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Abstract. A method to construct the multi-indexed exceptional Laguerre polynomials using the isospectral
deformation technique and quantum Hamilton–Jacobi (QHJ) formalism is presented. For a given potential, the
singularity structure of the quantum momentum function, defined within the QHJ formalism, allows us to find
its solutions. We show that this singularity structure can be exploited to construct the generalised superpotentials,
which lead to rational potentials with exceptional polynomials as solutions. We explicitly construct such rational
extensions of the radial oscillator and their solutions, which involve exceptional Laguerre orthogonal polynomials
having two indices. The weight functions of these polynomials are also presented. We also discuss the possibility
of constructing more rational potentials with interesting solutions.

Keywords. Exceptional orthogonal polynomials; exactly solvable models; rational potentials; shape invariance;
isospectral deformation; quantum Hamilton–Jacobi formalism.

PACS Nos 03.65.Ge; 03.65.Sq; 02.30.Hq

1. Introduction

The previous decade saw a lot of interesting work in
the areas related to Sturm–Loiville’s theory and orthog-
onal polynomials owing to the discovery of exceptional
orthogonal polynomials (EOPs) [1]. The subsequent
construction of rational potentials with these polyno-
mials as solutions [2] has led to a renewed interest in
exactly solvable quantum mechanics. Various studies
delved into the different aspects of these EOP sys-
tems like their classification [3], spectral analysis [4],
the structure of zeros and other interesting properties
[5–9]. Simultaneously, different methods were devel-
oped to construct these polynomials and rational poten-
tials [10–21]. Over the years, these new polynomi-
als appeared in connection with nonlinear oscillators
[22,23] and superintegrability [24]. They can also be
found in the context of quantum information theory [25],
discrete quantum mechanics [26] and the Schrödinger
equation with position-dependent mass and other stud-
ies [27–29].

Among the well-studied polynomials in the
exceptional class, we have generalised families of
exceptional Hermite, three families of exceptional

Laguerre and two families of exceptional Jacobi poly-
nomials [5–17]. These polynomials are characterised by
the codimension index m, which gives the number of
gaps in the sequence of polynomials and can take val-
ues 1, 2, 3, . . . . Therefore, Xm EOP sequence implies a
polynomial sequence with m number of gaps and differ-
ent m gives a different order of exceptional polynomials.
For the review of these EOPs and exactly solvable quan-
tum mechanics, we refer to [30].

Another significant development has been the con-
struction of multi-indexed EOPs using methods like
Krein–Adler transformations, multistep Darboux trans-
formation and higher-order supersymmetry (SUSY)
[31–34]. The explicit construction of two indexed
Laguerre polynomials has been presented in [33]. These
polynomials have a complex structure and are currently
being studied [31,34]. The construction of these gen-
eralised families of polynomials is more complicated
owing to the weight regularity problem [35]. The exis-
tence of the EOPs has extended the class of orthogonal
polynomials and widened the scope of the Bochner’s
theorem [3,36] on classical orthogonal polynomials
(COPs) [37,38]. The differential equations of the EOPs
have rational coefficients and the polynomials form a
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complete set with respect to a rational weight function.
Therefore, for a well-defined spectral problem, these
weight functions should be well behaved and should not
have any singularities in the domain of orthonormality.

In a recent paper [21], we used the technique of
isospectral deformation [18,39] to construct rational
potentials having Xm EOPs as solutions. In order to
apply the same technique to construct potentials with
multi-indexed EOPs as solutions, more information is
required.

In the present study, we couple this method with
the simple, yet powerful techniques of the quantum
Hamilton–Jacobi formalism (QHJF) to obtain the addi-
tional information required to construct rational poten-
tials having multi-indexed EOPs in their solutions.
Within the framework of the QHJF, the singularity struc-
ture of the exactly solvable (ES) potentials and the
corresponding quantum momentum functions (QMFs)
are well understood. To obtain the required results, we
exploit the facts that (i) for the zero energy state, the
superpotential is equivalent to the QMF of the given
potential, (ii) for the nth energy state, the moving poles
of the QMF correspond to the zeros of the wave function
and (iii) the fixed poles of the QMF correspond to the
singularities of the potential.

