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Abstract

Although multiple cosmological observations indicate the existence of dark matter and
dark energy, cosmological tests of interactions between them have not yet been estab-
lished. We point out that, in the presence of a coupling between dark matter and dark
energy, a peculiar velocity of total matter field is determined not only by a logarithmic
time-derivative of its density perturbation but also by density perturbations for both dark
matter and baryonic matter, leading to a large modification of the physical interpretation
of observed data obtained by measurements of redshift-space distortions. We reformu-
late a galaxy two-point correlation function in the redshift space based on the modified
continuity and Euler equations. We conclude from the resultant formula that redshift
space distortions provide us information on the coupling between dark matter and the
scalar field by combining weak lensing measurements.

Key words: cosmology: observations — cosmology: theory — dark energy — dark matter — large-scale structure
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1 Introduction

The current cosmological observations, such as type Ia
supernovae (Perlmutter et al. 1997; Riess et al. 1998)
and cosmic microwave background (Planck Collabora-
tion 2016), indicate the presence of dark matter and dark
energy, which have not been identified yet. The existence
of dark matter is also well established by astrophysical
observations, which indicate dark matter as a non-luminous

and pressure-less fluid with small dispersion velocity
(Zwicky 1933; Bowen & Wyse 1939; Kahn & Woltjer
1959; Clowe et al. 2004). The dark energy is responsible
for explaining the late-time accelerated expansion of the
Universe, and numerous attempts to identify it have been
intensively proposed in much of the literature. One such
candidate is to introduce a scalar degree of freedom as
a new contribution to the energy–momentum tensor or
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modification in a gravitational sector (see, e.g., Tsujikawa
2010; Clifton et al. 2012 for reviews).

When the ordinary matter, baryons, directly couples
with such a scalar degree of freedom, it induces a fifth
force. While the fifth force in the baryonic sector is tightly
constrained by the solar-system experiments (Will 2006),
this is not true for the dark force that is active only
in the cold dark matter (CDM) sector since the solar-
system experiments do not probe such an interaction.
Therefore, the natural arena for probing such interac-
tions is cosmology. When additional interaction is present
only in the CDM sector, the growth rate of the CDM
density perturbations would be generically different from
that of the baryonic matter density perturbations (van de
Bruck & Morrice 2015; Mifsud & van de Bruck 2017;
van de Bruck & Mifsud 2018; Amendola 2000; Koivisto
et al. 2012; Zumalacarregui et al. 2013). We then expect
that observing the growth of the CDM density pertur-
bation provides us with rich information about such an
interaction.

In the standard treatments, the linear growth rate is
mainly obtained by observing a galaxy peculiar velocity
field through measurements of redshift-space distortions
(RSDs) in galaxy survey. Due to RSDs, the galaxy power
spectrum on large scales is known to be enhanced by a
factor (1 + βμ2)2 (named the “Kaiser formula”), where
β ≡ fm/bg with fm the linear growth rate, bg the linear
galaxy bias factor, and μ the cosine of the angle between
the line of sight and the Fourier momentum (Kaiser 1987).
The degeneracy between the growth rate and the linear bias
factor can in principle be broken by using, e.g., higher-order
statistics (Scoccimarro et al. 1999) and cross-correlations
between other observables (Hashimoto et al. 2016). Hence,
it is widely believed that measurements of RSDs even at
single redshift allow direct constraints on the growth rate.
Moreover, several attempts show that the relation between
the peculiar velocity and the growth rate for each species,
which is based on the continuity equation, is valid even for
the wide range of cosmological scenarios including modi-
fied theories of gravity (see, e.g., Gleyzes et al. 2016). How-
ever, as we will show below, this relation is not necessarily
correct in more general situations.

