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Abstract

Similarity solutions are examined for the frequency-integrated relativistic radiation-
hydrodynamical flows, which are described by the comoving quantities. The flows are
vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate
boundary conditions, the flows are accelerated in a somewhat homologous manner, but
terminate at some singular locus, which originates from the pathological behavior in
relativistic radiation moment equations truncated in finite orders.
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1 Introduction

Various astrophysical flows show time-dependent behav-
iors; nova outbursts, supernova explosions, gamma-ray
bursts, accretion on to a gravitating body, winds from
luminous accretion disks, and gravitational contractions
of interstellar gas. These outflows and inflows are often
relativistic, and sometimes radiation-dominated. Today,
such relativistic radiation-hydrodynamical time-dependent
flows are usually examined using relativistic radiation-
hydrodynamical numerical simulations. In some limited
situations, on the other hand, the self-similar treat-
ment has been a strong tool for time-dependent flows
(Sedov 1959).

Similarity solutions are sought and found for
many astrophysical time-dependent phenomenae, including
supernova explosions and gravitational collapses. In order
to obtain similarity solutions, the numbers of physical con-
stants are restricted, and the similarity behavior is often
constrained, depending on the physical ingredients. For
example, in the case of a point explosion with constant
energy E into the surrounding medium with uniform den-
sity ρ, the radius r varies with time t as r ∝ (E/ρ)1/5t2/5

(Sedov 1959). In the case of a self-similar flow around a
central object of mass M, the reference radius must vary
as r ∝ (GM)1/3t2/3 (e.g., Sakashita 1974; Sakashita &
Yokosawa 1974; Cheng 1977; Fukue 1984).

Because of this similarity constraint, the self-similar
treatment in radiation hydrodynamical flows is rather
restrictive, since the system involves the coupling constant,
opacity, between radiation and matter. A few studies on
this have been published (see Falize et al. 2011, and ref-
erences therein). Furthermore, the self-similar treatment in
relativistic flows is also restrictive, since the system involves
the speed of light. Similarity solutions for relativistic blast
waves, however, have been well examined (Blandford &
McKee 1976; Sari 1997; Nakayama & Shigeyama 2005;
van Eerten 2014). Hence, the self-similar treatment in rela-
tivistic radiation hydrodynamical flows is even more restric-
tive. As a result, similarity solutions in the relativistic radi-
ation hydrodynamical flows are not known so well.

Among a few current of the studies, that by Lucy (2005)
found and examined the similarity solutions in detail for
radiation fields in time-dependent relativistic spherical flows
under the assumptions of homologous changes, where the
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flow velocity v is assumed to vary as v = r/t. Under this
homologous assumption, they found exact analytical solu-
tions for time-dependent extinction coefficients.

Under these current situations, in this study we seek
the similarity solutions, without assuming the homologous
flow, for relativistic radiation-hydrodynamical flows in the
plane-parallel geometry.

In the next section we describe the basic equations
described by the comoving quantities. In section 3 we first
obtain the homologous solutions, and we examine more
general similarity solutions in section 4. The final section is
devoted to concluding remarks. We further show the related
steady case in the appendix to clarify the singular nature of
the relativistic moment equations.

2 Comoving frame equations

In this study we consider a time-dependent relativistic radi-
ation hydrodynamical flow in the plane-parallel geometry.
We assume the following.

(i) The outflow is one-dimensional in the vertical (z) direc-
tion.

(ii) The gas pressure is ignored, and the flow is radiation-
dominated.

(iii) The gravitational force and other forces are also
ignored.

(iv) The radiative quantities measured in the comoving
frame are adopted.

(v) The frequency-dependence is not included, and we use
the gray approximation.

(vi) The radiation field in the flow is isotropic, and we adopt
the Eddington approximation.

Under these assumptions, the basic equations in the ver-
tical direction become as follows.

The comoving frame transfer equation and frequency-
integrated moment equations are given in, e.g., Mihalas
(1980) and Mihalas and Mihalas (1984). Following
Mihalas (1980), the radiative quantities (J0, H0, K0), den-
sity ρ0, and opacities (κ0, σ 0) are expressed in the comoving
frame, while space–time coordinates (z, t) and flow velocity
v (= βc) are measured in the rest frame.