Here, for a given ES potential using isospectral defor-
mation, we construct a generalised superpotential such
that one of the partners is the original potential and the
other is its rational extension. The complete form of
the new superpotential is obtained by doing the singu-
larity structure analysis. This process gives us all the
possible generalised superpotentials associated with the
original potential. We use these to construct the rational
extensions of the potential and analyse their solutions.
For demonstration, we consider the radial oscillator
potential and explicitly construct the rational potentials
with solutions in terms of the two indexed exceptional
Laguerre polynomials. We also discuss the construction
of a hierarchy of rational potentials with EOPs as solu-
tions, by iteratively applying this method.

The presentation of the paper is as follows. In §2,
we give a brief introduction to the supersymmetric
quantum mechanics (SUSYQM), followed by a descrip-
tion of isospectral deformation technique for the first
and the second iterations in §3. In §4, we summarise
the QHJF and its connection with the SUSYQM. In
§5, we discuss the construction of the rational poten-
tials. In §5.1, we summarise our results on the three
generalised families of rational potentials associated
with the radial oscillator and their solutions involv-
ing Xm exceptional Laguerre polynomials. In §5.2, we
perform the second iteration explicitly and construct
rational potentials and their solutions involving two
indexed EOPs. This is followed by a discussion of the

results in §6 and concluding remarks in §7. For con-
venience, we have put h̄ = 2m = 1 throughout this
paper.

2. Supersymmetric quantum mechanics

In SUSYQM [39,40], we have a pair of supersymmetric
partner potentials

V±(x) = W 2(x)± ∂x W (x), (1)

where

W (x) = − d

dx
ln ψ−0 (x) (2)

is the superpotential associated with the pair. Here
ψ−0 (x) is the ground-state wave function of V−(x). If
ψ−0 (x) is normalisable with E−0 = 0 and Aψ−0 (x) =
0, then SUSY is known to be exact between the
corresponding partners. In this case, ψ+0 (x) is non-
normalisable and the partners are isospectral except
for the ground states. In this case the wave functions,
ψ±n (x), of the partners are related by

ψ−n+1(x) = A†ψ+n (x), ψ+n (x) = Aψ−n+1(x), (3)

where n = 0, 1, 2, . . . and

A = d

dx
+W (x), A† = − d

dx
+W (x) (4)

are the intertwining operators. For all the ES models,
the wave functions are of the form

ψ−n (x) = ψ−0 (x)Pn(x), (5)

where Pn(x) is a COP. Using (2), we obtain

ψ−n (x) = exp

(
−

∫
W (x) dx

)
Pn(x). (6)

In contrast, SUSY is said to be broken if W (x) leads to
non-normalisable ground states for both the partners.
Here, both the partners are isospectral including the
ground states. The relation between the eigenfunctions
of the partners is

ψ−n (x) = A†ψ+n (x), ψ+n (x) = Aψ−n (x). (7)

Using the above equations, we can construct an hierar-
chy of ES potentials and their solutions from V−(x) and
its solutions.

2.1 Shape invariance

The partners V±(x) are known to be translationally
shape invariant potentials (SIPs) if

V+(x, a0) = V−(x, a1)+ R(a0), (8)
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where a0 is the potential parameter with a1 and R(a0)

being the functions of a0. In these cases, the solutions
of V+(x, a0) can be obtained in a simple way using

ψ+n (x) = ψ−n (x, a0 → a1), (9)

without having to use the intertwining operators.
It is also well known that a given potential can

have more than one superpotential associated with it.
Each superpotential, Wi (x), leads to partner potentials
V±i (x), where every V−i (x) = V−(x) + Ci with Ci
being the constants in terms of the potential parameters.
SUSY may be exact or broken between the partners
depending on whether Wi(x) leads to normalisable
ground state or not. Moreover, the solutions of all the
partners, V+i (x), associated with V−i (x) can be obtained
from (9), where ψ−n (x) is substituted from (6) with suit-
able values of a1 in each case. In the discussion of the
rational potentials and the EOPs, various superpoten-
tials associated with V−(x), the corresponding partners
and their solutions play crucial roles in the isospectral
deformation method.

