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Stellar models with generalized pressure anisotropy
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Abstract. New models for a charged anisotropic star in general relativity are found. We consider a linear
equation of state consistent with a strange quark star. In our models a new form of measure of anisotropy is
formulated; our choice is a generalization of other pressure anisotropies found in the past by other researchers.
Our results generalize quark star models obtained from the Einstein–Maxwell equations. Well-known particular
charged models are also regained. We indicate that relativistic stellar masses for several stars are obtained using
the general mass function found in our model.
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1. Introduction

The structure and properties of relativistic stellar objects
can be described by utilizing the nonlinear Einstein–
Maxwell field equations. Using these field equations,
we can establish the behaviour of relativistic stellar
matter in several static spacetime geometries. Relevant
stellar objects include compact stars, dark energy stars,
quasars, white dwarfs, neutron stars and hybrid strange
quark stars. Stellar models with astrophysical signifi-
cance are generated when using the Einstein–Maxwell
field equations. Physical effects include the variation of
stellar masses with radii, the study of surface redshifts
and many others. Recent exact models with astrophysi-
cal significance generated using the Einstein–Maxwell
field equations with astrophysical significance are indi-
cated in the works by Dev and Gleiser (2003), Kalam
et al. (2013), Rahaman et al. (2012), Sunzu and Dan-
ford (2017), Sunzu and Mahali (2018), Sunzu et al.
(2014a, b), Matondo et al. (2016) and Mafa Takisa et al.
(2016).

It is interesting, on physical grounds, to establish
the effect of anisotropy on the properties of gravi-
tating stellar matter. This study can be observed by
considering charged or uncharged relativistic spheres.
It was indicated by Dev and Gleiser (2002) that
pressure anisotropy does affect the stellar mass and

redshift. On the other hand, Gleiser and Dev (2004) and
Dev and Gleiser (2002) verified that the presence of
pressure anisotropy affects the stability of gravitating
stellar objects. In the study performed by Sunzu et al.
(2014a) it was shown that the anisotropic quark star
is less heavy than the isotropic quark star. Anisotropic
models in the absence of the electric field include
the works performed in Chaisi and Maharaj (2005,
2006a, b), Maharaj and Chaisi (2006a, b), Karmakar
et al. (2007), Mak and Harko (2003a, b).

There are some models generated for stellar objects
with both electric field and pressure anisotropy present.
These include the exact solutions found by Maurya and
Gupta (2012), the result by Rahaman et al. (2012), non-
singular models generated by Mafa Takisa et al. (2013),
isothermal generalized relativistic models in the paper
by Maharaj and Thirukkanesh (2009), exact models
found by Thirukkanesh and Maharaj (2008), and com-
pact models developed by Esculpi and Aloma (2010).
Other recent charged anisotropic models are given by
Sunzu and Mahali (2018), Sunzu et al. (2014a, b) and
Malaver (2018).

In usual electrostatics for a uniformly charged sphere
the electric field increases linearly to the surface. In gen-
eral relativity the nonlinear effects of the gravitational
field allow for more general behaviour. It has been
shown that anisotropic stellar objects may have an
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electric field that decreases with radial distance.
Stellar anisotropic models with the electric field inten-
sity that decreases from the centre to the surface include
the works of Feroze and Siddiqui (2011), Malaver
(2013a) and Sunzu et al. (2014b). It is interesting to
observe that there are anisotropic models which indi-
cate that the electric field may initially increase near the
centre of the stellar object but then decrease away the
centre. This is evident in models generated by Malaver
(2013b), Maharaj et al. (2014, 2017), and Sunzu and
Mahali (2018).

