lu(x,t)+ Nu(x,t) = g(x,1), (38)

where L is a linear operator, N is a nonlinear operator
and g(x, t) is a source term. According to the VIM, we
construct the correction functional in the ¢ direction as

1
Upt1(x, 1) = uy(x,t) —I—/ A(Luy(x, 1)
0

+ Niiy(x,t) — g(x, 7)) dr, 39)

where A is a general Lagrangian multiplier [27-29],
which can be determined optimally through the vari-
ational theory. The subscript n denotes the nth-order
approximation, whereas itis considered to be a restricted
variation [27-29], i.e. du, (x, 1) = 0.
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6. HAM solutions of STFCIACS

In this section, we apply the HAM on STFCIACS. The
HAM is based on a kind of continuous mapping

Bi(x, 1) = Y1(x, 15 q),
Ba(x, 1) — Yn(x, 5 q),

ai(x, 1) = ¢1(x, 15 q),
ar(x, 1) = ¢2(x, 15 q),

such that, as the embedding parameter ¢ increases from

0tol, ¢1(x,259), vi(x, 15 9), $2(x,159), ¥2(x, 15 9)
vary from the initial approximation to the exact solution.
We define the nonlinear operators

Ni(p1(x,159)) = d1.:(x, 15,9) — P1ax(x, 15 q)
+o1(x. 1 Y (x, 1 ),

M @Wi(x,t59) = 1., 159) — Y1 (x, 1 q)
+hkyi(x, 159) — y(a(x, 15 q)

—vYi(x,t;9)) — ¢1(x, 1, q)
x Yi(x,t;q),

N3(d2(x, 15 q)) = ¢a.i(x, 15q) — P2.xx(x, 15 q)
+da(x, 1 OYF(x. 1 q),

Na(Wa(x, 15.9)) = V2. (x, 15 q) — Y2xx(x, 15 9)
—yWix,159) — Ya(x, 1;q))
— $2(x, 15 QY3 (x, 1 ).

Now, we construct a set of equations, using the embed-
ding parameter gq:

(A =@ L1(P1(x,159) — a1,0(x, 1))
= qhH (x, h)N1(p1(x, 15 q)),

(I =) L2(Y1(x, 15 9) — Bro(x, 1))
= qhH(x, )M (Y1 (x, t; q)),

(I = @) L3(d2(x, 15 q) — az0(x, 1))
= qhH (x, h)N2(pa2(x, 15 q)),

(I = @) La(Y2(x, 15 9) — Pro(x, 1))
= qhH (x, ) Ma(¥a(x, 15 q)),

with the initial conditions

¢1(x,0; q) = a1,0(x,0),

Yi1(x,0; g) = Br,o(x, 0),
¢2(x,0; ) = az,0(x, 0),
Y2(x,0; q) = Bo(x,0),
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where i # 0 and H(x,t) # 0 are the auxiliary
parameter and auxiliary function, respectively. We

expand ¢1(x,1;q), Yi(x,1;:9), ¢2(x,1;:q) and ¥
(x, t; g) in a Taylor series with respect to g and obtain

oo
$1(x,1;9) = aro(x, 1) + Y armlx,0g",

(40)
m=1
o0
Yi(x. 1) = Bro(x. O+ Y Pumx. g™, (A1)
m=1
o0
$r(x.t1q) = a20(x. )+ Y _m(x.g".  (42)
m=1
o
Ya(x.t:q) = Prox. )+ Y Pam(x.0)g",  (43)
m=1
where
1 9" (x.1: q)
(1) = — LD
m! ag™ 4=0
1 3"y (x, t; q)
Bim(x 1) = ————212|
m! g™ 4=0
1 9" (x. 1; q)
o, = — L RELD |
m! agm 4=0
1 9"y (x, t; q)
Bom(x 1) = ———222|
m! g™ 4=0