3. Isospectral deformation

Given the supersymmetric partners V±i (x) and the cor-
responding superpotential Wi (x), we construct a general
superpotential

W̃i (x) = Wi (x)+ φ1(x), (10)

by demanding

Ṽ+i (x) = V+i (x)+ R1, (11)

where R1 is a constant to be determined. The partner
potentials associated with W̃ (x) are

Ṽ±i (x) = W̃ 2
i (x)± ∂x W̃i (x). (12)

We can determine φ1(x) by writing (11) in terms of the
two superpotentials,
W̃ 2

i (x)+ ∂x W̃i (x) = W 2
i (x)+ ∂x Wi (x)+ R1. (13)

Making use of (10) gives

φ2
1(x)+ 2Wi(x)φ1(x)+ ∂xφ1(x)− R1 = 0, (14)

which is nothing but a Riccati equation. Linearising it
using the Kole–Hopf transformation,

φ1(x) = ∂xP(x)

P(x)
, (15)

gives the second-order differential equation

∂2
xP(x)+ 2Wi (x)∂xP(x)− R1P(x) = 0. (16)

For all the ES models studied, by demanding that P(x)

be an mth degree polynomial, with m = 0, 1, 2, . . . , a

suitable point canonical transformation (PCT) reduces
(16) to a second-order differential equation of one of the
COP, with a condition on R1. Thus, P(x) coincides with
a COP denoted by Pαi

m (r), where the index i in αi gives
correspondence to the index i in Wi (r). Thus, we obtain

W̃i (x) = Wi (x)+ ∂xPαi
m (x)

Pαi
m (x)

. (17)

By substituting different Wi(x) associated with V−(x)

in (16), we obtain different Pαi
m (x) leading to different

W̃i(x).

3.1 Construction of rational potentials and their
solutions

The partners Ṽ±i (x) associated with W̃i(x) can be con-
structed using

Ṽ±i (x) = W̃i (x)± ∂x W̃i (x). (18)

From eq. (11), Ṽ+i (x) is the same as V+i (x), but shifted
by R1, but its partner Ṽ−i (x) turns out to be a distinct
new potential of the form

Ṽ−i (x) = V−i (x)− 2∂xφ1(x)+ R1. (19)

This, in terms of Pαi
m (x), becomes

Ṽ−i (x) = V−i (x)− 2∂x

(
∂xPαi

m (x)

Pαi
m (x)

)
+ R1. (20)

From the above equations, it is clear that for each value
of m, we get a different family of potentials and these
Ṽ−i (x) are rational extensions of the original poten-
tials V−i (x). We call these the first generation rational
potentials. With the limit m → 0, W̃i (x) → Wi (x)

and Ṽ−i (x) → V−i (x), because for all COP sequences
Pαi

0 (x) = 1. The available supersymmetry machinery
allows us to construct eigenvalues and eigenfunctions
for Ṽ−i (x), without having to solve the Schrödinger
equation. Ṽ+(x) ≡ V+(x) implies that their solutions
are also equivalent. Therefore, the nth excited state of
Ṽ+(r) is

ψ̃+n (x) = ψ+n (x), (21)

apart from a normalisation constant. We make use of the
intertwining operators

Ã = d

dx
+ W̃(x), Ã† = − d

dx
+ W̃(x), (22)

defined for W̃(r) and Ṽ±(r) to construct ψ̃−n (x). Using
(7), we have
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ψ̃−n (x) = Ã†ψ̃+n (x), n = 1, 2, . . . . (23)

For all the rational extensions constructed, the wave
functions are of the form

ψ̃−n (x) = ψ−0 (x)

Pαi
m (x)

Pαi
m,n(x), (24)

where Pαi
m,n(x) are the Xm EOPs of codimension m,

the degree of Pαi
m (x). Here ψ−0 (x) is the normalisable

ground state of V−(x). From the above equation it can
be clearly seen that for ψ̃−n (x) to be an acceptable wave
function, Pαi

m (x) should not have any zeros in the domain
of orthonormality. The choice of suitable Wi(x) in (16)
takes care of this.