The continuity equation is

∂

∂t
(γρ0) + ∂

∂z
(γρ0βc) = 0, (1)

where ρ0 is the gas density, β (= v/c) the flow velocity
normalized by the speed of light, and γ (= 1/

√
1 − v2/c2)

the Lorentz factor. The equation of motion is

c2 γ 4

c
∂β

∂t
+ c2γ 4β

∂β

∂z
= κ0 + σ0

c
4π H0, (2)

where κ0 and σ 0 are the absorption and scattering opac-
ities, respectively, and H0 the mean radiative flux. As
already stated, the gas pressure and gravity are ignored.
Since we ignore the gas pressure, the energy balance
equation is

0 = q+ − 4πρ0

(
j∗

4π
− κ0 J0

)
, (3)

where q+ is the internal heating, j∗ the mass emissivity, and
J0 the mean intensity.

The zeroth moment equation for radiation is

γ

c
∂ J0

∂t
+ γβ

∂ J0

∂z
+ γβ

c
∂ H0

∂t
+ γ

∂ H0

∂z

+γ 3[2H0 + β(J0 + K0)]
1
c

∂β

∂t
+ γ 3(2βH0 + J0 + K0)

∂β

∂z

= ρ0

(
j∗

4π
− κ0 J0

)
= q+

4π
, (4)

where equation (3) is used. On the other hand, the first
moment equation is

γ

c
∂ H0

∂t
+ γβ

∂ H0

∂z
+ γβ

c
∂K0

∂t
+ γ

∂K0

∂z

+γ 3(2βH0 + J0 + K0)
1
c

∂β

∂t
+ γ 3[2H0 + β(J0 + K0)]

∂β

∂z

= −ρ0(κ0 + σ0)H0, (5)

where K0 is the second moment, and related to the mean
intensity by the Eddington approximation,

K0 = f J0 = 1
3

J0. (6)

3 Homologous solutions

In this section, we first seek the similarity solutions for the
plane-parallel time-dependent radiation-hydrodynamical
flows under the assumption of a homologous expansion,
as Lucy (2005) did for the spherical case.

Under the homologous assumption, we assume that the
velocity field changes as

β = z
ct

, (7)

and consider the radiation field equations (4) and (5). Using
this homologous velocity as a similarity coordinate, we can
transform moment equations (4) and (5) as

γ

c
dJ0

dt
+ γβ

c
dH0

dt
+ 1

γ ct
∂ H0

∂β
+ γ

ct
(1 + f )J0

=−ρ0(κ0 + σ0)(J0 − S0) (8)
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γ

c
dH0

dt
+ f

γβ

c
dJ0

dt
+ f

1
γ ct

∂ J0

∂β
+ γ

ct
2H0

=−ρ0(κ0 + σ0)H0, (9)

where dt (= ∂/∂t + v∂/∂z) is the Lagrangian time derivative,
S0 the source function, and the Eddington approximation
is used. Furthermore, if we seek the similarity solutions in
the form of

J0 = (t/t1)−p J1(β), (10)

H0 = (t/t1)−pH1(β), (11)

S0 = (t/t1)−pS1(β), (12)

χ0 =ρ0(κ0 + σ0)(t/t1)−1χ1(β), (13)

then equations (8) and (9) are transformed into

dH1

dβ
− pγ 2βH1 + (1 + f − p)γ 2 J1 =−γ ct1χ1(J1 − S1),

(14)

f
dJ1

dβ
− f pγ 2β J1 + (1 − p)γ 2 H1 =−γ ct1χ1 H1, (15)

and further rearranged as

γ p d
dβ

(
γ −pH1

) + (1 + f − p)γ 2 J1 =−γ τ1(J1 − S1), (16)

f γ p d
dβ

(
γ −p J1

) + (1 − p)γ 2 H1 =−γ τ1 H1, (17)

where

τ1(β) = ct1χ1(β) (18)

is a typical optical depth.
In what follows, we assume the radiative equilibrium,

J1 = S1, and the typical optical depth τ 1 is constant.
Similar to the spherical case of Lucy (2005), we can

obtain an analytical solution in the case of p = 1 + f = 4/3,
although the analytical solution of the spherical flow is
obtained in the case of p = 4. That is, in this case we
can easily integrate equation (16) to yield