It is physically reasonable and interesting to have
anisotropic models with vanishing pressure anisotropy.
Models with this special property can allow us to regain
isotropic models as a special case. Most of the mod-
els previously generated have nonvanishing pressure
anisotropy. This is obvious in models generated by
Esculpi and Aloma (2010), Dev and Gleiser (2002),
Mak and Harko (2003a) and Paul et al. (2011). Charged
exact models generated by Maharaj et al. (2014)
assumed a choice of vanishing pressure anisotropy
which is a general polynomial function of three degree.
On the other hand Sunzu and Mahali (2018) found
charged models with a particular anisotropy which is
a polynomial of four degree. It is important to gener-
ate exact charged models with a new form of pressure
anisotropy that is a generalization of anisotropies for-
mulated in the past. This may yield new physical
features not contained in earlier investigations.

The objective of this paper is to generate charged rel-
ativistic exact models with new choice of measure of
anisotropy which generalizes anisotropic models previ-
ously found by other researchers. We consider a linear
equation of state so that our results are consistent with
quark strange stars.

2. Field equations

We model the structure of relativistic quark matter in
general relativity. The spacetime geometry is consid-
ered to be static and spherically symmetric with the
interior line element defined by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2),

(1)

where ν(r) and λ(r) are arbitrary gravitational metric
functions. We consider the Reissner-Nordstrom line ele-
ment for the exterior spacetime given by

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2

+
(

1 − 2M

r
+ Q2

r2

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (2)

where M and Q is the total mass and charge respectively.
These quantities are measured by an observer at infinity.
The energy momentum tensor is given by

T i
j = diag

(
−ρ − 1

2
E2, pr − 1

2
E2,

pt + 1

2
E2, pt + 1

2
E2

)
. (3)

Equation (3) describes gravitating anisotropic matter
when an electric field is present. Here the energy den-
sity ρ, the radial pressure pr , the tangential pressure pt ,
and the electric field intensity E are determined rela-
tive to a vector u. The vector ua is comoving, unit and
timelike.

The Einstein–Maxwell equations for a charged
anisotropic fluid sphere in general relativity is given
as

1

r2

(
1 − e−2λ

) + 2λ′

r
e−2λ = ρ + 1

2
E2, (4a)

− 1

r2

(
1 − e−2λ

) + 2ν′

r
e−2λ = pr − 1

2
E2, (4b)

1

e2λ

(
ν′′ + ν′2 − ν′λ′ + ν′

r
− λ′

r

)
= pt + 1

2
E2, (4c)

r2eλσ = (
r2E

)′
, (4d)

where primes defines derivatives with respect to the
radial distance r . The quantity σ stands for the proper
charge density. We are considering the units where the
coupling constant 8πG

c4 = 1 and the speed of light c is
unity. The mass for a charged stellar object is given as
is defined by

m(r) = 1

2

∫ r

0
ω2 (

ρ∗ + E2) dω, (5)

where ρ∗ is the energy density when the electric field
E = 0. The equation of state consistent with a quark
matter is given by

pr = 1

3
(ρ − 4B) , (6)

where B is the bag constant. We transform the field
equations using the Durgapal and Bannerji (1983) trans-
formation which is given by

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (7)
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where A and C are arbitrary constants. With this
transformation the line element in (1) becomes

ds2 = −A2y2dt2 + 1

4xCZ
dx2 + x

C
(dθ2 +sin2 θdφ2).

(8)

The mass function (5) is transformed to

m(x) = 1

4C
3
2

∫ x

0

√
ω

(
ρ∗ + E2) dω, (9)

where

ρ∗ =
(

1 − Z

x
− 2Ż

)
C, (10)

and a dot is the derivative with respect to the new vari-
able x .