2 Setup

Let us consider the following invertible metric transforma-
tion (Bekenstein 1993),

gμν = A(φ, X)gμν + B(φ, X)∂μφ∂νφ , (1)

where gμν is the original frame metric, and A(φ, X) and
B(φ, X) are called, respectively, the conformal and

disformal factors, and are functions of the scalar field φ

and its kinetic term X ≡ −gμν∂μφ ∂νφ/2. Here and here-
after, φ is a generic scalar field, and we do not specify it
(though the case with φ being responsible for dark energy
is the most interesting). The action is given by

S =
∫

d4x
√−g

{
M2

Pl

2
(R[g] − 2�) + Lφ[g, φ]

}
+ Sm , (2)

where Lφ represents a Lagrangian for the scalar field and
Sm is a total matter action. For simplicity, we consider
the canonical scalar field, Lφ = −(1/2)(∂φ)2 − V(φ), and
assume the scalar field does not modify the gravitational
sector, i.e., the absence of kinetic braiding (Deffayet et al.
2010). As for the matter sector, we assume that the baryonic
matter is minimally coupled for simplicity while the CDM
couples with the scalar field through the barred metric ḡμν

defined in equation (1). The total matter action is given by

Sm = Sb + Sc

=
∫

d4x
(√−gLb[gμν, ψb] +

√
−ḡLc[gμν, ψc]

)
, (3)

where Sb and Sc represent the actions for baryonic matter
and CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.

The variation with respect to the metric gμν leads to the
Einstein equations as usual,

Gμν + �gμν = (1/M2
Pl)

(
T(b)

μν + T(c)
μν + T(φ)

μν

)
. (4)

Here and hereafter, T(I)
μν = −(2/

√−g)(δSI/δgμν) and
T(φ)

μν = −(2/
√−g)[δ(

√−gLφ)/δgμν].

The superscript “I” represents b, c, or m for baryonic
matter, dark matter, and total matter, respectively. The
combination of the energy–momentum tensor for total
matter T(m)

μν := T(b)
μν + T(c)

μν and the scalar sector T(φ)
μν is con-

served as ∇μ[T(m)
μν + T(φ)

μν ] = 0 . The energy–momentum con-
servation for baryonic matter also takes the familiar form,
∇μT(b)

μν = 0. On the other hand, the energy–momentum ten-
sors for the scalar field and dark matter no longer satisfy
the conservation law individually, and it instead takes the
form, ∇μT(c)

μν = −∇μT(φ)
μν . The scalar equation is given by

�φ − Vφ = Q, (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡− 1√−g
δ(

√−ḡLc)
δφ

= ∇μWμ − Z , (6)
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with

Z = 1
2A

{[
Aφ + AXX(Aφ − 2Bφ X)

A− AXX + 2BXX2

]
T(c)

+
[

Bφ + BXX(Aφ − 2Bφ X)
A− AXX + 2BXX2

]
Tμν

(c) ∂μφ∂νφ

}
, (7)

Wμ = 1
2A

[
2B Tμν

(c) ∂νφ − A− 2BX
A− AXX + 2BXX2

×
(

AXT(c) + BXTαβ

(c) ∂αφ∂βφ
)
∂μφ

]
, (8)

where Uφ = ∂U/∂φ and UX = ∂U/∂X for U = A , B . By
using of equation (5), the energy–momentum conservation
for CDM and total matter can be recast as

∇μT(c)
μν = ∇μT(m)

μν = −Q∂νφ . (9)

3 Basic equations

We work on a spatially flat Friedman-Lemaı̂tre-
Robertson-Walker metric in Newtonian gauge, ds2 =
−[1 + 2
(t, x)]dt2 + a2(t)[1 − 2�(t, x)]dx2, and define the
background and perturbations of the energy–momentum
tensor for the baryonic matter, the dark matter, and
the total matter as T0

(I)0 = −ρI(t)[1 + δI(t, x)], T0
(I)i =

−ρI(t) ∂ivI(t, x), T(I)i
j = 0, and (otherwise) = 0.1 Based on

these equations, we can find the relations

δm =ωcδc + ωbδb , vm = ωcvc + ωbvb , (10)

where ωI = ρI/ρm. We also split the scalar field as
φ(t, x) → φ(t) + δφ(t, x). The background part of the
Einstein equation gives