The eigenvalues of Ṽ−(x) can also be obtained in a
simple way. From (11), it is obvious that Ẽ+n = E+n +R1

and as Ṽ±(x) are strictly isospectral, the eigenvalues of
Ṽ−(x) will be

Ẽ−n = E+n + R1. (25)

In [21], we constructed different generalised rational
potentials and their solutions for the radial oscillator and
trigonometric Pöshl–Teller potentials using this method.
This can be used to rationally extend all known shape-
invariant potentials in one dimension and show that their
solutions are in terms of the single indexed EOPs.

3.2 Second iteration of isospectral deformation

For the second iteration of isopectral deformation, we
begin with W̃i (x) and construct a new generalised super-
potential

W̄i (x) = W̃i (x)+ φ2(x), (26)

by demanding that

V̄−(x) = Ṽ−(x)+ R2. (27)

Here the constant R2 and φ2(x) need to be determined.
Proceeding as in the first iteration, the equation for φ2(x)

turns out to be

φ2
2(x)+ 2W̃i (x)φ2(x)− ∂rφ2(x)− R2 = 0, (28)

which again is a Riccati equation for each W̃i (x). The
simple Kole–Hopf transformation, used in the first iter-
ation, is not sufficient to give us the complete structure
of φ2(x). We show that the singularity structure anal-
ysis followed within the QHJF provides the necessary
inputs to fix φ2(x). Once φ2(x) is determined, we can
construct W̄i (x), which in turn can be used to construct

the partners V̄±i (x). Again from eq. (27), V̄−i (x) are the
same as Ṽ−i (x), but V̄+i (x) will be distinct potentials of
the form

V̄+i (x) = Ṽ+i (x)+ 2∂xφ2(x)+ R2, (29)

which is a rational extension of Ṽ+i (x). Using (11), we
can write

V̄+i (x) = V+i (x)+ 2∂xφ2(x)+ R2 + R1, (30)

which shows that it is a rational extension of V+i (r),
obtained after a second iteration of isospectral defor-
mation. We show that for these extensions, the rational
terms are a combination of logarithmic derivatives of
the COPs and Xm EOPs. As in the first iteration, we can
make use of the fact that ψ̄−n (x) = ψ̃−n (x) apart from
a normalisation constant and construct the solutions of
V̄+i (x) using

ψ̄+n (x) = Āψ̄−n (x), (31)

where

Ā = d

dx
+ W̄(x), Ā† = − d

dx
+ W̄(x) (32)

are the intertwining operators connecting the solutions
of V̄±(x). Substituting (24) into (31), we obtain eigen-
functions of the form

ψ̄+n (x) = ψ−0 (x)

Pαi
m,n′(x)

QN (x) (33)

and we show that QN(x) is an EOP with two indices. It
should be noted that for the eigenfunctions to be well
behaved, the polynomial appearing in the denominator
should not have any zeros in the orthonormality inter-
val. In the next section, we show that the singularity
structure analysis of W̄(x) ensures such behaviour. The
eigenvalues in this case will be

Ē+n = Ẽ−n + R2. (34)

Using (25), we obtain

Ē+n = E−n + R1 + R2. (35)

From the above discussion, it is clear that we can further
rationally extend V̄+(x) and, in fact, continue to repeat
the process and construct a hierarchy of rational poten-
tials with solutions involving multi-indexed EOPs. This
method allows us to obtain explicit expressions for all
these potentials and the multi-indexed EOPs in each iter-
ation easily. Before proceeding to the radial oscillator
problem, we give a brief description of the QHJF.