We can express the Einstein–Maxwell field equations
(4), with the quark equation of state (6), in the form

ρ = 3pr + 4B, (11a)

pr
C

= Z
ẏ

y
− Ż

2
− B

C
, (11b)

pt = pr + 
, (11c)


 = 4xCZ ÿ

y
+ C

(
2x Ż + 6Z

) ẏ

y

+C

(
2

(
Ż + B

C

)
+ Z − 1

x

)
, (11d)

E2

2C
= 1 − Z

x
− 3Z

ẏ

y
− Ż

2
− B

C
, (11e)

σ = 2

√
ZC

x

(
x Ė + E

)
. (11f)

The behaviour for a gravitating anisotropic quark star
with electric field present is described by the system
(11) above. The variable 
 = pt − pr is the measure of
anisotropy. The system of equations (11) is in eight vari-
ables (ρ, pr , pt , E, Z , y, σ, 
) in six equations.
Equation (11d) can be written in a more simplified form
as

Ż +
(
4x2 ÿ + 6x ẏ + y

)
2x (x ẏ + y)

Z =
( x

C + 1 − 2x B

C

)
y

2x (x ẏ + y)
. (12)

This is a nonlinear function in Z and y. However if y
and 
 are known functions then Equation (12) is linear
in the variable Z . In order to find exact solutions to this
model we specify the quantities y and 
.

We take the metric function y as

y = 1 − axm

1 + bxn
, (13)

where a, b, m and n are arbitrary real constants. The
metric function y is finite, continuous and well behaved

within the stellar interior for a range of values of m and
n. It is well behaved at the centre (x = 0). We formulate
the pressure anisotropy in the form


 =
s∑

i=1

Ai x
i , (14)

where Ai are arbitrary real constants. The above choice
of anisotropy is well behaved. It is continuous through-
out the interior of the stellar objects. We observe that

 = 0 at the centre (x = 0) and when Ai = 0. Then
we can regain isotropic models. When s = 3, then

 = ∑3

i Ai xi ; we obtain the anisotropy used in the
models by Maharaj et al. (2014), Sunzu et al. (2014a, b).
Therefore we regain anisotropic models generated in
the past in this approach. Furthermore, when b = 0
and a = −1, we have y = 1 + xm . We regain the
particular model in the paper by Maharaj et al. (2014),
when m = 1

2 . When A1 = A2 = A5 = 0, we have

 = A3x3 + A4x4 which was introduced in the paper
by Sunzu and Mahali (2018).

When Equations (13) and (14) are substituted in (12)
we obtain the first order differential equation

Ż +
[
D(x) − 1 + axm (1 − D(x) + T (x))

]
(1 + bxn)J (x)

Z

= −
(

(
∑s

i Ai xi )x
C + 1 − 2x B

C

)
L(x)

J (x)
, (15)

where for simplicity we have set

D(x)=2b(−1 + n + 2n2)xn − b2(1 − 2n + 4n2)x2n,

J (x) = 2x
[
b(n − 1)xn − 1

+ axm(1 + m + bmxn − b(n − 1)xn)
]
,

L(x) = (1 − axm)(1 + bxn),

T (x) = 4(m + bmxn)2

− 2m(1 + bxn)(b(4n − 1)xn − 1).

3. Generalized regular model

We can find a desirable regular exact model by choosing
values of the parameters

m = 1, n = 1

2
, s = 5 and a = b = 0.

With these values the potential y = 1 and Equation (15)
becomes

Ż + 1

2x
Z = C + x(

∑5
i Ai xi − 2Bx)

2Cx
. (16)
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Solving the differential equation in (16) we obtain

Z = 1 + x

C

(
−2B

3
+ A1x

5
+ A2x2

7
+ A3x3

9

+ A4x4

11
+ A5x5

13

)
. (17)

With this we obtain the exact regular model with the
following gravitational potentials and matter variables:

e2ν = A2, (18a)

e2λ = 45045

45045 + ψ(x)
, (18b)

ρ = 2B − 3A1x

5
− 9A2x2

14
− 2A3x3

3

−15

A 4
x422 − 9A5x5

13
, (18c)

pr = −2B

3
− A1x

5
− 3A2x2

14
− 2A3x3

9

−5A4x4

22
− 3A5x5

13
, (18d)

pt = −2B

3
+ 4A1x

5
+ 11A2x2

14
+ 7A3x3

9

+17A4x4

22
+ 10A5x5

13
, (18e)


 = A1x + A2x
2 + A3x

3 + A4x
4 + A5x

5, (18f)

E2 = −4A1x

5
− 5A2x2

7
− 2A3x3

3

−7A4x4

11
− 8A5x5

13
, (18g)

where we have set

ψ(x) = x

C

(−30030B + 9009A1x + 6435A2x
2)

+ x

C

(
5005A3x

3 + 4095A4x
4 + 5005A5x

5
)

.

