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ABSTRACT

Mathematicization for cell modeling provides an effective tool to verify the biological theory,
and the existing research mainly focuses on the description of cell structures. This article
then addresses the pattern question of cell division or morphogenesis by means of bubble
model with weighted membranes. In this study, we show that cell shapes including inter-
section angles at junction points depend on weights on membranes. For convenience, ad-
hesion and contractile force are considered together as a factor in construction of patterning
model. This model is also used to compare with experimental data. And the consistency
between our model and experiments is also obtained consequently. This system of differ-
ential equations with their boundary conditions theorizes the existing experimental models,
and improves the rationality of these models.

Keywords: bubble, cell pattern, differential equation model, variational principle.

1. INTRODUCTION

T HIS ARTICLE SHOWS A CELL STRUCTURAL MODEL of three kinds of green algae. The research on green
algae is of great significance, because some researchers agree that charophycean green algae are the
closest extant protist relatives of the land plants (embryophytes). Karol et al. (2001) pointed out that the
embryophytes (land plants) have long been thought to be related to the green algal group Charophyta, though
the nature of this relationship and the origin of the land plants have remained unresolved.

The cell model of green algae varies with each type, for instance, Coleochaete and Pediastrum exemplify
two ways of cell division (Millington et al., 1981; Ruhfel et al., 2014; Haig, 2015). Enlargement of
Coleochaete thallus is entirely caused by the division of peripheral cells when the size of cells increases to
two times for the size of the original cells while the dividing wall is perpendicular to the cell boundary
(Wesley, 1928).

Cells of Coleochaete grow during the division process (Dupuy et al., 2010; Besson and Dumais, 2011),
whereas cells of Pediastrum grow beginning with zoospores until they all reach full size (Gawlik and
Millington 1969; Millington et al., 1981). Each Pediastrum cell can generate a daughter autocolony with
exactly the same number and arrangement of cells as the parent colony. Tetrastrum, another genus of green
algae, is similar to Pediastrum (Ahlstrom and Tiffany, 1934; Krienitz and Wachamuth, 1991).
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The mechanism of cell division is an important research topic in biology, but it is difficult to describe the
division in each step because of its complexity. This article proposes a model describing the growth of cells
of Pediastrum by keeping the sum of all length of edges (including inner walls) shortest. Mathematically, it
can be understood by keeping new walls shortest in Coleochaete cell division and by keeping the sum of all
edge lengths shortest in Pediastrum cell division, respectively.

The geometrical shape of Coleochaete optimizes the building of cell walls. Biologists believe that
the division orientation of most plant cells can be predicted by their shapes. Hofmeister in 1863
noted that a new cell wall is usually perpendicular to the axis of maximal cell division. Léo Errera
further said that most of new cell walls of the plant cell division usually follow the shortest path
(Smith, 2001), often referred to as Errera’s rule. This opinion has also been verified by some
experiments (Rasmussen et al., 2013; Fukushima et al., 2015). There are some important findings, for
example, Sinnott and Bloch (1940) pointed out that cells split according to the phenomenon of radial
division.

Recent researches have also deepened the relationship between geometry and the model based on
Errera’s rule. Dupuy et al. (2010) and Besson and Dumais (2011) showed that the selection of plane of
division involves a competition between alternative configurations whose geometries represent local area
minima.

In contrast, Wang et al. (2015) tried to explain the cell division of Coleochaete based on the geometrical
problem of regional segmentation, which provides a mathematical model in the form of parametric
equation to describe dividing flat domains with more complex boundaries, especially for some nonconvex
domains. The ‘“‘regional segmentation” was initially raised by Wiener (1914) and he proved that ‘‘the
shortest line passing through two given points on the boundary of a given circle, dividing the area of the
circle in a given ratio, is an arc of a circle.”” Goldberg (1969) then generalized the problem that “Given a
convex quadrilateral, find the shortest curve which divides it into two equal areas.” This problem is still
unsolved (Klamkin, 1992). The system of equations and their boundary value conditions in the study of
Wang et al. (2015) were consistent with the Cartesian coordinate form by Besson and Dumais (2011). And,
this method in parametric form was also applied to simulate the expanding process for the nonuniform
division, and they discuss the formational mechanism of the outer boundary (Wang and Cong, 2016; Wang
and Zeng, 2018). Owing to the shortest wall mode, Coleochaete can adjust its strategy of cell division
according to the environmental changes at any time, which is conducive for its evolution (Yang, 1986;
Timme and Delwiche, 2010).

The division model like Pediastrum cells needs to be further theorized. Unlike Coleochaete, Pediastrum
seems to have a more optimal division option. In the division process, Coleochaete only pursues the
shortest wall, whereas the latter considers the minimal length for the entire cell borders, including outer
boundaries and walls between cells. Pediastrum follows an early prefabricated growth mode in which the
arrangement of all cells is fixed.

The bubble model can be adopted to explain the cell division of Pediastrum. The planar (two-
dimensional) double bubble conjecture, which held that the familiar double soap bubble provides the
least-length way to enclose and separate two given volumes of air, was proved by an undergraduate
research geometry group supervised by Morgan (Foisy et al., 1993). Morgan’s another group of un-
dergraduates (Cox et al., 1994) proved that the perimeter of the standard triple bubble is the shortest
among enclosures of connected regions. Wichiramala (2004) gave a weak approach to prove the planar
triple bubble conjecture.

The bubble model was also used to discuss the shaping mechanism of Drosophila cells. Hayashi and
Carthew (2004) introduced the bubble model to investigate the compound eye of Drosophila. But Kifer
et al. (2007) believed that cells differ greatly from bubbles in both their membrane and internal composition
since surface tension was shown to be determined to a large extent by the cortical cytoskeleton. Adhesive
cells have a tendency to increase their contact interfaces, not to minimize them.

The analysis on the experimental data (released by Ahlstrom and Tiffany, 1934; Maitre et al., 2012;
Chan et al., 2017) proves that the real process of cell division is far more complex than the mathe-
matical model.

One typical problem is that the outer angles on the cell boundary of Pediastrum, Tetrastrum, and of the
Drosophila eye are not exactly the same as described in the bubble models. It is considered for Drosophila
to be the result from the different roles of two Cadherins: E-Cadherin and N-Cadherin, and the analysis can
be found in Section 6. The distribution (Fig. 1) shows a diversity for the central tendency, in which
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FIG. 1. Results express the comparison of three distributions, in which the horizontal axis represents the magnitude of
the external angle (°).