H1(β) = H1(0)γ p, (19)

and further integrate equation (17) as

f J1(β) = f J1(0)γ p − (1 − p)H1(0)γ p 1
2

ln
1 + β

1 − β

−τ1 H1(0)γ p sin−1 β. (20)
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Fig. 1. Typical examples of homologous solutions under the radiative
equilibrium condition. The dashed curves denote the mean intensity
J1(β), while the solid ones represent the mean flux H1(β). The param-
eters are τ1 = 1, and p = 1, 2, 3, from bottom to top, for each quantity.
(Color online)

Typical examples of other cases are shown in figure 1.
In figure 1 the mean intensity J1(β) is shown by the dashed
curves, while the mean flux H1(β) is denoted by the solid
ones. The parameters are τ 1 = 1 and p = 1, 2, 3, from
bottom to top, for each quantity.

As seen in figure 1, except for limited cases of small p,
the radiation field diverges as β approaches unity. This is
interpreted by the relativistic effect. Similar to the radiative
quantities in the rest frame, those in the comoving frame
also concentrate towards the forward direction due to the
relativistic aberration. In addition, they are enhanced due
to the relativistic Doppler effect. As a result, the radiative
quantities in the comoving frame become large as the flow
speed increases, and ultimately diverge at β = 1.

It should be emphasized that the homologous assump-
tion (7) is not coherent with equation of motion (2). That
is, this homologous velocity field (7) gives H0 = 0. This
inconsistent situation is same in the spherical case of Lucy
(2005). In other words, the homologous assumption aban-
dons solving the flow dynamics, but concentrates the sim-
ilarity solutions of the radiation field. Thus, in the next
section we consider both the flow dynamics and radiation
field, and seek the similarity solutions.

4 Non-homologous solutions

Now, we loosen the homologous assumption, and seek
more general similarity solutions.

4.1 Similarity transformations

In this study, we assume the simple time-dependency, and
we shall introduce the similarity coordinate in the form:

ζ ≡ z
ct

= z
t̃
, (21)
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where t̃ (≡ ct) is the rescaled time, and define the similarity
variables by

β =β(ζ ) (22)

γρ0(κ0 + σ0) ≡ t̃−1 D(ζ ), (23)

q+

4π

κ0 + σ0

c3
≡ t̃−2 Q(ζ ) = t̃−2 Q∗, (24)

κ0 + σ0

c3
J0 ≡ t̃−1 J (ζ ), (25)

κ0 + σ0

c3
H0 ≡ t̃−1 H(ζ ), (26)

κ0 + σ0

c3
K0 ≡ t̃−1 K(ζ ), (27)

where Q∗ is assumed to be constant.
Using these similarity transformations, the continuity

equation (1) and equation of motion (2) are transformed,
respectively, as

D|β − ζ | = D∗, (28)

(β − ζ )
dβ

dζ
= 4π

γ 3
H, (29)

where D∗ is a constant.
The moment equations (4) and (5) are transformed as

(β − ζ )
dJ
dζ

− J + (1 − βζ )
dH
dζ

− βH + γ 2[2(β − ζ )H

+ (1 − βζ )(J + K)]
dβ

dζ
= 1

γ
Q∗, (30)

(β − ζ )
dH
dζ

− H + (1 − βζ )
dK
dζ

− βK + γ 2[2(1 − βζ )H

+ (β − ζ )(J + K)]
dβ

dζ
= − 1

γ 2
DH, (31)

where K = fJ. Moreover, these transformed moment equa-
tions are rearranged as

[ f (1 − βζ )2 − (β − ζ )2]
dJ
dζ

= [−(β − ζ ) + fβ(1 − βζ )]J + 1
γ 2

H

− 2(1 − ζ 2)
4π

γ 3(β − ζ )
H2 − β − ζ

γ
Q∗ − 1 − βζ

γ 2
DH,

(32)

[ f (1 − βζ )2 − (β − ζ )2]
dH
dζ

= [−(β − ζ ) + fβ(1 − βζ )]H + f
γ 2

J

+2(1 − f )(1 − βζ )
4π

γ
H2 + (1 + f )[(β − ζ )2

− f (1 − βζ )2]
4π

γ (β − ζ )
JH

× f
1 − βζ

γ
Q∗ + β − ζ

γ 2
DH. (33)

As is easily seen, these equations have singular points,
when the term on the left-hand side,

D = f (1 − βζ )2 − (β − ζ )2, (34)

vanishes. This singularity will be discussed later.