If ¢ = 1 in (40)—(43), the series become

o
ar(x, 1) = a1, 1)+ Y arm(x, 1),

m=1

Bi(x, 1) = Brotx, )+ D Brm(x, 1),

m=1

o0
ar(x, 1) = a2 0(x, 1) + Y aam(x, 1),

m=1
o0
Bax. 1) = BroG. )+ > Bom(x.1).
m=1
Now, we construct the mth-order deformation equation
from (26) to (27) as follows:
Loy m(x, 1) — Xpay m—1(x, 1))
= hH(x, )Ri((@1,m—1, Bi,m—1)).
Lo(Brm(x, 1) — X B1m—1(x, 1))
= hH (x, )R (@11, Brm—1)),
ES(“Z,m(xa t) - Xm“Z,m—l(xs t)
= hH(x, ) R3((@2,m—1, Boa.m—1))
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La4(Bom (X, 1) — XnPom—1(x, 1))
= hH(x, ) Ry(@2m—1, Prm—1))

with the initial conditions a1 ,,, (x, 0) = 0, By, (x,0) =
0, a2,m(x,0) =0, Bam(x,0)=0,m > 1, where

arm-1 %P ay

Ri(@1m—1: Brm—1)) =

ot 0x2p
m—1 i
D atm1-iBrBLi—y
i=0 j=0
- ~ 3 B1m—1
Ry((@1,m—1, Bim—1)) = T‘Lﬂ
0% Brm—1
T2 T KPrmo
— v(Bom—1 — Bim—1)
m—1 i
=Y > atm1-iBrjBri-j
i=0 j=0
- = o1 Panmot
Rs((@zm—1, Bam—1)) = —0— — ———35
m—1 i
A3 o m1-iBrjBrij
i=0 j=0
- ~ 0Bam—1 0P Bami
Ra((a2,m—1, Bom—1)) = T
— Y (Brm-1— P2m—-1)
m—1 i
=3 wrm-1-iBriPoi-;
i=0 j=0

If we take £; = d*/dt* (i = 1,2, 3,4) then the right
inverse of £; = d*/dr* will be J*

arm—1 %oy
ot 9x2p

arm = X1 m—1 +h-,;a

m—1 i

+ Z ZO{Lm—l—iﬁlJ'Blvi_j ’

i=0 j—0
Bim = XuBim—1 + hJ,“(

_azﬁﬁl,m—]
ox2P

(44)

0% B1m—1
ar«

+k181,m—1>

+hJ — v (Bom—1 — Brm—1)

m—1 i

=3 arm1-iBiiBri-j |

i=0 j=0

(45)
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8“052 m—1 82/30(2 m—1
— o ) 5
o2m = XmoQ,m—l + h-]; 97 - 9x2P
m—1 i
+ Z Zaz,m—1—iﬁ2,j52,i—j , (46)
i=0 j=0
3 Bom—1 3% Bom—i
_ o ) 5
Ba.m = XnBa,m—1 + hJ; < 9:e  gx2P
+hJ = v Brm—1 — Bom—1)
m—1 i
=3 wrm1-iBajPi-j (47)

i=0 j=0
We choose the initial approximation

Bio(x, 1) = B1,o(x,0), (48)
B2,0(x,1) = B2o(x,0). (49)

Form = 1, we obtain the first approximation as follows:

ayo(x, 1) = ajo(x, 0),
az0(x, 1) = azo(x,0),

%10 82‘3011,0 )
o1 = h]ta( Py _ 3x2ﬁ + al,Oﬁl,O s (50)
3*Bio  *FBio
R A
Pri="ni ( or ox2
+ kBr.o — v (B0 — B1o) — 0!1,0/312,0), (51)
%20 82/3(12,0 2
3*Bro  0*PBao
S F A e
Pra=hJ; < are 9x2P
—7(Bi.o— B2.0) — @2.0B30)- (53)