Drosophila has a compact shape and Tetrastrum has a wide spread. The mean value, standard deviation,
and the kurtosis of each distribution are, respectively, as listed in Table 1, which shows that the outer angles
of the two algae expand widely (comparing with the retina cells of Drosophila). One reason is that the
shape of the outer cells is influenced by flagella on boundaries, especially for Pediastrum cells.

To develop the theoretic analysis on cell formation, this article uses variational method to clarify the
effect of surface tension and viscosity on cell shape, in particular, on its outer angle. The equations that the
cell edges (the boundaries and the walls) should satisfy and corresponding boundary value conditions are
deduced in this article, which provides an exact characterization of the pattern of the colony of cells,
especially a mathematical description for the included angle at the intersection for edges.

This article is organized as follows: Section 2 states the system of equations and their boundary con-
ditions. Section 3 presents the numerical simulations based on the model used in this article, and more
discussions are given in Section 4. The detailed deduction process and some experimental data can be
found in Sections 5 and 6 and Supplementary Materials.

2. BUBBLE MODEL WITH WEIGHTED MEMBRANES

A rule named ‘‘sharing principle”” means two neighbor cells (with the same area) share a part of common
wall as long as possible such that the total length of their boundaries and wall is minimum. There are two

TABLE 1. THE MEAN VALUES AND STANDARD DEVIATIONS
AND THE KURTOSIS FOR THREE DISTRIBUTIONS

Item Mean Standard deviation Kurtosis Skewness
Drosophila 147.73 9.054 -0.274 -0.096
Pediastrum 109.13 24.060 0.587 —0.554

Tetrastrum 98.67 19.115 -0.589 0.0865
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FIG. 2. Two kinds of cell models with sharing membrane: concentric circle model (left) and bubble model (right).

models satisfying ‘‘sharing principle’’: one is concentric circle model and the other one is bubble model
(Fig. 2). Obviously, the total length [. for concentric circle model is longer than that of bubble model. A
simple computation shows the ratio of their lengths is

. 3(1+v2)y/n(3v3+8n)
o =1.34581.
Iy 9+8v/3n

Therefore, the bubble model is the only cell model discussed in the following discussion. For conve-
nience, the outer surfaces (membranes) are called ‘‘boundaries’ and the inner surfaces (membranes) are
called “‘walls.”

Kiéfer et al. (2007) pointed out that cell adhesion and cortex contractility determine cell patterning in the
Drosophila retina. The task of this research is to find how these two factors affect the pattering. In the
construction of the cell model, the difference between adhesion and tension of cell walls and the outer
edges (boundaries) of the cell are considered as dominant for cell pattering because walls and edges have
different environment around them.

For simplicity, our focus is on a colony containing two cells.

For a colony consisting of two cells Q; and Q; with it boundary L, U L. (refer Fig. 3), we assume that the
two (outer) boundaries L, and L. (the boundary of the colony) can be denoted as

L: {x: o0 o, L : {x:p(t)’ t€ lte, T M

y=y(1), y=4q(),

P(r)(P(T)) . P(r)(P(1.))

FIG. 3. Two cell model with fixed total length.

Q2
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and the wall as

Jx=f),
Lb.{y:g(t)’ e t., t]. )

Concretely, the boundary (including the wall between two cells) of cell Q, satisfies the following:

L. L
LyULy: P(0)=P|,_y=P(t)=P|,_, = P(t")=P|_,. > P(t:)=P|_,; 3)

and the cell Q, has the boundary

LyUL: P()=P|,_, 2 P(t)=P|,., = P(T)=P|,_;. @)
Here, it has two pairs of conjunct points
P(@*)=P(T), P(t,)=P(t.)(=(0, 0)fixed it as the coordinate origin) 5
and the total length
T=t.+(t" —t)+ .~ 1)+ (T—1t.)( with t,=0).
The lengths for all three curves are individually
|La| = (t" =), [Lp| = (tc = 1), |Le[ = (T = 1). (6)
And, the two cells have areas
|| = 1% xdy—ydx, and || = lj{ xdy —ydx.
2 Jr,o1, 2 J-Lyu-Lo
2.1. Equations for model

Based on the physical properties of cells and the mentioned analysis, we construct objective function
(Lagrangian function) of variational problems with constraints as follows:

W=y (" = 1)+ (T =1.)) + Aot —17) +i3{(|91 | =Ao1)’ + (|| —A02)2}7 @)

in which Ag; and A, denote the ideal areas (target areas) for two cells (domain) Q; and Q,, respectively.
Our goal is to find a group of curves L, U L, U L. such that the difference {(|Q] |—Ao1) + (]9 —Aoz)zﬁ
reaches the minimum under the assumption of fixed total length 7 of these curves. Parameters 4; and /1,
show the differentiation between the inner wall and the boundaries, they are considered as a joint ex-
pression of adhesion and contractile force on different edges.

Using A3 to divide the formula, one can get a simplified objective function

W:W(;L, ,LL, (P’ lpaf’ g’p’ q)
=4+ T 1)+ 1= 1) + (|2 = Aor) + (12| - A)?

r* T
- 2 2nd / 12 12 d}
A{/O \ @+ Y (nde+ . \/ PO+ (dt
+u / o+ 0d (®)

2

i1 .
+{5 [/o (o' @)= ¢ P D)dr+ / (f(t)g'(t)—f'(t)g(t))dt} —Am}

1 f. -, /
+{§ [ / (F (D80 —F(g 1) dr + / a0 O) dt] _AOZ}’

(w

in which A=1,/73 and u=7,/23. The constant 1/u is the ratio of adhesive tensions on the boundary to
inner wall. From the junction condition [Eq. (5)], we have that
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(") =f()=p(T),

Pa=KD): { V()= g(t") =q(T):

and

P(1,)=P(t:)=(0,0) : {
Introducing perturbation functions and their boundary value conditions

La : ((Pl(t), lljl(t))’ re [0, t*]a
Ly - (i, &1(1),  telr, ]
Lc : (Pl(f), ql(t)), re [tca T],

and

{P(0)=P(tc) 2 (01(0), Y1 (0) = (fi (1), 81(1)) = (P1(tc), q1(1:)) = (0, 0),
P)=P(T) : (¢, (t), Y, (1) = (11 (t"), 81(7") = (p1(T), g1 ().

Then, Lagrangian function becomes

W) =W, ;o +ep, Y +ey, f+efi, g+eg, p+epr, g+eqr).

p(0)=f(1)=p(1:)=0,
l10(0) :g(tc) = q(tc) =0.

WANG ET AL.