This model is regular in the gravitational potentials
and matter variables. In addition we observe that 
 = 0
and E2 = 0 at the stellar centre which is physical. From
the system (18) the line element (8) becomes

ds2 = −A2dt2 + 1

4xC

(
45045

45045 + ψ(x)

)
dx2

+ x

C
(dθ2 + sin2 θdφ2). (19)

Then the mass function (9) becomes

m(x) =
( x

C

) 3
2
(

1

3
B − 3

10
A1x − 2

7
A2x

2 − 5

18
A3x

3
)

−
( x

C

) 3
2
(

3

11
A4x

4 + 7

26
A5x

5
)

. (20)

When A4 = A5 = 0, we obtain models found in Sunzu
et al. (2014b). On the other hand, when 
 = 0 and
E2 = 0 the gravitational potentials and matter variables
become

e2ν = A2, e2λ = 3003C

3003C − 2002Bx
,

ρ = 2B, pr = pt = −2B

3
. (21)

The line element has the form

ds2 = −A2dt2 +
(

3003

4x(3003C − 2002Bx)

)
dx2

+ x

C
(dθ2 + sin2 θdφ2). (22)

Equation (22) can be written in the form

ds2 = −A2dt2 +
(

1 − r2

γ 2

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (23)

where γ 2 = 3003
2002B . Equation (23) is the well known

neutral Einstein model with isotropic pressure with the
equation of state pr = pt = −1

3ρ. This result arises
because the energy density is a nonzero constant at
the boundary of the quark star. We observe that the
exact model in (18) is a generalized Einstein model with
charge and anisotropy present.

The model in this section does generate stellar masses
consistent with observations. We show this by intro-
ducing the transformations Ã1 = A1R2, Ã2 = A2R2,
Ã3 = A3R2, Ã4 = A4R2, Ã5 = A1R5, B̃ = BR2,
C̃ = CR2. With this transformations we can generate
stellar masses and radii in Table 1. For computational
acceptability we have set R = 600. We compute stellar
masses in the range 0.85M�−2.86M� consistent with
findings in Sunzu et al. (2014a), Mak and Harko (2004),
Negreiros et al. (2009), Rawls et al. (2011), Abubekerov
et al. (2008), Elebert et al. (2009), Ozel et al. (2009) and
Demorest et al. (2010). Therefore the exact solutions in
this section do give finite stellar masses consistent with
observed masses of physically reasonable astronomical
objects.

4. Generalized singular models

We indicate that other exact models for the system (11)
are possible. This can be done by choosing different
parameters values other than those used in section (3).
We choose m = 1, n = 1

2 and a = b2. For this choice
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Table 1. Stellar masses generated using mass function found in a generalized regular
model.

B̃ C̃ Ã1 Ã2 Ã3 Ã4 Ã5 r (km) m(M�) Model

26.5 11 22 15 17 24 9.0 7.6 1.6 Sunzu et al. (2014a)
26.205 20 14 2.6 7 2.44 8 7.61 1.59612 Sunzu et al. (2014a)
12.8 100 10 20 40 12 3.5 9.46 2.86 Mak and Harko (2004)
3.68 10 4 16 6 15 3.2 10.99 2.02 Negreiros et al. (2009)
7.4 25 5 5.6 7.5 3 10.2 9.56 1.77 Rawls et al. (2011)
9.6 27 6.5 5.3 8.8 3.1 20.2 8.1 0.85 Abubekerov et al. (2008)
11.38 22.5 6.7 0.9 11 1.6 22.2 7.951 0.9 Elebert et al. (2009)
8.67 24 7.5 2 1 1.69 22.5 8.849 1.3 Ozel et al. (2009)
7.63 16 6 14 12 10 5 9.69 1.97 Demorest et al. (2010)