4.2 Non-relativistic limit

Before calculating the similarity solutions, we briefly
examine the non-relativistic limit, which is used as initial
conditions.

In the non-relativistic limit, β � 1, ζ � 1, and only
the linear terms are retained. Then, besides (28), equations
(29), (32) and (33) are approximated, respectively, as

(β − ζ )
dβ

dζ
= 4π H, (35)

f
dJ
dζ

=−DH, (36)

dH
dζ

= J − (1 + f )
4π

β − ζ
JH + Q∗. (37)

Hence, if we assume the linear forms of

β = bζ, (38)

H = hζ, (39)

J = j∗ + jζ, (40)

then we can determine the relations among the coefficients
(b, h, j∗, j) as

4πh = b(b − 1), (41)

f j =− D∗
4π

b, (42)

j∗ = Q∗ − [b(b − 1)/4π ]
(1 + f )b − 1

. (43)

These are the linear non-relativistic solutions, and used as
initial solutions in the next subsection.

It should be noted that the remaining free parameters are
D∗, Q∗, and b. Futhermore, in order for the physical solu-
tions to exist, the following conditions should be fulfilled:

b > 1, (44)
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Fig. 2. Typical similarity solutions for the plane-parallel time-dependent
radiation-hydrodynamical flows. The thick solid curves show the flow
velocity β, the thin dashed ones denote the mean intensity J, the thin
solid ones represent the mean flux H, the dash–dotted ones show the
density D, and a thick dashed one is a critical locus (see the text). The
parameters are D∗ = 1, Q∗ = 1 and b = 2, 3, 4 from right to left. (Color
online)

Q∗ >
b(b − 1)

4π
. (45)

4.3 Similarity solutions

Now, we shall solve the basic equations to obtain the typical
solutions for the plane-parallel time-dependent radiation-
hydrodynamical flows under the non-relativistic initial con-
ditions. Typical solutions are shown in figure 2.

In figure 2 the flow velocity β is shown by the thick solid
curves, the mean intensity J is denoted by the thin dashed
ones, the mean flux H is depicted by the thin solid ones,
and the density D is represented by the dash–dotted ones.
The thick dashed curve is a critical locus, discussed later.
The parameters are D∗ = 1, Q∗ = 1, and b = 2, 3, 4 from
right to left.

As is seen in figure 2, similar to the homologous case,
roughly speaking, the flow velocity increases linearly, but
it deviates from the linear line, and terminates at some
points. It seems that the behavior of the radiative flux is
also qualitatively similar to the homologous case. How-
ever, it diverges before the flow speed reaches the speed of
light. Hence, the apparent similarity of the divergence is
pseudo; i.e., the reason of divergence is not the relativistic
effect, but there is alternative reason.

Here, we remember that the basic equations have sin-
gularity at the point where the denominator (34) vanishes.
From the condition of D = 0, we have

βc =
√

f + ζ

1 + √
f ζ

, (46)

where we omit the minus solution. This relation between
β and ζ , satisfying the singularity condition, critical locus,

is shown by a thick dashed curve in figure 2. As is seen in
figure 2, the flow velocity terminates at this critical locus,
and the radiative flux diverges at the same position. Namely,
the origin of the termination and divergence of solutions is
attributable to the singular nature of the basic equations.

Actually, in the steady case, the similar singularity in rel-
ativistic radiation moment equations has been pointed out
and examined (Turolla & Nobili 1988; Nobili et al. 1991;
Turolla et al. 1995; Dullemond 1999). Namely, the moment
equations for radiation transfer in relativistically moving
steady flows generally have singular (critical) points. As
a result, solutions behave pathologically in a relativistic
regime.