H2 = (1/3M2
Pl)[ρc + ρb + � + (1/2)φ̇2 + V] , (11)

3H2 + 2Ḣ = (1/M2
Pl)[� − (1/2)φ̇2 + V] . (12)

The background equation of motion for φ [equation (5)]
yields

φ̈ + 3Hφ̇ + Vφ = −Q0 , (13)

and the energy–momentum conservation for baryonic
matter and CDM lead to the background equations

ρ̇b + 3Hρb = 0 , ρ̇c + 3Hρc = Q0φ̇ , (14)

1 Note that the pressureless feature of the CDM is robust at least at the first order of
perturbations even if we take other definitions of energy–momentum tensor, such as
T (c)

μν = −(2/
√−g)δ(

√−gLc)/δgμν and T̃ (c)
μν = −(2/

√−g)δ(
√−gLc)/δgμν . The

property of CDM of being pressureless at the background level was first mentioned
in Koivisto (2008).

where Q0 is a background value of Q. We can rewrite Q0

from the definitions (6)–(8) together with equation (14),

φ̇

ρc
Q0 = 1

2
d
dt

log

[
(2A− AXφ̇2 + BXφ̇4)2

A− Bφ̇2

]
, (15)

where A, AX, B, and BX are evaluated at background fields.
In deriving perturbed equations, we use the quasi-static

approximation, which is applicable when the wavelength of
perturbations is well inside the sound horizon of the scalar
field, k−1 � cs/(aH), where cs is the sound speed of the
scalar field (Sawicki & Bellini 2015). Although the sound
speed of the scalar field generally differs from unity in our
setup (F. Chibana et al. in preparation) we assume cs = O(1)
for simplicity. Then we can neglect time-derivative terms of
perturbations while keeping spatial derivative terms,2 and
we obtain the linearized perturbed Einstein equations in the
Fourier space,

(k2/a2)� = (k2/a2)
 = −4πGρmδm . (16)

The continuity and Euler equations for baryonic matter are
the standard form:

δ̇b + (k2/a2)vb = 0, v̇b − 
 = 0, (17)

while those for CDM get modified as follows:

δ̇c + (k2/a2)vc = (φ̇/ρc)(δQ− Q0δc) , (18)

v̇c − 
 = (Q0/ρc)(δφ − φ̇vc) , (19)

where the scalar field perturbation is determined by

− (k2/a2)δφ = δQ. (20)

In the quasi-static limit, the most relevant terms in Q can
be extracted as

δQ = Q0δc + (R1 + R2) φ̇δ̇c + R1φ̇
k2

a2
vc + R2

k2

a2
δφ , (21)

where

R1 = Bρc

A
, R2 = − (A− Bφ̇2)(AX − BXφ̇2)ρc

A(2A− AXφ̇2 + BXφ̇4)
. (22)

We emphasize that the R2 term gives the non-vanishing
contributions only if the conformal and/or disformal factors
depend on the kinetic term.

After eliminating the scalar field perturbations using
equation (20), we can rewrite the modified continuity

2 We also neglect the mass mφ of the scalar field, which could be crucial when the
mass of the scalar field is large enough, i.e., mφ � k/a.
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equation in terms of the CDM density contrast and velocity
field as

(1 − ϒ1)
(

δ̇c + k2

a2
vc

)
= ϒ2

(
δ̇c − Q0

φ̇
δc

)
, (23)

with

ϒ1 = φ̇2

ρc

R1

1 + R2
, ϒ2 = φ̇2

ρc

R2

1 + R2
. (24)

In the minimal coupling case (A = 1, B = 0), all time-
dependent coefficients are zero, Q0 = R1 = R2 = 0. When
conformal and disformal factors depend only on φ, we have
Q0 	= 0 , R1 	= 0, and R2 = 0. Thus the continuity equation
is the same as the one in the minimal coupling case. One can
verify this property even for a wider class of scalar–tensor
theories (Gleyzes et al. 2016). When at least one of A and
B depend on X, there arises a new contribution of R2 in the
continuity equation, and the CDM velocity can significantly
differ from the standard case. An important implication
from these equations is that the continuity equation for the
total matter fluctuations, equation (10), is given by