4. The quantum Hamilton–Jacobi (QHJ)
connection

In the QHJF, the singularity structure analysis of the
QMF in the complex plane allows us to calculate the
eigenvalues and eigenfunctions for a given potential
V−(x) [41–43]. The QMF is defined as
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q(x) = d

dx
log ψm(x), (36)

where ψm(x) is the mth excited state of the potential
V−(x) with eigenvalue Em . Comparing with (2), we
can straight away see that

lim
m→0

q(x)→−W (x). (37)

For a potential, the QMF again is not unique and differ-
ent QMFs, qi (x), will lead to different Wi(x). Among the
different QMFs only one will lead to physically accept-
able solutions. The QMF consists of fixed and moving
singularities. The knowledge of these singularities and
their residues allows us to write the QMF in a meromor-
phic form, in terms of its singular and analytical parts.
The location of the fixed singularities can be obtained
from the QHJ equation, a Riccati equation,

q2(x)+ q ′(x)+ E − V−(x) = 0, (38)

and coincides with the singularities of the potential. Note
that substitution of (36) into (38) gives the Schrödinger
equation for the given potential. The moving singulari-
ties are first-order poles. For all ES models, it has been
seen that the point at infinity is an isolated singularity,
implying that the QMF has finite number of moving
poles in the complex domain. As seen from (36), these
correspond to the nodes of the mth excited state. The
quadratic nature of the QHJ equation (38), results in
the residues at all the poles being dual valued. Different
residue combinations give rise to different QMFs. For
all the conventional ES models, the choice of residue
at m moving poles turns out to be unity. For all these
models, the QMF can be cast in the form

qi (x) = Qi (x)+ ∂xPm(x)

Pm(x)
. (39)

Here

∂x Pm(x)

Pm(x)
=

m∑
i=0

1

x − xi

is the sum of all the principal parts of the individual
Laurent expansions of qi (x) around m moving poles.
Similarly, Qi (x) is the sum of all the principal parts
of the individual Laurent expansions of qi (x) around
each fixed pole, plus its behaviour at infinity. Different
combinations of residues at the fixed poles and at the
isolated singularity at infinity will lead to different Qi(x)

and hence different QMFs, qi (x). From (37) and (39),
we can see that with the limit m → 0,

Qi (x) = −Wi (x), (40)

which gives us all the possible superpotentials associ-
ated with the potential V−(x). Thus, (39) can be written
as

qi (x) = −Wi (x)+ ∂xPm(x)

Pm(x)
(41)

substitution of which in (38) gives a second-order
differential equation for Pm(x):

∂2
xPm(x)− 2Wi (x)∂xPm(x)+ EmPm(x) = 0, (42)

which reduces to a COP differential equation after a
suitable PCT and we obtain Pm(x) = Pαi

m (x), a COP.
Substituting (41) into (36) gives expression for the wave
function as

ψ−m(x) = exp

(
−

∫
Wi (x) dx

)
Pαi

m (x). (43)

Thus, different Wi (x) will lead to different differential
equations leading to different solutions. For physically
acceptable solutions, appropriate boundary conditions
are applied to fix the values of residues at the fixed poles.
This ensures that the wave function, obtained using
(36), is well behaved and does not diverge at the end
points. One such boundary condition is that with the
limit m → 0, the above equation reduces to

ψ−0 (x) = exp

(
−

∫
Wi (x) dx

)
. (44)

Thus, one combination of residues leads to physically
acceptable solutions and the other combinations lead to
unphysical solutions related to the deconjugacy of the
Schrödinger equation [35].

Among the different Wi (x) available from (40), Wi (x)

which leads to normalisable ground state from (44), is
the superpotential which keeps SUSY exact. The same
Wi (x) in (42) and (43) will lead to acceptable solutions
of the potential V−(x). The other combinations lead to
non-normalisable ground states and hence give us super-
potentials, which break SUSY between the correspond-
ing partners. Thus for any given potential, we can con-
struct all the possible superpotentials from the QMFs.