(€))

(10)

(1)

12)

13)

One should take notice that the constants t* and z.. in Equations (13) and (8) depend upon the parameter ¢.
By discussion at the saddle point (the stationary point) é=0 (see Section 5 for detailed deduction), that is,

L W(e)|,_,=0, one has the equations for the three curves:
de e=0

1 d {(p/’ lp,} !/ !/
el = C(A _
d /’ ! , ,
kg \/{;2%}/2 =(CAn)+CA){g, —f'},
8
d {P/, q,} _ / ’
a W —C(A()g){q , =D }, te ([C, T)
In the mentioned Equation system (14), two notations are
C(Agr1)
"(0) 1:(0)
= /0 (@' (1) = @' (O (1))dr + . (f(g () —f'(1)g(1)dr 240,
(0)
C(An)
1(0) T
=/ (f' (et —f(D)g'(1)dr + / . (P (0q(t) = p(1)q (1))dt = 2A0p.
(0) 1(0)

2.2. Boundary value conditions

(14a)

(14b)

(14c)

(15)

(16)

Let us see the junction points P(t,) = P(¢.) =(0, 0) and P(t*) = P(T), the joint point conditions for Equation

system (14) are as follows:

{01(0), ¥,(0)}-

~HPO. WO} | il (10). GO} |~ AP (0). ¢ 1:(0)}
Vo +y2©) VIO +870) VP 0) +q(10)

+{p1(D), q1(D)}-

Ho' @O, y'@ O}y w{f'@©0). g0} + Hp' (D), 4 (D)}

Vo) +ypw)  VIIEO)+eO)  VpAD+a*T)
=0.

a7
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T
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o (1)(P(1,)
Tz T
T3 3
T
13 Tl T
2
P(t*)(P(T))

P(1.)(P(1;))

T2
T ' T
FIG. 4. The diagrammatic sketch for tangent vectors at two junction points.
By introducing the unit vectors (refer to Fig. 4)
T, - PO VO} T, - PCO) Vo)) (80
VOO +y2(0) Vo )+ (0)
_ Vo) gy L {0, g0 O} 18
02= > > ) 12= > > ) (18b)
VI (1(0) + 87 (1(0)) VI (0)) +¢7(17(0)

{P'(2(0)). ¢'(1(0))} T,- DD} (18¢)

O P 0)+ 2 0) VA AT

and using the arbitrariness of the vectors {¢,(0), ¥,(0)} and {p|(T), q1(T)}, the mentioned Equation (17)
becomes

= ATo1 + uTor — ATo3 =0, (192)
iTll—,uTlg-l‘/lTB:O. (19b)

Therefore, from Equations (19), we have

cos 012 = cos 03 =(To1, Too) =(T11, T12) =(To2, To3)=(T12, T13)= %, (20a)
2
cos 013=(To1, To3)=(T11, Ti3)=~1+ ik (20b)

Here, the (T, T») means the inner product of two vectors T; and T,. And 0;; denotes the intersection
angle between two vectors T;; and Ty (i,j=1, 2, 3; and /=0, 1).
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P(r*)(P(T)) P(t)(P(1.))

P(r*)(P(T)) P(t.)(P(1.))

FIG. 5. Effect of sizes on the shape of colony with equal weight (all adhesive tensions on boundaries and wall at each
junction are equal). Two cells have equal size in the right side figure.

Now let us summarize the previous discussion.

Theorem 1. A colony of two cells satisfies a weighted bubble model, and its edges comply with the
following boundary value problem:

d /’ /
the outer boundary L, : )»d— M =1 {y, —¢'}, t € (0, t); (21a)
t /q0'2+lﬁ'2
d /’ !
the inner wall L, : g, \/{% = (k1 +12){g’, —f'}, te ', t); (21b)
d /, /
the outer boundary Ly : A — RSN =r2{q, -p'}, tet, T) (21c)

dr /p/2+q/2 -

with the boundary condition on junctions that the inner wall L, is on the angular bisector of the angle 20
between two outer boundaries L, and L,», and cos 0= %

One can find from Equations (20) for positive constants 4 and p that the two tangent vectors Ty; and To;
starting from P(0)=P(z.) have an acute angle 013, and that the tangent vector Ty; has an obtuse angle with
the tangent vector 6, pointing to P(.). The two outer boundaries have the same angle with the inner wall,
that is, the tangent vector of the inner wall is on the angular bisector of the intersection angle of the
boundaries, 013 =201, =20,3 (refer to Fig. 4).

Particularly, Equations (20) show that the three tangents have an equal intersection angle 27/3 at each
junction (Fig. 5).

Turn to the means for the parameters A and u [refer to Egs. (7) and (8)], we assume that the
colony of C cells is around P cells (refer to Kifer et al., 2007; Gemp et al., 2011 for discussion
on the compound eye of Drosophila). If C-C tension coefficient p (on the wall), mediated by both
E- and N-cadherin, is weaker than C-P tension (on the boundaries), 4, which are mediated by E-
cadherin alone, that is, A > p, then the angle 0=0y,= arccos% — /2 (so, the intersection angle
between two outer boundaries becomes m as g — O+). On the contrary, 6 becomes zero as pu
increases to 2/.
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FIG. 6. Effect of tension on the pattern of cell colony. The top line represents 2-bubble cells, the lower line represents
4-bubble cells. The tension on the inner wall(s) decreases from the left to the right.

3. SIMULATION

The 2-bubble model shows in the first line of Figure 6 the pattern varies with the change in tension. The
adhesive tension on the wall in the first image is bigger than that of the second image, and so on.

To simulate the 4-bubble model (Fig. 6), we assume that every cell in the colony has the same area , the
radii for the right cell and the upper cell are denoted by r; and r,, respectively. Let

D,(0) := \/571—69+4\/3_‘cos0 sin(% +0);

D(0) : =21 —30)sec?(1/6— 0)+3 tan (g - 0) :
333 cos 0+2(51—60) cos (/3 +0) + /3 cos (30) + 12 cos? Osin )

©:(0) = 2sin (/3 +0) ’
D) : = %(0) D3(0) + (27— 30) (@12(0)+2\/§sin2 (g +0))se02 (g - 0);
s(0) := % (\/5(30—271)5602 (g - 0) - 3\/6) sin (g + 0)

+/30,(0)D(0) —3v/2 sin (g + 0) tan (g - 0)] .

And, let
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05(0): =m/2-0;
) Vér
\/571—60+4\/§c030 - sin (n/6+0),
01(0) : =2(57/6—0) (the central angle of the right cell),
2v/2m cos 0

r1(0) :

x1(0) : =s(0)+ ;
\/57—60+4v/3 cos 0 -sin (/6 +0)
p0): = 211/%0) sin (27/3 — 65(6)).