δ̇m + k2

a2
vm =ωc

ϒ2

1 − ϒ1

(
δ̇c − Q0

φ̇
δc

)
+ ωb

Q0φ̇

ρm
(δc − δb) ,

(25)

which differs from the standard form by the presence of
the non-minimal coupling. We also found that the standard
form of the continuity equation cannot be reproduced even
when the R2 contribution is negligible, due to the second
term on the right-hand side of the second equation, which
originates from the deviation of the background energy den-
sity from the standard matter [see equation (14)]. Therefore,
we conclude that there are two possibilities to break the
standard relation of the continuity equation for the total
matter field: one comes from the R2 term in the CDM con-
tinuity equation, which appears only when the coupling
depends on the kinetic term, and the other corresponds to
the deviation of the background dynamics from the stan-
dard one characterized by Q0 (Gleyzes et al. 2016).

Combining all the perturbed equations to eliminate
velocities as usual, we obtain two coupled second-order dif-
ferential equation for the baryonic matter and CDM density
contrasts. Since the evolution equations for the baryonic
matter and CDM density contrasts are independent of the
wavenumber k, one can decompose the density contrasts
into the (normalized) k-independent linear growth factors
DI and initial density contrasts δ0 for the baryonic matter,
CDM, and total matter as dI(t, k) = DI(t)δ0(k).

Here, we have chosen the initial time to be much after the
time of cosmic microwave backgroun (CMB) decoupling
(z ≈ 1100) but much before the effect of the dark interaction
becomes important (z ∼ 1), and assumed that the baryonic

density contrast has caught up with the CDM density con-
trast by the initial time. We also define the growth rate for
each species, fI, as the logarithmic derivative of the linear
growth, that is, fI(t) ≡ dln DI/dln a. Rewriting the conti-
nuity equations for the baryonic matter, CDM, and total
matter in terms of the growth factors, we obtain a form of
velocity potentials:

vI(t, k) = −a2 H
k2

f eff
I (t)δI(t, k) . (26)

Although one can easily see f eff
b = fb, from equation (23)

the effective linear growth rate of the CDM, f eff
c , can

significantly differ from the standard one due to the R2

contribution as

f eff
c = fc − ϒ2

1 − ϒ1

(
fc − Q0

Hφ̇

)
≡ fc + � fc . (27)

Moreover, by the use of equation (25), the effective growth
rate of the total matter fluctuations can be written as

f eff
m = fm + ωc

Dc

Dm
� fc − ωb

Q0φ̇

Hρm

Dc − Db

Dm
. (28)

with Dm = ωcDc + ωbDb. Although f eff
m is naturally given by

the growth-factor-weighted average of the effective growth
rates for CDM and baryonic matter, it does not in general
coincide with fm. As discussed above, its deviation is due
to the non-trivial terms in the CDM continuity equation
and the background dynamics that produce the second and
third terms in equation (28).

4 Modified interpretation of Kaiser formula

In the above investigation, we found that the effective
growth rate f eff

m inferred from the peculiar velocities no
longer coincides with the actual growth rate fm; namely,
measurements of the peculiar velocity field do not neces-
sarily provide the growth rate of clustering directly. Our
example vividly demonstrates that the standard dictionary
translating the RSD measurements into the growth rate is
not universal and fails for some classes of theories beyond
the �CDM model. To see the impact of the breaking of
the relation between the peculiar velocities and the actual
growth rate, we now focus on the modification of the
Kaiser formula as the simplest and most important observ-
able effect of RSDs. The mapping of the observed red-
shift position s from the real space position x is given by
s = x + (vg,z/aH)̂z (see, e.g., Bernardeau et al. 2002).