the metric function y = 1−b2x
1+b

√
x

which is a nonconstant
function. Equation (15) can be written as(

1 − 3b
√
x
)
Ż

x(2 − 3b
√
x)

= (b
√
x − 1) (C + x (
 − 2B))

Cx(3b
√
x − 2)

.

(24)

Solving (24) we obtain

Z = 2 − b
√
x + x

C

(
B

(
b
√
x − 4

3

) + f (x)
)

2 − 3b
√
x

, (25)

where

f (x) = A1x

(
2

5
− b

√
x

3

)
+ A2x

2
(

2

7
− b

√
x

4

)

+A3x
3
(

2

9
− b

√
x

5

)
+ A4x

4
(

2

11
− b

√
x

6

)

+A5x
5
(

2

13
− b

√
x

7

)
.

It is important to observe that f (x) = 0 for isotropic
models. Equation (25) indicates that other exact models
in term of elementary functions can be generated.

Using the system (11) we generate the following
exact model

e2ν = A2
(

1 − b2x

1 + b
√
x

)2

, (26a)

e2λ = 2 − 3b
√
x

2 − b
√
x + x

C

[
B

(
b
√
x − 4

3

) + f (x)
] , (26b)

ρ =
3C

(
6b√
x

− 10b2 + 3b3√x
)

2(2 − 3b
√
x)2(b

√
x − 1)

+
B

(
−16 + 47b

√
x − 48b2x + 18b3x

3
2

)
2(2 − 3b

√
x)2(b

√
x − 1)

+ 3 fr (x)

2(2 − 3b
√
x)2(b

√
x − 1)

, (26c)

pr =
C

(
6b√
x

− 10b2 + 3b3√x
)

2(2 − 3b
√
x)2(b

√
x − 1)

+
B

(
16
3 − 27b

√
x + 40b2x − 18b3x

3
2

)
2(2 − 3b

√
x)2(b

√
x − 1)

+ fr (x)

2(2 − 3b
√
x)2(b

√
x − 1)

, (26d)

pt =
C

(
6b√
x

− 10b2 + 3b3√x
)

2(2 − 3b
√
x)2(b

√
x − 1)

+
B

(
16
3 − 27b

√
x + 40b2x − 18b3x

3
2

)
2(2 − 3b

√
x)2(b

√
x − 1)

+ ft (x)

2(2 − 3b
√
x)2(b

√
x − 1)

, (26e)


 = A1x + A2x
2 + A3x

3 + A4x
4 + A5x

5, (26f)

E2 =
C

(
2b2 + 3b3√x − 2b√

x

)
+ B

(
b
√
x − 2b2x

)
(2 − 3b

√
x)2(b

√
x − 1)

+ fe(x)

(2 − 3b
√
x)2(b

√
x − 1)

, (26g)

where for convenience we have set

fr (x)

= A1x

(
8

5
− 64

15
b
√
x + 18

5
b2x − b3x

3
2

)

+A2x
2
(

12

7
− 141

28
b
√
x + 67

14
b2x − 3

2
b3x

3
2

)

+A3x
3
(

16

9
− 82

15
b
√
x + 82

15
b2x − 9

5
b3x

3
2

)
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+A4x
4
(

− 8

11
+ 379

165
b
√
x − 26

11
b2x + 4b3x

3
2

)

+A5x
5
(

−14

13
+ 9

13
b
√
x − 283

390
b2x + b3x

3
2

)
,

ft (x)