Then, the area of the right cell is
1 1
Sy=5n’ 20, +1/3)+2- Epsing - (x1 - 9),
in which the center of the right cell is (x;(0), 0). And, the area of the upper cell is

1 1 1
Su=75 %92+2-—(y2+psinz) (s+psinz) ~2.2pcos_sin_,

2 2 3 3 2 33
in which the center is (0, y,(0)) with
_ V3n ) (T (T T
y2(0)= 3.00,0) [\/5(271—30)56:0 (6 - 0) sin (E + 0) + @ (0)P(0) tan (E - 0)} ,

and

0,(0)=4mn/3—20 (the central angle of the upper cell),

V3 sec (2 - 0) (D1(0)D(0) - 3v/2sin (2 +0))

0= g O (2n=30)5c E —0) +3tan(z 1))

For a colony of Pediastrum (e.g., Pediastrum boryanum) or Tetrastrum Chodat, the difference between
the walls and the boundaries can be described as for cells of Drosophila, just the prongs on the boundaries
should be noticed.

As an extreme (limit) case, 41>y, the division of Coleochaete cells can be thought as a connection with
this case, especially, for the initial division from one to two cells (e.g., refer to Besson and Dumais, 2011;
Wang and Cong, 2015). A division for a disk with area 47 by using two vertical diameters has a total length
(circumference and two diameters) I3 =8 +4n=20.5664 being bigger than that of the 4-bubble model

18(v/3-3)m+8V31% +(2n+3)\/6m(4n—3+/3) — 108
( i il (i ) =20.384

l =
total 61— 9\/§

9—+/3(872-6V3n
as the case of the first image in the second line in Figure 6 (where r, = % =2.56355).

4. DISCUSSION

In this study, we investigated the bubble model with weights for a colony of cells. Variational method is
critical for the model establishment. As a simple case, 2-bubble cell model with weights is investigated in
detail, this method can be used to consider 3-bubble cell model. Hayashi and Carthew (2004) introduced
this cell model, but have not given consideration to the difference among different edges of tensions and the
consequences. For a more complex bubble model, such as N-bubble model (N > 4), the existence and the
solvability ‘‘remain unproven’’ (Morgan, 2009). Hence, a general case for weighted edges has no result yet.

This article discusses the issue with weight, especially on the theoretical analysis on the construction of
differential model. The result given shows that all edges (the outer boundaries and the inner walls) are arcs
with different curvatures, and that accompanies the angles of the three tangent lines at the junction points
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determined by the weights on edges. These weights describe the adhesive tensions that vary according to
the different edges of the cells. Based on analysis of angle data, we think that this model is more suitable to
describe the shape character of a cone cell group in Drosophila retina. The distribution of the outer angles is
closer to Gaussian, and the average is 147.73° for experimental data in Chan et al. (2017). However, this
average is different from the analytical results of Hilgenfeldt et al. (2008), in which experimental values are
in (130°-9°, 130° +9°), an simulation value for their model is 128°.

We also use it to explain the formation of green algae cells such as Pediastrum and Tetrastrum (refer to
Section 6). Flagella of these two kinds of cells of green algae have a great influence on the shape of the
outer boundary of cells. Although the direct result of this influence is also reflected in the wide range of
these angular distributions, the data show that they obey the normal distribution (Gaussian).

Our results demonstrate mathematically how the pattern of a colony of cells can render the role of
adhesive tension in a developing biological structure. We suggest that the relationships between adhesion
and colony pattern might contribute to the diversity of patterns seen in Chlorophyta.

5. APPENDIX A1l: DERIVATION ON CELL MODEL

We discuss how to get Equations (14) and its boundary value condition Equation (17). Let us substitute
Equations (11) into Lagrangian function Equation (13), it has

W) =W, p; o +ep, Y +ey,, f+efi, g+eg1, p+epr, g+eqr)

, 7@ 2 R
=A{ /0 V@ @+ 2040+ (/1) + ey 1))

T
v [ Jworean (t))2+(q'(r)+sqn<r))2dr}

(&)

t.(g)
R VI O+ 10 + 0+ e (0) ds

1 t*(e)
+ {5 [ /0 ((@(1) +e@ (W' (1) + W1 (1) — (@' (1) + e L (D)W (1) + e (1)) dr

(22)

1c(e) 2
*[(_) ((FO+e AOXE 1)+ egh () = (1) + & f4 (r))(g(t)+ag1(t>)>df] ‘Am}

al

T 2
+/(‘)((P/(t)+8 PLONg(@®) +eqi() — (D) +e pl(t))(ql(t)+86/1(l)))dt] —Aoz} :

1c(€)
[ N ((F' (D) +e LN +eg1 (D) — (f(1) +& L)) (1) + g1 (1)))dt

The first derivative of W with respect to ¢ is

#®) , ’ / ! !/ !/
dEW(s)=)L / 209" +e@' D@y + W+l W)

- o 2\/(q0’+8(/’/1)2+(¢/+8'///1)2

dr (e

+ \/((P’+8<p’1)2+(‘/f’+8Wl)2‘t=f"(t‘> td—((sp)

N /T 2@ +ep P+ Hed)d)
we 20/ (0 +ep' )P+ (g +eq )’

dt.(¢)
—\/(17'+8P/1)2+(q/+gq/1)2|z=t(-(8)' }

de

"y { /W 2+ O +(E +eg'Dg)
ro 2V o)+ (g g )
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dr.(e)
de

+ \/(f’+67”1)2+(g’+88’1)2|r=tp<s> '

dr*(e)
T 42

t*(¢) , ,
- [ /0 (@) +201NW O+ e, ()= (¢ O+ 2, YWD+, 1) ) e

t.(8)
+/ﬂ(‘) ((f(t)+8f1(t))(g/(t)+8g1(t))—(f/(t)+8f1(t))(g(t)+8g1(t)))dt—2Ao1]
1

" (e)
5 [/0 (@' |+ @' +2e0, ' | — @'Yy — @' | (1) = 29" 1, )dr

(@)
+/ (g1 +fig +2e figi' —f'g1—f1g=2¢ f'181)dt

1*(¢)
dr* dri(e)

+((@+ep)W +ey 1) = (@' +e@" D)W+ e )] 2o - de

dr,
+((F+e fi)g +eg )= (' +e fg+eg)l, ¢ - t(a)

—((f+e fi)g' +egd D)= (F +e fr)E+eg)] iz -

dt (8)
Cde

t(e)
+ l / " ((F'+e fL0)EgM) +egi1())— () +¢ fLr(N)g (1) + &g 1(1))dr

T
+ / ( )((p’(t) +ep' | (D) q(0)+eq1 (D) — (p(1) + ep1 (D) (1) + &4 (1))t — 2A ¢,

1 1.(¢)
‘3 [ " (f'g1+f 18 +2¢f" 1y —fg'\ —f18' —2¢f18' 1 )dt
t*(e
T
( )07’611 +p'1q+2ep' \q—pq'\ —p1q —2ep1g’ ) )dt
t.(e
drc(e)
H((+of g+ 880 = (F+e)(E +68 D)l o
dr*(e)
—((F"+ef (g +eg) = (F+efi)E +e8' D)1z o Tde
drc(e)
— (@ +ep' Ng+eq)—P+ep)(d +eq' D))l ds} .