7. ADM solutions of STFCIACS

In this section, we apply the ADM to evaluate the
approximate solutions of (5)—(8). If we insert J* on
both sides of (14)—(17), we obtain

o 82/30[1 2
aj(x,t) =ar(x,0) + J, (a—Zﬁ_al'Bl>’ 54)
2B,
lgl(x’t) = ﬂl('x’o) + Jta< 9x 28 +(X]}31
—kB1 +y (B2 — /31)), (55)
BRE
az(x, 1) = az(x,0) + Jf’(TZO;2 - azﬂ§>, (56)
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Ba(x,1) = Ba(x, 0) + J,“( . fff + 23
+y(B1 — /32)), (57)
where
Jul(x, 1) = L[ t el d 58
,u(x,)—mfo(—r) u(x, r)dr, (58)
B 8514
Diu(x,t) = —
ug, t)  dg
| re- ﬁ)/ 2 G-pp 1 PR
0%u(x, 1) B
o2 p=2
(59)

Now the ADM solutions and nonlinear functions
Ni(ag, B1) and Na(a2, f2) can be presented as an infi-
nite series

e}
ar(x, 1) = ayox, 1) + Z o1,m(x, 1),

(60)
m=1
Bi(x.t) = ProGx.0)+ > Brm(x. 1), (61)
m=1
ar(x, 1) = a2 0(x, 1) + Y @ m(x, 1), (62)
m=1
Ba(x, 1) = Boo(x, 1) + D Bom(x, 1) (63)
m=1
and
Ni(r, B1) = a1fi = ) An, (64)
m=0
Na(ez, B2) = 023 = ) B, (65)
m=0
where
1 d}’n
Am=—1 [d)d" Ni(a, ﬂl)]x:o’ (66)
B, = 1 a” 67
m = o Na(@2, B2) . (67)

A, are called the Adomian polynomials and the compo-
nents a1, (x, t) and B, (x, t) of the solutions o (x, #)
and B (x, t) will be determined by the following recur-
rence relations:
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a0 = a(x,0),

82‘3051,,,,
Ulm+1 = Jfa(ax—z;s - Am) ) (68)
B1,0 = Bi1(x, 0),
0% g
:Bl,m+1 = Jza< 8)62/3,"1 - kﬂl,m
+V(,82,m_,31,m) + Am) . (69)

B,, are called the Adomian polynomials and the compo-
nents oy, (x, t) and B2 , (x, t) of the solutions a (x, #)
and B2 (x, t) will be determined by the following recur-
rence relations:

az,0 = az(x, 0),

Bzﬂaz
a2 mtl = Jfa(ax—ﬂf - Bm) ; (70)
B2,0 = Ba(x,0),
3% B,
+y(131,m - IBZ,m) + Bm) . (71)

In view of (36) and using Mathematica software, we
evaluate the Adomian polynomials A,, and B,,. They
are as follows:

2
Ao = 1,087 0

2
A =a1,1B7 o + 2a1,0B1,081,1,

2
Az = 12870+ 201,181,0P1.1

1
+ 10CBL 1 +4B1oP12), (72)
By = 2,083 .
By = a2,183 0 + 202.0P2.0P2.1.
By = 0!2,2,3%,0 + 2a3,182,082,1
1
+ 5020283, +462082.2)- (73)
In the first iteration, we have
82/3051,0
2081 0
B =J (8x—2/3 — kB0
+v(Bom — B1,0) + Ao) , (75)
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(76)

o 20°B20
P21 =, (E)x—zﬂ +y (B0 — P20 + Bo) . (7D

The components o1 2, ..., B1.2,...,022,...,822,...
will be computed as well as used, but for brevity are
not listed. The general form of the approximations
a1, B1, oz, Bo are given by (60)—(67), i.e.

o =a10+or o2+, (78)
Br=PBro+Bhii+Biat+---, (79)
ary=motoaytaat---, (80)
Br=PBro+Po1+Baat+ . (81)

8. VIM solutions of STFCIACS

In this section, we apply the VIM to evaluate the approx-
imate solutions of (14)—(17). We can approximate the
correction formula of (14)—(17) as follows:

a1 (x, 1) =y p(x, 1)
2

4 0 0~
+ /O (@) (Eamx, 0 — 2 D

1006, DBE, (3, D)) d, (82)