= A1x

(
−32

5
+ 416

15
b
√
x − 192

5
b2x + 17b3x

3
2

)

+A2x
2
(

−44

7
+ 755

28
b
√
x − 521

14
b2x + 33

2
b3x

3
2

)

+A3x
3
(

−56

9
+ 398

15
b
√
x − 548

15
b2x + 81

5
b3x

3
2

)

+A4x
4
(

51

11
− 1733

132
b
√
x + 596

33
b2x − 8b3x

3
2

)

+A5x
5
(

35

13
− 593

52
b
√
x + 402

26
b2x − 111

16
b3x

3
2

)
,

fe(x)

= A1x

(
16

5
− 64

5
b
√
x + 84

5
b2x − 7b3x

3
2

)

+A2x
2
(

20

7
− 313

28
b
√
x + 101

7
b2x − 6b3x

3
2

)

+A3x
3
(

8

3
− 154

15
b
√
x + 196

15
b2x − 27

5
b3x

3
2

)

+A4x
4
(

8

5
− 213

35
b
√
x + 268

35
b2x − 22

7
b3x

3
2

)

+A5x
5
(

−8

3
+ 211

21
b
√
x − 5

4
b2x + 143

28
b3x

3
2

)
.

Then the line element in (8) can be expressed as

ds2 = −A2
(

1 − b2x

1 + b
√
x

)2

dt2

+ 1

4xC

2 − 3b
√
x

2 − b
√
x + x

C

(
B

(
b
√
x − 4

3

) + f (x)
)dx2

+ x

C
(dθ2 + sin2 θdφ2). (27)

The mass function becomes

m(x)

= A1x
5
2

(
6

5
− 64

15
b
√
x + 153

30
b2x + 2b3x

3
2

)

+A2x
7
2

(
8

7
− 227

56
b
√
x + 269

56
b2x + 15

4
b3x

3
2

)

+A3x
9
2

(
5

3
− 59

15
b
√
x + 139

30
b2x − 9

5
b3x

3
2

)

+A4x
11
2

(
9

2
− 509

32
b
√
x + 597

32
b2x − 231

32
b3x

3
2

)

+A5x
13
2

(
98

495
− 346

495
b
√
x+ 809

5449
b2x− 52

165
b3x

3
2

)

+CK (1 − 3b
√
x + 3b2x)

+ (3 − 4x) b3x3 + C
(
bx(2 − 4b

√
x + 3b2x)

)
+x

3
2

(
4

3
− 12

5
x + 16

15
(−5 + 8x)b

√
x

−1

5
(−35 + 51)b2x

)
. (28)

It is clear that another exact model to the field equations
(11) has been found. Other solutions to Equation (15)
can be generated for different choices of parameters m,
n, a and b. However it is not clear that other choices
are likely to produce solutions in terms of elementary
functions. The exact model in the system (26) is singular
at the centre. This property is shared with the quark
star model generated by Mak and Harko (2004) and
Sunzu et al. (2014a, b). Moreover the potentials, stellar
mass and anisotropy remain finite and regular. We have
plotted the geometrical and matter variables in Figures
1, 2, 3, 4, 5, 6, 7 and 8. It is clear that the model is well
behaved.

Figure 1. The potential e2ν against radial distance.

Figure 2. The potential e2λ against radial distance.
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Figure 3. Energy density against radial distance.

Figure 4. Radial pressure against radial distance.

Figure 5. Tangential pressure against radial distance.

5. Matching conditions

The interior exact solutions found in our models can
be matched with the exterior solution at the surface
of the stellar object. This is achieved by setting the
radius r = R, and x = CR2. We illustrate this for
the exact solution (18). Using the line elements given
in Equations (1) and (2) we can match the interior

Figure 6. Electric field against radial distance

Figure 7. Pressure anisotropy against radial distance.