It is the saddle point as ¢=0, that is,

d ) 1 1 + / +
9wl _y=2 / ¥ ‘Wldz+/ PPitddqs
de gD,Z_HVZ 100) \/p ’2+ 12

+ WL:;»@) 'TL:o‘ P2+ -0 ~j|g=o
#.(0) dr.(e
+'u{/ fhHites dl+m|t 1(0) C—()f'=0
g e

(0) f/2 +g/2

dr*(e)
- \/f/2 +g’2|f:z*(0) Tde lo=0 }
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(0) 1:(0)
+ / (@' ()= @' (O (r))dr + / (F(g' (O ~f (1)g(1)dr—2A0
0 (0)
1 ! (0) ! / / !/
3 ; (U + o' =o'V — @' (1)) dt
1c(0)
e (fg +fig =fa1—f18)dt
*(0)
dr* (8) dlc(g)
+(Y' =" Wi= o) - & lo=o+(fg' 4 le=o
dr (e)
_(fg f )‘t (0) d8 |e 0]
t.(0)
+ (f' (g ~f(n)g'(1))dr + / (P (D)~ p(0)g (1))dr—2A0
(0) 1. (l
1 (© / / / /
'3 (g1 +f1g—18' —fig))dt
t*(0)
T
+ (0)(17'611 +p'1q=pq' 1 —piq)dt
te
dz.(e) dr*(e)
+(f'e =110 '?E:o_ (f'g=rfe)=r Tde ls=0
drc(e)
- (P,f]—PCI,)L:z((O) 'T |e=0] :
Taking integration by parts, then it follows that
dW(g)‘ _, ) do Yy, =ro Pri+da -1
SN Joragr g
ro d {¢.y} ! d {4}
- Q1Y ——dr- P1.q — = dr
/° g Sy r(-<o>{ P A g

dr*(e)
/2 2
/o Y |z:z*(0) '?E:o_

dz.(e)
2 2
pr+q |l:t(.(0) '58|s—0}

ffi+gg i=no d {f.¢}
M{ /2|;;((0)) . {fl»gl —

VItes?
dre(e)

2, 2
fr+g ‘t:r(.(()) de

t(0)
+ [ /0 (@' (1) — @' (D (1))dr + o (F(ng' ) —f(1g())dt—2A0

/f/2 +g/2
e dt*(s)
f/2+ /2|z #(0) de S_O}

1.(0)

L opi=o) 0 [ o =20/,
§<P1<P1 /0 ? Py,

+(fe1 -fi8)

dr*(e)
de

dr*(e) |
de 7

+H(Y' = 0"Wi2r0) -

_(fg/ _f/g)|t:1*(0) .

t.(0)
(0
;8+/@<%5—%@mr
t*

dre(e)

|L 0+(fg fg)‘t((O) de |L 0

01
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T

1(0)
+[ (F'(Dg®~f (g (1)dt + / (P'(ng(t)=p(t)q ()dt = 2Ap

%(0) 1:(0)
1 1.(0) © y '
5 (fig—fe)liw — ) (2f'g1-2f1g')dt
(0)

T
+(P1a-pa)l; o) - / (2p'q1 =2p1q')dr

1:(0)
dzr.(e) dr*(e)
+(f'g=rfe))i=r0) - # lomo— (F'g =18 )= r0) - e la=0
dt.(e)
- (P'CI _pq,)|t:t5(0) Tde |s=0] .

Now we study the terms with integrals and with junctions separately. First, let us see the term with
integrals:

*(0) d /’ / T d /’ /
0=i{_/ {(pl’lpl}.a {(p ‘/j} dr- {pl»‘]l a {p/Zq}/Zdl}
0 / @+ 1(0) VP tq

0 d {f.¢}
+ug - / fi. @1} —=—=dt
{ (0) Voah g VP +g?
1(0)

()
+ l /0 (eY' (= @' (h(1))dt + (f(ng' () —f'(Hg(1))dt —2A01]

(0)

1 (0) 7(0) )
s [/0 (2¢1W’—2¢’W1)df+/ (2f1g’-2fg1)df]

2 “(0)

1:(0) T
+ [ 0 (f’(t)g(t) _f(l)gl(t)>dt+ /(O)(p/(t)q(t) _P(l)q/(t))dt—ZAm]

1 1.(0) T
5 [—/ (2f'g1-2f1g)dr— / (zplm—zplql)df] . (23)
*(0) 1(0)
By using the notations
C(Ao1)
r0) 1:(0) 24)
= / (Y ()~ @' (W (1)dr + (f(g' O —f'(1g())dr —2A0,,
0 (0)
C(Ap2)
1.(0) T (25)
= (f' g —f(n)g'()dt + (P (Dg(1)—p(t)g () dr — 2A¢»;
#(0) 7:(0)

the term with integrals Equation (23) becomes

o d {¢.v} ! d {9'.d}
0=/ —/ PRS- UALS SviRy [y P W L 8 Y
{ 0 { ! 1} dr /(/7,2+$,2 tc(O){ b dr /p/2+q/2

Oy 4 )
+uq- / fi.81}— ———=dt
{ o V0 g
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(0) 1.(0)
+C(Aor1) - / (901%0/_40/‘#1)(”"'/ (fig' —f'g1)d
0 (0)
1(0)
+CAp) - |- (f'ei—fig df—/ (P'q1—p1q')de
(0)
"o d {o v}
- RRN a7 =} —A— . dr
/0 {oi ¥} l Aoy, — o'} ar Y
oY
! d {¢.4d}
+ {pi.a1}| CA{d, —p'} - i — | dt
2:(0) [ t\pP+q”
t.(0) d /)
w [ e | (Chonrcannle, -r-n s AL g (26)
t*(0) f/ +g/
The arbitrary of the perturbation functions implies Equation (14), that is,
cd {e Y} b .
Gy W =CAn{Y, -9}, t€ (0, 1) (27a)
d !
{f]izg} =(CA+CANg. -f'},  te, 1) (27b)
d /’ /
4 P d} _camid, i te ., T). 27¢)

dt A /p/2+q,2

If A=y, it has that the sum of the coefficients in the right hand side of Equations (27a) and (27c¢) is equal
to the coefficient in the right hand side of Equation (27b). That shows the curvature relation for these three

curves. These curves are indeed arcs.
For the points of junction, it has

| Pe Y i) PRI e
=4 T =0 +—/2+ 3 li=1.0)
@Y a

drt(e)
2 2 2 2
SR VA L i PR 'TL::O_ PHq,

+#[ff1+ggl = 1.(0)
1=1'(0)
VI”?