181,n+1(x» t) = ,Bl,n(x7 t)

! 0
+f w2 (7) <8—ﬁ1,n(x, 7)
0 T
9% - 5 . 4
- Wﬂl,n(-xa T) - O(l’n(x, T)ﬁ],n(‘x’ T) T
+klél,n(-x’ T) + V(Bl,n(xa t) - Bz,n(-x’ T))) d"/"
(83)

t
0
a1 (x, 1) = ap p(x, 1) +/ n3(t) <—at012,n(x,f)
0

2

0 B ~
- W(Xln(x’ T) + aZ,}’l('x’ T)ﬂzz,n(x’ T)) df, (84)

Bony1(x, 1) = Boa(x, 1)
2

t 0 0° ~
+ /O 1a() (;ﬂz,n(x,r)—ax—zﬂz,n(x,r)
— G20 (x, B3, (x. T)

+yBon(x, 1) — Prax, r))) dr, (85)
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where @1, (x, 7), B1.a(x, ), @2, (x, T) and B u(x, 7)
denote the restrictive variation, i.e.,

8a1 n(x,7) =0, 8f1.(x,7) =0,
8&2.,(x,7) =0, 8B2.n(x,7) = 0.
Thus, we have

Saty pg1(x, 1) = oy p(x, 1)

! 0
+/ 5ul(f)(—0t1,n(x,f)
0 aT

3% _ 3 .
— mam(x, ) + 10 (x, DAL, (x, f)) dr

t
9
=8a1,n(x,t)+/ Sm(f)(—al,n(x,r) dr,
0 8‘[
(86)

SB1n+1(x, 1) =8B1n(x, 1)

4 0
+ / am(r)(a—ﬁl,n<x, 0
0 T

9% - B .
=55 Prate ) = DB (1) dr

kB (6, D) 4y Bratx, ) = Bra(x, 1)) dr
t

9
=8ﬂ1,n(x,t)+/ (Suz(r)(—a ﬁl,n(x,r)> dr,
0 T

(87)
San p1(x,t) = o p(x, 1)
4 d
+ / 8ua(r)(a—az,n(x, )
0 T
32 s ~ q
- ﬁaz,n(xa T) + az,n(x’ T)IBZ,n(xﬁ T) T
t
=5012,n(x,t)+/ 5#3(T)i012,n(x,f)df,
0 aT
(88)
8182,n+l(x1 t) = 8/32,11()(:9 t)
t 9 82 ~
+ /0 5#4@)(5/32,”()6, 0 = (e, )
— & (x, T3, (x, 7)
+ ¥ (Bon(x, 1) — Brax, r))) dt
4 d
— 8Ban(x. 1) + / a0 prnx, AT, (89)
0 T

Integrating by parts, we obtain the Lagrange multipliers:

pi(t) = ua(t) = u3(r) = pa(r) = — 1. As a conse-
quence, we obtain the following iterations formulae:
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t aa
ayp1(x, 1) = oy u(x, 1) —/ <—061,n(x, )
0

aT¥

9%
_ _axzﬂou,n(x, ) + oy (x, BT, (x, r)) dz, (90)

t 0¥
Prn1(x, 1) = Pra(x, 1) —/ (8—a,31,n(x, 7)
0 T
9%

- axzﬁ ﬂl,n(xv ‘E) - al,n(x, T),Blz’n(x, T)

+k:31,n(x’ T) + V(ﬂl,n(x» T) - IBZ,n(-x7 T))) dTa
oD

t aa
o nt1(x, 1) = g n(x, 1) — / (8—aa2,n(x, 7)
0 T
3P ,
~ 5 a2 n(x, T) +a2a(x, )65, (x, r)) dzr, (92)

Bon+1(x, 1) = B u(x, 1)

t aa 82,3
- fo (a?ﬂln(x’ T) - ax_zlg,BZ,n(X, T)
—a(x, T3, (x, 7)