The appearance of singularities is supposed to be related
to the approximation of the full transfer equations with a
finite number of moments (Dullemond 1999). For example,
in one-dimensional relativistic flows, where the moment
equations are truncated at the second order, using the
Eddington approximation (f = 1/3), the singularity appears
when the flow velocity v becomes ±c/

√
3 (Turolla &

Nobili 1988; Turolla et al. 1995). Hence, under the tra-
ditional Eddington approximation, we cannot obtain solu-
tions accelerated beyond c/

√
3, although there exists a

decelerating solution (Fukue 2005). In this steady case,
when the flow speed v is equal to c/

√
3, the singularity

occurs. In the present self-similar case, on the other hand,
the singularity occurs at

β − ζ =
√

f (1 − βζ ), (47)

where the left-hand side is the flow speed relative to the
frame speed, and the right-hand side is

√
f corrected by the

non-linear advective term.
The invalidity of the Eddington approximation in such a

relativistic flow can be understood as follows. In adopting
the Eddington approximation, we assume that within the
photon mean-free path the radiation field is isotropic in
the comoving frame. However, in the relativistic regime,
where the velocity gradient becomes large and there exist
the Doppler and aberration effects of photons, the isotropy
of the radiation field may break down even in the comoving
frame (In this sense, this singularity is also the relativistic
effect). Indeed, if we set the Eddington factor f to be unity,
as is seen from equation (46), the critical velocity becomes
βc = 1, and the singularity is pushed away to the locus of
the speed of light.

The steady case corresponding to the present flow is
briefly shown in the appendix.

5 Concluding remarks

In this paper we examined similarity solutions for the
relativistic radiation-hydrodynamical plane-parallel flows
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under the gray and Eddington assumptions. For adequate
boundary conditions, the flows are accelerated in a some-
what homologous manner, but terminate at some singular
locus, which originates from the pathological behavior in
relativistic radiation moment equations truncated in finite
orders.

For simplicity, we have dropped the gas pressure and
gravity. If the gas pressure and gravity is included, we
may construct the transonic similarity solutions in the rel-
ativistic radiation-hydrodynamical regime, similar to the
non-relativistic hydrodynamical case (Cheng 1977; Fukue
1984).

Furthermore, in this study we used the similarity variable
in the form of ζ = z/ct. As a result, the solution becomes
somewhat homologous-like. In general, we can adopt a sim-
ilarity variable of ζ ∝ z/tδ, which may extend the similarity
solutions of the present type.

Similar to the steady case, the singular point and patho-
logical behavior in the relativistic moment equations under
the Eddington approximation are a yet-unresolved problem
in this field, and are left as future work.

Appendix. Steady case

The steady case using the rest-frame quantities under the
Eddington approximation was discussed in several studies
(e.g., Fukue 2005, 2006; Fukue & Akizuki 2006, 2007).
In order to complement these studies and to clarify the
existence of the singularity, we briefly show basic equations
in the steady case, corresponding to the present problem,
using the comoving-frame quantities.

Correspoinding to basic equations (1), (2), (4), and (5),
basic equations in the steady case are as follows:

d
dz

(γρ0βc) = 0, (48)

c2γ 4β
dβ

dz
= κ0 + σ0

c
4π H0, (49)

γ
dH0

dz
+ γβ

dJ0

dz
+ γ 3(2βH0 + J0 + K0)

dβ

dz
= q+

4π
, (50)

γ
dK0

dz
+ γβ

dH0

dz
+ γ 3[2H0 + β(J0 + K0)]

dβ

dz

=−ρ0(κ0 + σ0)H0, (51)

where K0 = fJ0 under the Eddington approximation.

Integrating the continuity equation (48) as

ρ0γβc = J̇ , (52)

where J̇ is the constant mass-loss rate per unit area, and
introducing the optical depth by

dτ ≡ −(κ0 + σ0)ρ0dz, (53)

and further rearranging moment equations (50) and (51),
we finally have the following equations:

c2 J̇
dβ

dτ
=− 1

γ 2
4π H0, (54)

( f − β2)
dJ0

dτ
+ 2H0

dβ

dτ
= q+

4π(κ0 + σ0)
β2c

J̇
+ 1

γ
H0, (55)

( f − β2)
dH0

dτ
+ γ 2[−2(1 − f )βH0 + (1 + f )( f − β2)J0]

dβ

dτ
= − q+

4π(κ0 + σ0)
fβc

J̇
− β

γ
H0. (56)

Thus, it is clearly seen that basic equations have sin-
gularity at f − β2 = 0. Steady solutions can be found in
previous studies.
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