dt.(2)
[en | 12
AL+ 8 =00 '?h:o_

1
+ClAn) - 5 [(Wl o )iZ6 + (f1 - fi1g)

dz.(2)
XON T |é::0

dri(e)
\/f’2+8/2|z:z*(0> Tde |£=0]

1.(0)
(0)

;o dr dt,
+((plp_§0lp)|t:t*(0)'d_ig)|z 0 (fg f )|t(0) _((qg)L;:o
dr
(g == - dis) |£=0]

r*<0)+(P16] pa1)l)

dz.(e)
de

+C(An) - [(flg -fe1)

+(f'g=feN)i=r0) -

dr.(e)
~(P'a=rd)l—r0) =g, |£—0] :

1:(0)

dr*(e)

|g:() - (f,g_fg,)‘t:t*(O) ’ “de |g:0

(28)
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Specify the data for every point as follows:

M, l//} C(Am)
/q0’2+l///

+{{w1,w1}-[ Moyt o)y y, }]
/§0'2+l///2

wf' g} +C(A01)—C(A02)

VA

dr*(e) 2, 112 2, 2
Y h:o'li\/@/ +y —,U\/f/ +g

0:{<P1’¢1}'[ v, - }] li=o

+{f1»81}'l— {8 —f}]

C(Am)

(o0 =0~ ')+ 52 g 1 )]}L—z*w)

+ {{pl,QI}'[_ Hoodi C(A()Z){—q,p}]

2

wf' g} L= C(Ag) +C(Ap2)

Vi 2

dt.(e) 2, 2 2. 2
g =0’ [—ﬂ»\/p/ +q T/ +g

+{f1781}'[+ {g —f}]

CA
o e 0+ “E (e )~ pq))”l,_m

MAp'.q'} + C(Ap)

+{P1, 6]1}' [\/mz‘ ) {q’ _P}‘| |t:T'

According to the boundary conditions Equations (10) and (12), one can find at r=¢"(¢) that

Pt (&) +ep (17 (e), Y(t" (&) + e (17 (e) }
={f(t"(e)) +¢f1(t"(¢)), g(r" (e)) + eg1(t" (e)) }
={p(T)+ep1(T), ¢(T) +eq1(T)}.

Compute derivative with respect to ¢, then we have at t=¢"(¢)(r=T) that

(29)

(@ OF @)+ @1 (1) +e, (OF (&), W' () + i, () +e (D (2)}
={f' ()" (&) + (D) +efi (O ), &' (1) +g1(t) + &g | (D ()} (30)
={p1(D), q:(T)}.

By a similar discussion to Equation (30) at r=¢*(0)(t=7), one has analogies for the points
t=1.(0)(t=1,(0)=0) from the conditions Equations (10) and (12). There are six tangent vectors in Equation
(29), we rewrite them individually:

Wp%]"M\z:o
¢l2+l//l2
Moy} —uff. gt
+ l{@l’ ¥y} T, 2 ] =)
Jor+ur NG
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_i{p/sql}
{Ph‘h}'w
Mr'.q'}
+1P1,» : =
{ 1 C]l} p,2+q,2 |t T
_/’L q),,lp,
I P e AL

Pty

- [{pl (T)— @' ()" (&), 1 (T) = /' (" (0))F* (8)} -

{f. g’}

+

+{fi, g1}

Ho! (). ¥'(* (0}
Vo 0+ (0)

— u{f'(£*(0)), ¢'(t*(0)} 1 |
Ve O)+¢2 ) |

+{p1(T) £/ (O (), 1 (T) — &' (O (8)} -

— P (100)), ¢'(1(0))}
VP2 (t(0)) +¢'%(1.(0))
u{f'(t.(0)), g'(1.0))} ]
VI(0) +g(20)) | 7°

+v l{q)] (0) =P/ (1))t (&), Y1(0) = ¢ (1 (O))1' (&)} -

+{91(0) = f (t(0)1 (&), 1, (0) — &' (102 (&) } -

Mp'(T), (T}
VPHT) +q*(T)
—2{¢'(0), ¥/'(0)}

\ @(0)+y*(0)

+{p1(D), q1(T)} - [ Mo/ @O, Y/ O)}  p{f'((0)), g (0)} ]
Jorwoy+yprao) VIO +g o)

+{p1(D), (1)} -

={01(0), Y, (0)} -

+ [—A\/ @ (t*(0) + "> (*(0) + f’z(t*(O))+g’2(t*(0))] @)=

_i/CO’ICO lcoa/co
+{0,0), 4, O} l (P/00). 40} | #{f60), g 10N} ]

VPH0)+q%1.(0)  VF1.(0) +g"%(1.0))

* [’~\/p/z(rc(0)>+q'2<tc(0>)—u f’z(rc(O))+g'2<t6(0))1 A G

Mp'(T), q'(T)
(), gy - 20D 31)
VP (1) +q'~(T)
Let us see the terms with the coefficients C(Ag;) and C(A(,) at the junctions in Equation (29), it has
C(Aor1)
{o1, ¥} ) {v, —(P}] li=o

CAo1)

C(Ap1)-C(A
2 {_l//"/’}] +{fi.&1}- CAo1) — C(Ao2)

5 {g,—f}]

+ {{q’l"/ll}'

ClAp)

T(fg'—f/g)] }|t—z*(0)

dri(e C(A ! / ! /
+liﬂkw'[ (Oﬂ«wﬁ—¢¢%%%-fgn+

de 2
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+{{p1,q1} C(AOZ){ qp}]+{f1,g1}' _C(AOI);C(AOZ){& —f}]
I e e (S S pq))]}l,w
+um%}[g%2m~mﬂnl
=wh%}[““”w—-ﬂho
+{wmwﬁlcmm{lp}1+mg& gﬁﬂégﬁﬁwffﬂ
o

N C(Ap2)—C(Ag1)

(@(q1(T) =)= (P1(T) = )

(f(qi(T)—g)— (1) —fl)g)l } li=r0)

2

+{@hm}c(w{qpn+Mgﬁ ‘““?Cwmgwﬁ]
+ | CAZEAD (1 0)- g1~ (010 -0e)

C(AOZ)((<p1(0) —p1)g—p,(0) - ql))]}lt_tra»
Hmﬁg-“f”m—m]nr
=Wh%}[ah”w-ﬂuo
+{{f1,g1}~ w{g, —f}]

+ | L D =pu1) -+ C(AO”;C(A(”)(f(m(T)—g])—(pl(T)—fl)g)]}|,_m>
+{m@ﬁ[1£@2}g@2@_¢ﬂ

2

+{ri. a1}

=wPM}[C

+{{f1»81}'

C(Ap1)—C(Ap)

c@A 02)

FW1(0)—g)— (@10 —f1)g)— ——(¢,(0) - g—p- %(0))]}|¢_Q(0>

C(Ap2)

3 {g, _p}] =7

(AOI){lp - }] |z 0

C(Ap1) - C(Ap2)

2 {g’ _f}]



Downloaded by "National Science Library, Chinese Academy of Sciences' from www.liebertpub.com at 07/18/19. For personal use only.