Here, vg,z is a line-of-sight component of the peculiar
velocity of a galaxy and ẑ is a unit vector of the line-of-
sight. In this equation, we have assumed the plane–parallel
approximation, so that the line-of-sight is taken as a fixed
direction, ẑ. Recalling that the number of galaxies in the
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infinitesimal volume of both spaces is invariant, the over-
densities in the redshift space δg,s and the real space δg are
related through δg,s = δg − (1/aH)∇zvg,z.

The galaxy density contrast in the real space, δg, is
related to the total matter density contrast δm given by
equation (10), through the standard linear bias model δg

= bgδm on large scales. The peculiar velocity fields of the
galaxies, vg, on large scales are expected to be related to
the CDM and baryonic matter fluid velocities, and the
explicit relation is determined by imposing the reasonable
physical condition, e.g., momentum conservation law for
each galaxy (Gleyzes et al. 2016). For simplicity, here,
we assume that the peculiar velocity fields of galaxies on
large scales are given by the total matter fluid veloci-
ties, vm, given in equation (10), as in the standard case:
vg = vm = −(a2 H/k2) f eff

m δm (see, e.g., Chan et al. 2012).3

Therefore, the resultant galaxy power spectrum in redshift
space is given by

Pg,s(k; t) =
[
1 + βeff(t) μ2

]2
Pg(k; t), (29)

where Pg = b2
g Pm is the real-space galaxy power spectrum,

Pm = D2
m P0 is the power spectrum for the total matter den-

sity contrast, and

βeff ≡ f eff
m

bg
= β + 1

bg Dm

[
ωc Dc� fc − ωb

Q0φ̇

Hρm
(Dc − Db)

]
.

(30)

This is a generalization of the Kaiser formula. In fact,
in the minimal coupling case, we have Dm = Dc = Db

and f eff
m = fm = f eff

c = fc = fb, and hence equation (29) is
reduced to the standard Kaiser formula. However, we found
that in the presence of the coupling between the CDM and
the scalar sector we no longer have the relation f eff

m = fm

as we have discussed, and it means that the RSDs are not
reliable probes of growth of structure. It is notable that
the RSDs cannot provide the true value of the growth rate
fm even in the simple case where the conformal and dis-
formal factors depend only on φ. Since in this case the
deviation from the standard formula is proportional to Q0,
this effect is suppressed when the background evolution
of the dark matter is almost same as that of the baryonic
matter. On the other hand, there is wider room for a sizable
modification of the standard Kaiser formula in our general
setup, even when either Q0 or the baryonic contamination
is negligibly small, i.e., ωb � 0, f eff

m can differ from fm by
O(1). To see this clearly, let us consider a toy model with
A = 1 and B = α/2X, where α is a coupling constant. In
this case, the background evolution of CDM is diluted at

3 We stress that even if this assumption is not valid, the coupling effect on RSDs is
still present as long as the peculiar velocity field of galaxy vg constains the CDM
peculiar velocity vc, i.e., vg 	= vb.

the usual rate, ρc∝a−3, since Q0 = 0. Let us then expand the
formula (31) in terms of the baryonic matter–CDM ratio to
neglect the ambiguity from the baryonic matter contribu-
tion. Assuming that the coupling α is tiny, i.e., αρc/φ̇

2 � 1,
the effective growth rate becomes f eff

m � (1 + α) fc. This
immediately shows that the single-redshift RSD measure-
ments cannot give a constraint on the linear growth rate fc

unless the contributions from the couplings �fc is fixed by
using other observables.4 This fact demonstrates that one
has to keep this new effect in mind when testing beyond
�CDM theories using the RSD measurements. Even if a
growth index γ ≈ 0.55 is obtained from RSDs in future
galaxy survey, it is still possible that the true theory is dif-
ferent from the �CDM model. In addition, in our example,
the quantity EG, which is related to the ratio of the Lapla-
cian of the Newtonian potentials to the peculiar velocity
divergence (Zhang et al. 2007), can be written as EG � (1
− α)�m0/fm, where �m0 is the present density parameter for
the total matter. Although EG is extremely useful for dis-
criminating the �CDM model and modified gravity models,
it only measures the effective growth rate in our setup.5