+y(Bon(x, ) — Bralx, r))) dr. (93)

9. Numerical results

In this section, we apply the HAM, ADM and VIM to
evaluate the approximate solutions of (14)—(17). First,
we apply the HAM on (14)—(17) and then evaluate the
average residual error of HAM. The initial and first
approximations are

a1,0(x, 1) = ai(x, 0), (94)

Y al— e \2P
- 22/9(_”
T(l+a) 2 a 2)

n=1

ay1(x,t) =

1 L —» /N7
X COS(E( — x)un—nﬁ) sm(T)

tO{

B i cos((L = 2620 sn (")

X (i by COS<(L — 2x)'u7m) sin<%)>2 , (95
m=1

Brolx, 1) = pi(x,0), (96)
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x cos( 50 = 20, = 8 ) sin( ")
—kmt—ia) ibl cos[ (L~ 20 sin(")
e (20 in()
x (n; brcos (L — 202" sin(%))z

1o i
Vm };(bz —by)

X COS [(L — ZX)%] sin(%) ,

Bi1,1(x, 1)

o7

a2,0(x, 1) = az(x, 0), 98)

Y a— tn \2B
- 22/3(_”)
T+ ;az 2

1 /N7
X cos(—(L —2X) Uy — nﬁ) sm(T)

ar1(x,t) =

Ol

m Zaz cos((L 2x)—) sm(%)
X <m2::1 by cos((L - 2x)“7’") sin(%))z, (99)

B2o(x, 1) = Ba(x, 0), (100)
ht o~ g (2P
(1l +a) ;bzz (7)
1 . (/N7
X COS(E(L —2X) Uy — nﬂ) s1n<7)

+ F(lt—o—:—a) iaz cos((L — 2x)%) sin<%>

(Bl ()

+ yF(l——ka) nzz;(bl —by)

X cos[(L — 2x)&] sin(ﬂ) .
2 2
In this method, we evaluate the optimal values of the

convergence-control parameters by the minimum of the
averaged residual errors [7,76,77,93-96]

Bo1(x,t) =

(101)

Page 90of 17 51

N M
Eo,(h) = ZZ
:0 =0
00s 30 2
s 30
<[ (Xg ()] o
1 N M
Eg(h) N_MZZ
s=0 j=0
m . 2
100s 30
« |:./\/2(k:0,31,k< Nsﬁf)ﬂ , (103)
1 N M
Eafl) =2 )
s=0 j=0
m 2
100s 307
X |:./\/'3<]§a2,k< NS,WJ>)1| , (104)
1 N M
Eph) = 37 2 2
s=0 j=0
m . 2
100s 30;j
x |:N4<]§,32,k< ~ V))} : (105)

corresponding to the following nonlinear algebraic
equations:

dEg;l(h) =0, (106)
_dch;l(h) o, (107)
dEq(h)

—o==0. (108)
dEg,(h) _

—an 0. (109)

We represent Eq, (h), Eg(h), Eq,(h) and Eg,(h) in fig-
ures 1-4 and in tables 1-4. Figures 1-4 and tables 1-4
show Eg,(h), Eg(h), Eqy(h) and Epg,(h) for the three
terms of the HAM solutions. We set N = 100

and M = 30 in (102)-(105) with £k = 0.1,y =
02,L = 100,a; = 0.001,a, = 0.002,b; =
0.001, b, = 0.002. We use the command FinMin-

imum with Mathematica to obtain optimal values
of h.