WEIGHTED CELL MODELING BASED ON BUBBLES

+lC(A02)(f(q1(T) -1 —fg)+ S0 “(fgl—flg)]}uﬂ*@

+—{{ﬁ’gl}' _(XAm2+(XAM){g’—f}]

+ w(ﬂ%(0)—g1)—(qo1(0)—f1)g)— @ ”)(wl(m 9-p- %(@)HIFMO)
o ai} [ Loy, —p}] o1

= (o) | 9. - }] rmo

+{{f1,gl}.l‘cg‘02){g, 5 +[C( %) (¢ gy (T) - g1) - (pl(T)—ﬁ)g)]}L:,*w)
+{ B~ CAR) 5y, 0)-0,0) 81~ C42 (9,0 - - ¢<0>>]},_m

ook [C(‘g‘”) 4. —p}] ot
={on )| “C - }] o+ S {010, 11O} - {80
=0.
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(32)

Equation (32) tells us that it becomes zero combining all terms including C(A¢;) and C(A(,) in Equation

(29). And, by using Equations (32), (29), and (29), it follows that Equation (27) satisfies

{01(0), y1(0)}-

[ Ho O WO} | i 00). )} | = i{p(t(0). q(tc(O»}]
Vo0 +y7©) VGO + 800 0+ 470
+{p1(T), (D)}

l Ho/ )Y/} wff ¢ O). g O} Mp/(D). gD} ]
Voo +pe o) VIREO) P 0) VM + 1)
=0.

Using the notations

{¢'(0), y' (0} T, = {o' (O, ¥'("(0))}

V0O +y0) Vo) + 2 0)

_{f10)), g1.(0)} @), g0y}

- 7 7 ’ T = 2 7 ’
VI (t0) + g (2.(0)) V2 (0)) + g (1*(0))

P, ¢0)} T P41}

VPO 0) A+ A

and the arbitrariness of vectors {¢(0), y,(0)} and {p\(T), qi(T)}, Equation (33) becomes

Tor =

(33)

(34a)

(34b)

(34c)
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600s

FIG. 7. Experimental values of 6 are usually lower than the theoretic values (horizontal lines) for three record times:
60, 300, and 600s. The contact angle 0 results from the balance between the adhesion tension and the cortex tensions
for homotypic ectoderm (ecto), mesoderm (meso), and endoderm (endo) doublets during contact formation.

By solving Equation (35), one gets

cos 013 =(To1, Toz)=(T11, Tiz)=—1+

—ATo1 + T — AT3 =0,
ATy, —MTIQ +AT3=0.

12

272

c0s 012 = cos 023 =(To1, Toz)=(T11, T12)=(To2, To3)=(T12, T13)= 2—P;,

TABLE 2. DISTRIBUTION FOR THE DATA OF THE DROSOPHILA EYE

No. Group Frequency Probability Gauss Error

1 0, 120] 0 0.000000 0.001607 -0.001607
2 (120, 123.89] 1 0.004717 0.005432 —-0.000715
3 (123.89, 127.78] 2 0.009434 0.015276 —0.005842
4 (127.78, 131.67] 6 0.028302 0.035748 -0.007446
5 (131.67, 135.56] 13 0.061321 0.069618 —-0.008297
6 (135.56, 139.45] 19 0.089623 0.112821 —0.023198
7 (139.45, 143.34] 28 0.132075 0.152148 —-0.020073
8 (143.34, 147.23] 31 0.146226 0.170746 -0.024520
9 (147.23, 151.12] 36 0.169811 0.159456 0.010355
10 (151.12, 155.01] 31 0.146226 0.123919 0.022307
11 (155.01, 158.9] 22 0.103774 0.080139 0.023635
12 (158.9, 162.79] 12 0.056604 0.043127 0.013477
13 (162.79, 166.68] 8 0.037736 0.019314 0.018422
14 (166.68, 170.57] 2 0.009434 0.007198 0.002236
15 (170.57, 176] 0 0.000000 0.001335 —-0.001335

“Gauss” represents the value of corresponding Gaussian distribution.

(35a)
(35b)

(36a)

(36b)
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Gaussian distribution comparison with data for the Drosophila

@@ Histogram  ===Gaussian distribution
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FIG. 8. Angle distribution of Drosophila cells.

6. APPENDIX A2: SOME DATA EXAMPLES

Zebrafish gastrulation cell, epithelia cell in Drosophila retina, and cells of two green algae including
Pediastrum and Tretrastrum are used to test our model.

6.1. Cell sorting in zebrafish gastrulation

Maistre et al. (2012) described the size of the cell—cell contact determined by the balance of forces (cell
adhesion and cortex tension) at the contact boundary: cos (6)=7;/(27,,,) (Where y,=27..— ). Here, the
contact angle 6 results from the balance between the adhesion tension o and the cortex tensions at the cell-
medium 7y, and cell-cell interfaces y,. during zebrafish gastrulation. We find there are some angle errors
between the theoretic values by arccos Z;m and the corresponding measurement values, the latter is usually
lower than the former (Fig. 7).

TABLE 3. COMPARE GAUSSIAN WITH THE DISTRIBUTION FOR OUTER ANGLE 0

No. Degree Group Frequency Probability Gauss Error
1 35 (0, 35] 0 0 0.001534488 -0.00153
2 45 (35, 45] 1 0.014925 0.004975289 0.00995
3 55 (45, 55] 1 0.014925 0.013607338 0.001318
4 65 (55, 65] 1 0.014925 0.031392641 —0.01647
5 75 (65, 75] 1 0.014925 0.061091721 -0.04617
6 85 (75, 85] 5 0.074627 0.100285172 —0.02566
7 95 (85, 95] 7 0.104478 0.138864402 -0.03439
8 105 (95, 105] 14 0.208955 0.162197807 0.046757
9 115 (105, 115] 5 0.074627 0.159808132 —0.08518
10 125 (115, 125] 17 0.253731 0.132816679 0.120915
11 135 (125, 135] 5 0.074627 0.093112117 -0.01849
12 145 (135, 145] 7 0.104478 0.05506297 0.049415
13 155 (145, 155] 3 0.044776 0.027467107 0.017309
14 165 (155, 165] 0 0 0.011557557 -0.01156

The angle 0 is the outer angle at every junction on the outer boundaries of cells of Pediastrum.
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FIG. 9. The outer angles distribution for Pediastrum cells.