One way to obtain the actual growth rate of large-
scale structure is to observe the time-evolution of structure
directly by, e.g., tomographic weak lensing power spectra,
since the gravitational potential is sourced by only the total
matter density [see the Poisson equation (16)]. After fixing
the linear bias for each redshift by using other observations,
i.e., cross-correlation between the clustering of galaxies and
weak lensing (see, e.g., Hashimoto et al. 2016), one can
measure the coupling between the CDM and scalar field
from RSD measurements.

Now let us give a forecast for the accuracy of con-
straining the coupling from future galaxy redshift surveys
represented by Euclid (Amendola et al. 2018) and the
Square Kilometre Array (SKA) (Yahya et al. 2015). For
simplicity, we assume that the background dynamics are
identical to those in the Planck best-fitting �CDM. We use
the model based on the choice of the coupling A = 1 and
B = α/2X, and then the effective growth rate is given by
f eff
m � (1 + α) fc. We also parametrize the growth rate of the

dark matter as fc = �γ
m. In the Fisher matrix analysis, our

forecast is performed for the parameters {w0, wa,��, b(z)}
with the redshift smearing parameter and the target

4 The model considered in Marcondes et al. (2016) is described by two parameters,
the equation of state w and the (background) energy transfer parameter ξ (δQ in
our analysis is neglected). Once the constraints on background dynamics from the
observations such as type Ia supernovae and CMB are taken into account, only ξ

characterizes both the actual growth rate fc/bg and the deviation �fc/bg. Thus in
such a model, it is enough to measure the single-redshift RSDs, however, this does
not hold in a general setup.

5 In a general setup, the quantities EG can be written as E G = a3(ρm/ρm0)�m0/ f eff
m

and thus, strictly speaking, measure the combination of the effective linear growth
rate and the (background) coupling Q0. Therefore, the actual growth rate and the
coupling cannot be separated.
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Fig. 1. The 1σ and 2σ contours in the γ –α plane for the Euclid and SKA2
HI galaxy surveys. (Color online)

parameters are α = 0.05 and γ = 0.545. In figure 1, the
1σ and 2σ contours are plotted. As one can see, the future
galaxy surveys will be able to detect the effect of the cou-
pling α, the natural value of which would be of the order
of unity, if |α| � 0.05. Furthermore, once the actual growth
rate fc is determined by the use of tomographic weak lensing
power spectra, the galaxy surveys can improve constraints
on the coupling parameter.

5 Conclusion

We have shown that the additional interaction mediated
by the scalar field that operates only between dark matter
through conformal and disformal couplings changes the
continuity and Euler equations for cosmological perturba-
tions in a non-trivial manner, and investigated its impact on
RSD measurements in galaxy surveys. We found that the
effects of such modifications appear even at sub-horizon
scales in the presence of φ and X(= −gμν∂μφ∂νφ/2)-
dependence of the conformal and/or disformal couplings.
The effective linear growth rate, which is inferred from
measurements of the peculiar velocities of the distributed
galaxies, no longer corresponds to the logarithmic time
derivative of the density perturbation and is rather charac-
terized by both the density perturbations and their deriva-
tives for each species in a general situation.6 In other words,
information on the coupling is encoded in the peculiar
velocity fields and the true value of the growth rate of
large-scale structure cannot necessarily be constrained by
the RSD measurements themselves. The actual growth can
instead be extracted from weak lensing measurements, and
the coupling between dark matter and the scalar field can
be measured by using multiple power spectra of the galaxy
distribution. This fact will play a vital role in the RSD
measurement, and it will provide us a rich source of infor-
mation on dark matter and dark energy.

6 While this paper was being completed, Borges and Wands (2017) published their
work, in which the redshift space distortions in the context of interacting dark
matter and vacuum energy are discussed.
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