Now, if we apply the recurrence relations (68)—(71)
and their initial conditions (10)—(13), we obtain the fol-
lowing ADM first approximations:

ar0(x, ) =ar(x,0), (110)
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Figure 1. The averaged residual errors of «(x,t) at the
three terms of the HAM solutions for £k = 0.1,y = 0.2,
L = 100,a; = 0.00l,ap = 0.002, by = 0.001
and b, = 0.002. (a) « = 0.6,8 = 0.75, (b) « = 0.70,
B =0.85and (c)aa = 1.0, 8 =1.0.

o

! = 228( Bn 28
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ar,1(x, 1) F(l—l—oe)’;al (2)
1 . /AT
X cos(E(L —2X) Uy — nﬂ) s1n<7)

F(lt: )Zal cos((L 2x)—) sm< ;)
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Figure 2. The averaged residual errors of 1 (x, t) at the three
terms of the HAM solutions for £k = 0.1,y = 0.2,
L = 100,a1 = 0.001,a2 = 0.002, by = 0.001 and

by, =0.002. (a) « = 0.6, 8 =0.75, (b) « = 0.70, B = 0.85
and (¢) « = 1.0,8 =1.0.

Bro(x, 1) = Bi(x,0), (112)

o

t > b8 Mn \2P
)= —— —_—
e HZ—1 ! ( 2 )

1 . (/N7
X cos(i(L —2X) Uy — nﬁ) sm(T)

tOl

_ km Z by COS[(L Zx)—] sm(n;)
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Figure 4. The averaged residual errors for S, (x, t) at the
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a2,0(x, 1) = az(x, 0), (114)

A e T
oy 1(x,t) = —— a —
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1 [ —» . /NT
X COS(E( — x)un—nﬁ) sm(T)
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Table 1. Optimal values of & for HAM solutions of ¢ (x, t) at
k=0.1,y =02,L =100,a; = 0.001,a, = 0.002,b; =
0.001 and b, = 0.002.

(a, B) Optimal value of & Minimum of E,(h)
(0.6, 0.75) —0.204096 6.70405 x 10712
(0.7, 0.85) —0.214805 9.40459 x 10713
1, n —0.411014 5.86521 x 10712

Table 2. Optimal values of 2 for HAM solutions of 81 (x, ¢) at
k=0.1,y =02,L = 100,a; = 0.001, a, = 0.002, b; =
0.001 and b, = 0.002.

(a, B) Optimal value of & Minimum of Eg,(h)
0.6, 0.75) —0.146486 2.76656 x 10710
(0.7, 0.85) —0.18557 1.29672 x 10~°
(1, 1) —0.0299487 2.21299 x 107

Table 3. Optimal values of & for HAM solutions of o> (x, ¢) at
k=0.1,y =0.2,L =100,a; = 0.001,a, = 0.002, b; =
0.001 and b, = 0.002.

(a, B) Optimal value of & Minimum of Ey,(h)
(0.6, 0.75) —0.226033 2.71645 x 10~
(0.7, 0.85) —0.0273559 4.42390 x 10712
(1, D —0.379343 1.30557 x 10~ 1

Table4. Optimal values of 2 for HAM solutions of 8> (x, ¢) at
k=0.1,y =0.2,L =100,a; = 0.001,a> = 0.002,b; =
0.001 and b, = 0.002.

(a, B) Optimal value of & Minimum of Eg,(h)
0.6, 0.75) —0.217057 9.56283 x 10~10
(0.7, 0.85) —0.213114 9.40459 x 10~13
(1, 1) —0.217548 1.19018 x 10~°

x (i bzcos((L—Zx)MTm> sin(%)f, (115)

m=1

Ba.o(x, 1) = Ba(x, 0), (116)

o

t - n\2P
Prale ) = 570 ;bzzzﬁ(T)
X cos(%(L —2X) iy — nﬁ) sin(%)

¢ e Un\ . (AT
+ —F(l g ;az cos((L - 2x)7) sm<7>
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(S mon(a-20t2) n())

m=1

o

Y TaT D ;w — by)

X cos[(L — 2x)%] sin(%) .