6.2. Cell geometric order in the Drosophila eye

0.1

0.08

0.06

0.04

0.02

Now we consider the Drosophila eye as an example. Chan et al. (2017) tried to establish a quantitative link
between adhesion and contractility and reveal the role of N-cadherin on cell shapes and cell arrangements.
And they designed a 2D model based on the minimization of a tension-based energy function (Kéfer et al.,
2007; Hilgenfeldt et al., 2008). We show the analysis results for the data of Chan et al. (2017) in Table 2 and
find a deviation between the suggested value of 63 =130° and the average value of experimental data.

The average value for the contact angles 0=05 is 147.73°. The group of these angles covers from an
interval [121.16°, 171.18°], and follows Gaussian distribution (Fig. 8). An interesting fact shows that the

TABLE 4. ALL DATA FOR 25 PICTURES (104 ANGLES) FOR TETRASTRUM CELLS

[1] Tetrl [1] Tetr2 [1] Tetr3 [1] Tetrd [1] Tetr5 [1] Tetr6 [1] Tetr7
101.31 113.02 123.11 124.08 99.22 117.76 127.94
116.83 100.96 120.26 109.94 70.03 92.12 128.29
117.38 97.00 111.80 128.88 112.22 83.28 97.27
122.28 133.67 122.66 128.79 76.14 89.82 77.04

[K] Fig. b [K] Fig. ¢ [K] Fig. d [A] Fig. 1 [A] Fig. 2 [A] Fig. 3 [A] Fig. 4
119.29 111.93 102.09 110.3764 99.16235 116.5651 85.42608
84.95 116.57 97.48 64.44003 90 98.97263 90
116.57 135.00 137.29 83.65981 90 88.66778 75.96376
100.01 104.54 109.46 144.4623 82.87498 68.19859 88.15239

[A] Fig. 5 [A] Fig. 6 [A] Fig. 7 [A] Fig. 8 [A] Fig. 10 [A] Fig. 12 [A] Fig. 14
81.02737 96.54629 94.57392 90 64.44003 70.34618 59.0362
75.96376 90 107.1027 56.30993 105.2551 120.9638 101.3099
75.96376 101.3099 79.50852 71.56505 81.02737 78.69007 98.1301
129.0939 85.60129 82.23483 72.89727 75.96376 90 101.8887

[A] Fig. 15 [A] Fig. 16 [A] Fig. 19 [A] Fig. 20
90 120.3236 69.30455 93.36646
99.46232 91.78991 79.50852 98.1301
98.1301 90 99.18884 98.1301
106.5873 110.2249 75.96376 94.39871
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TABLE 5. DISTRIBUTION OF THE ANGLES OF TETRASTRUM CELLS

No. Degree Group Frequency Probability Gauss Error
1 55 (0, 55] 0 0 0.001567356  —0.00157
2 62.5 (55, 62.5] 2.00 0.019230769  0.003528326 0.015702
3 70 (62.5, 70] 4.00 0.038461538 0.006819568 0.031642
4 77.5 (70, 77.5] 11.00 0.105769231 0.011317024 0.094452
5 85 (77.5, 85] 10.00 0.096153846  0.016124818 0.080029
6 92.5 (85, 92.5] 15.00 0.144230769  0.019726254 0.124505
7 100 (92.5, 100] 16.00 0.153846154  0.020719612 0.133127
8 107.5 (100, 107.5] 12.00 0.115384615 0.018685546 0.096699
9 115 (107.5, 115] 10.00 0.096153846  0.01446829 0.081686
10 122.5 (115, 122.5] 11.00 0.105769231 0.009618687 0.096151
11 130 (122.5, 130] 9.00 0.086538462  0.005490369 0.081048
12 137.5 (130, 137.5] 3.00 0.028846154  0.002690757 0.026155
13 145 (137.5, 145] 1.00 0.009615385 0.00113223 0.008483
14 152.5 (145, 152.5] 0.00 0 0.000409055  —0.00041

confidence interval under a confidence level of 95% is (146.51° —148.95°). This interval has a difference
with its theoretic value (121°—139°) (63 =130° & 9°) of Chan et al. (2017).

6.3. Comparison of Gaussian distribution with Pediastrum

Here, eight pictures (see ‘‘Section 1. Measuremental data for Pediastrum cells” in Supplementary
Materials for Pediastrum cell images) of Pediastrum cells taken by our research group are used to in-
vestigate the distribution for the outer angles.

The angles are labeled clockwise beginning with the top angle (see image0140 in Section 1 ‘“‘Mea-
suremental data for Pediastrum cells” of Supplementary Materials). The data include 67 angles with
minimum 37.07° and maximum 152.93°, and the average (mathematical expectation) is 109.13°. One can
find the distribution in Table 3 and Figure 9.

The confidence interval under a confidence level of 95% is 105.467°—112.80°. The average value
109.13° is <27/3.

6.4. Analysis on distribution for Tetrastrum cells

We borrow the data from literature (Ahlstrom and Tiffany 1934; Krienitz and Wachsmuth, 1991) and
Internet resources (Supplementary Materials) for analysis.

Comparison Tetrastrum data with Gaussian distribution

Bl Histogram  ===Gaussian distribution

13 0.025
18
14 0.02
12
0.015
10
8
0.01
3
4 0.005
2

55 625 70 775 85 925 100 1075 115 1225 130 1375 145 1525

FIG. 10. The distribution for the angles of Tetrastrum cells.
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The angles are labeled clockwise beginning with the top angle, as for the Pediastrum (see ‘‘Section 2.
How to label the angle for Tetrastrum and Internet resources’ in Supplementary Materials). The data
include 104 angles with minimum 56.31° and maximum 144.46°, and the average is 98.67°. One can find
the distribution in Tables 4 and 5 and Figure 10. The notations [A], [K], and [I] in Table 4 indicate the
references (Ahlstrom and Tiffany, 1934; Krienitz and Wachsmuth, 1991) and Internet resources (Sup-
plementary Materials), respectively.
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