Figure 8. Mass against radial distance

and exterior exact solutions in the system (18) by
setting

A2 =
(

1 − 2M

R + Q2

R2

)
, (29a)

45045

45045 + ψ
=

(
1 − 2M

R + Q2

R2

)−1

, (29b)

pr = 0, (29c)
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at the boundary. Using the expressions for pr , Q and M
from the system (18) and Equation (20), the matching
conditions in system (29) become

A2 = 1 − R2
(

2

3
B + 1

5
A1CR2

+1

7
A2C

2R4 + 1

9
A3C

3R6
)

−R2
(

1

11
A4C

4R8 + 1

13
A5C

5R10
)

, (30a)

0 = 18018A1CR2+12870A2C
2R4+10010A3C

3R6

+8190A4C
4R8 + 8470A5C

5R10, (30b)

0 = 2B

3
+ CR2

(
1

5
+ 3

14
A2CR2 + 2

9
A3C

2R4
)

+CR2
(

5

22
A4C

3R6 + 3

13
A5C

4R8
)

. (30c)

The system (30) provides the matching conditions of
the exact solution in the system (18). We note that
the matching conditions in system (30) is explicitly
expressed in terms of constants A, B, C, A1, A2, A3,

A4, A5 , and R. There are sufficient free parameters to
satisfy the conditions that arise.

6. Discussion

We have found several new classes of exact solu-
tions to the Einstein–Maxwell system with charge and
anisotropy. The exact models generated in Section 3 and
Section 4 are well behaved in the interior of the stel-
lar object. We have generated stellar masses with radii
compatible with masses observed by other researchers.
This indicates that our models give mass functions
that are physically acceptable and have astrophysical
significance. The masses generated regains the results
obtained in Sunzu et al. (2014a), Mak and Harko (2004),
Negreiros et al. (2009), Rawls et al. (2011), Abubekerov
et al. (2008), Elebert et al. (2009), Ozel et al. (2009) and
Demorest et al. (2010). The masses generated in our
model have the same values with several stars observed
in the past. The stars regained are Vela X-1 with
mass 1.77M� and radius 9.56km, Her X-1 with mass
0.85M� and radius 8.1km, SAXJI808.4 − 3658 with
mass 0.9M� and radius 7.951km, EXO1785−248 with
mass 1.3M� and radius 8.849km, and PSRJI614−2230
with mass 1.97M� and radius 9.69km.

We have also generated graphical plots using the
model found in Section 4 The graphs are plotted
using the Python programing language. The following
values were used for the constants: A1 = 0.5, A2 =

−0.14, A3 = 0.25, A4 = −0.2, A5 = −0.2, B =
0.2, b = −0.5. From Figures 1 and 2 it is indicated
that the gravitational potentials are regular and contin-
uous throughout the interior of the stellar matter. From
Figures 3, 4 and 5 we see that the energy density, radial
pressure, and tangential pressure are decreasing func-
tions away from the stellar object. This verifies that
ρ′ < 0, pr ′ < 0, and pt ′ < 0. These variables con-
tain a singularity at the centre of the stellar object due
to the existence of the term 1

x in their expressions.
This behaviour is also shared in the model of Sunzu
et al. (2014b). The electric field intensity in Figure 6
is a decreasing function with radial distance in the stel-
lar interior. This behaviour is evident in stellar models
found by Feroze and Siddiqui (2011), Malaver (2013a)
and Sunzu et al. (2014b). From Figure 7, the measure
of anisotropy is a positive increasing function from
the centre to the region near the surface of the star.
It decreases at the region near the centre. This feature
shows that pt > pr throughout the stellar interior. This
profile is similar to the model found in Maharaj et al.
(2014). From Figure 8 we observe that the mass is an
increasing function with radial coordinate r .

Results obtained in this paper are significant for the
study of relativistic astrophysical objects. They provide
more understanding on the structure and properties of
compact stellar objects. Other new results and models
can be generated by considering equations of state, a
different measure of anisotropy and other metric func-
tions.
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