Interestingly for all the cases studied, it turns out that
the exponential term is also the weight function, w(x),
i.e.

exp

(
−

∫
Wi (x) dx

)
= ψ−0 (x) = w(x), (45)

with respect to which the orthogonal polynomials,
Pαi

m (x), are orthonormal. Thus, the residue combina-
tion leading to physically acceptable solutions also
gives a well-behaved weight function in the orthonor-
mality interval. The corresponding polynomials have
only real zeros in the orthonormality interval which
are governed by the oscillation theorem [37]. The other
combinations lead to weight functions, which do not
have the right asymptotic behaviour at one or both the
end points and therefore do not lead to well-defined
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spectral problems. These solutions are used for the con-
struction of rational potentials [42]. Thus, we have a neat
connection between the QMFs, superpotentials and the
weight functions, which can be used to overcome the
weight regularity problem, especially when performing
higher iterations of isospectral deformation. The QHJ
analysis works for the ES rational potentials too and for
more details please see [42].

4.1 QHJF and the isospectral deformation

It is clear from (1) that substituting Wi (x) = −Wi (x) in
the expression for V−i (x) gives V+i (x). This also implies

ψ+0 (x) = exp

(∫
Wi (x) dx

)
. (46)

The same substitution in (41) gives the QMF of V+i (x)

as

qi (x) = Wi (x)+ ∂xPm(x)

Pm(x)
, (47)

which is nothing but W̃i (r) given in (17). In addition,
substituting Wi (x) = −Wi (x) in (42) gives (16), with
R1 = Em . Thus, by isospectrally deforming V−i (x)

and demanding that the polynomial P(x) in (15) is an
mth degree polynomial, we are, in fact, constructing the
QMFs associated with the corresponding translational
shape-invariant partner, V+(x) ≡ Ṽ+(x).

5. Rational potentials associated with the radial
oscillator

Before proceeding further, we present the results related
to the rational potentials, belonging to the radial oscil-
lator family, having Xm EOPs as solutions studied in
[21]. We perform the next iteration of isospectral defor-
mation and rationally extend these potentials and also
obtain their solutions.

The radial oscillator potential is given by

V (r) = 1

4
ω2r2 + �(�+ 1)

r2 , r ∈ (0,∞). (48)

The eigenfunctions and the eigenvalues are

ψn(r) = r�+1 exp

(
−1

4
ωr2

)
L�+1/2

n (r), E−n = 2nω,

(49)

respectively, with n = 0, 1, 2, . . . . Here L�+1/2
n (r) are

the classical associated Laguerre polynomials which are
orthonormalwith respect to the weight function

wcop(r) = r�+1 exp

(
−1

4
ωr2

)
(50)

in the orthonormality interval [0,∞).

5.1 First iteration of isospectral deformation of the
radial oscillator

The QHJ analysis of the radial oscillator leads to four
superpotentials Wi (r) (i = 1, 2, 3, 4) presented in
table 1. Note that the solutions of all V−i (r) are the same
as (49) apart from the normalising constant. Using (8)
and a0, a1 listed in table 1, we can construct the corre-
sponding shape-invariant partners V+i (r). In addition,
ψ+(r) = ψ−(r, a0 → a1) gives eigenfunctions for
each partner potential V+i (r).

By substituting Wi (r) in (2) we can construct the
ground-state wave functions for all V−i (r). We can see
that W1(r) leads to a normalisable ground state for
V−1 (r) and a non-normalisable ground state for V+1 (r).
The superpotentials Wi (r) with i = 2 and 3 lead to
a non-normalisable ground states for both the partners.
The last superpotential W4(r) leads to non-normalisable
ground state of V−4 (r), but gives normalisable ground
state for V+4 (r), because W4(r) = −W1(r, �→ �− 1).
For the construction of W̃i (r), we need Wi (r) which lead
to Pαi

m (r) with no zeros in the interval [0,∞). There-
fore, we use Wi (r) with i = 1, 2, 3 in (16) and this
takes care of the weight regularity problem. In table 2,
we list out W̃i (r) which lead to ES rational potentials
with physically acceptable solutions. For convenience,
we write (1/2)ωr2 = y from here on.