Finally, we apply the VIM to solve (14)—(17). By taking
the same initial values as for ADM, we obtain the first

approximation as follows:
o0

=1
X cos( (L —2x)uy, — JT,B) sm(%r)

(117)

1) = 1
ar1(x, 1) =ag0(x )+F(1

Ot

F(l n ) Zal cos((L 2x)—) Sm<n27r)
x (mg blcos((L —2x)“7’") sin<%)>2, (118)
S ()

Br1(x, 1) = Brolx, 1) + ——— m

+
X cos(%(L —2X) Uy — 71;3) sin(%)
—F(f-i— ) Zbl cos[(L 2x)—] sm(”z”)

+ _F(lt: - i::al cos((L _ 2x)%) sin(%)

(Z b1 cos((L — 2x)—) sm(m2”)>2

yt¢
g )Z(z—bn

X cos[(L 2x)—] s1n(mr> )

> > (119)

(x,1) = (x,1) —t E (—)
o X, o xX,t)+ a2
2,1 2,0 rd ) 1 2 )

1 . /nT
X cos(E(L —2X) iy — nﬂ) s1n<7)

_ r(ltj_ o gaz cos((L — 2x)%) sin(%)
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Figure 5. The absolute error of HAM, ADM and VIM for (14)—(17) with the numerical method in Mathematica at x = 0.5
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Figure 7. The plot of ADM for (14)-(17) at ¢+ = 5 with k = 0.1,y = 0.2,L = 100,a; = 0.001, ax
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by = 0.001 and by = 0.002. (a) &1 (x, 1), (b) Bi(x, 1), (¢) aa(x, 1) and (d) B (x, 1)

Figure 8. The plot of VIM for (14)—-(17) at t+ = 5 with k
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After substituting the initial values of oq(x, 1),
Bio(x, 1), 20(x, 1) and B o(x, 1) into (118)—~(121),

we obtain the first approximation of the VIM, which
is the same as the two terms of the HAM and ADM
for (14)—(17). A comparison of the numerical, HAM,
ADM and VIM solutions is shown in figure 5 for
h —0.16,y = 0.1,k = 0.0l,a; = 0.1,a2
02,61 = 001,b, = 0.002,¢ = 0.9 and B = 0.9.
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Figure 5 shows the comparison of the three terms of
HAM and ADM solutions and the second approximation
of VIM with the numerical solutions using the command
NDsolve of MATHEMATICA 9. It can be seen from
figure 5 that the absolute error obtained by HAM is
better than ADM and VIM. We note that the two terms of
HAM and ADM and the first approximation by VIM are
identical. So their errors are of the same order. In order
to get a small error, more terms need to be considered
for HAM, ADM and high approximation for VIM solu-
tions. Therefore, HAM, ADM and VIM are efficient and
accurate methods that can be used to provide approxi-
mate analytical solutions of partial differential
equations. Figures 6-8 show the behaviour of three
terms of HAM and ADM solutions and the second
approximation of VIM for (14)—(17) of different values
of « and . These figures show the effect of & and 8 on
the concentrations of the reactant ¢; and the autocatalyst
Bi. We notice that from these figures the approximate
solutions symmetry isataboutx = L /2. Also,aso¢ — 1
and 8 — 1, the approximate solutions approach the
solutions of (5)—(8). Finally as «; and §; decrease the
concentrations of the reactant and autocatalyst, respec-
tively, decay to the steady state, i.e. one for the reactant
and zero for the autocatalyst, respectively.

10. Conclusion

In this paper, HAM, ADM and VIM have been effi-
ciently applied to obtain approximate solutions of STF-
CIACS. The two terms of HAM and ADM solutions
and the first approximation by VIM are identical. So,
we have computed the three terms of HAM, ADM and
the second approximation of VIM. We observed that
HAM is better than ADM and VIM solutions. This fact
is also clear when we compared them with numerical
results by Mathematica. The agreement with the numer-
ical solutions is very good. Besides that, the results
demonstrate that HAM, ADM and VIM are accurate for
solving space—time fractional STFCIACS. By increas-
ing the number of iterations one can reach any desired
accuracy. In this work, we compute optimal values of &
for STFCIACS. In this paper, we used Mathematica 9
for all calculations.
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