The explicit expressions for Pαi
m (r) obtained by sub-

stituting different Wi (r) in (16) along with the condition
on R1 are also given. These in turn give different W̃i (r)

Table 1. Superpotentials of the radial oscillator.

k Wi (r) V−i (r) = W 2
i (r)− ∂rWi (r) a0 a1

1 1
2ωr − [(�+ 1)/r ] V (r)− ω(�+ 3/2) � �+ 1

2 1
2ωr + (�/r) V (r)+ ω(�− 1/2) � �− 1

3 − 1
2ωr − [(�+ 1)/r ] V (r)+ ω(�+ 3/2) � �+ 1

4 − 1
2ωr + (�/r) V (r)− ω(�− 1/2) � �− 1
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from (17). In addition, explicit expressions for the three
families of the rational potentials Ṽ−i (r), obtained using
(20), are given in table 3, along with their solutions,
constructed using (23) and (25). These involve the gen-
eralised Xm exceptional Laguerre polynomials, whose
expressions are given in table 4. For details of the cal-
culations, please see [21].

From table 3, it is clear that the normalisable wave
functions for each Ṽ−i (r), obtained using (23), are of
the form given in (6):

ψ̃−n (r) = exp
(− ∫

W1(r) dr
)

Pαi
m (r)

L j, αi
m,n(r), (51)

where L j, αi
m,n(r) represent the three exceptional Laguerre

EOPs, with j = I, II and III representing the L1, L2
and L3 type polynomials, respectively, given in table 4.
Our notation coincides with the notation given in [5,11]
and hence follows the classification given there for our
study. For a more recent classification of EOPs, please
see [8]. Here, exp(− ∫

W1(r) dr) is nothing but the nor-
malisable ground state ψ−0 (x) of V−(x). Moreover,

exp
(− ∫

W1(r) dr
)

Pαi
m (r)

= wi,eop(r) (52)

are the rational weight functions associated with each
family of the Xm exceptional Laguerre polynomials.
Substituting W1(r) from table 1, we can see that

exp

(
−

∫
W1(r) dr

)
= wcop(r) (53)

given in (50), which gives the relation between the
weight functions of the COPs and Xm EOPs. As it is
already ensured that Pαi

m (r) for i = 1, 2, 3 do not have
zeros on the positive real line, the weight functions for
all the three cases are well behaved in the domain of
orthonormality.

5.2 Second iteration of isospectral deformation and
construction of rational potentials and EOPs with two
indices

In this section, we do a second iteration of isospectral
deformation and construct W̄i(r) using different W̃i(r)

given in table 2. Substituting each W̃i (r) in eqs (26) and
(28) we obtain equations for φ2(r) in each case. The
details of the calculations are given as follows.

5.2.1 Construction of V̄+1 (r). For the first case, we
use

W̃1(r) = 1

2
ωr − (�+ 1)

r
+ ∂r Lα1

m (−y)

Lα1
m (−y)

(54)

with α1 = −�− 3/2. Substituting this in (26) gives

W̄1(r) = 1

2
ωr − (�+ 1)

r
+ ∂r Lα1

m (−y)

Lα1
m (−y)

+ φ2(r) (55)

and the equation for φ2(r) from (28) is

Table 2. The superpotentials obtained after the first isospectral deformation.
Here, m = 1, 2, . . . and y = (1/2)ωr2.

Wi (r) Pαi
m (r) W̃i (r) αi R1

W1(r) Lα1
m (−y)

1

2
ωr− (�+1)

r
+∂r Lα1

m (−y)

Lα1
m (−y)

−�−3

2
2mω

W2(r) Lα2
m (−y)

1

2
ωr+�

r
+∂r Lα2

m (−y)

Lα2
m (−y)

�−1

2
2mω

W3(r) Lα3
m (y) −1

2
ωr− (�+1)

r
+∂r Lα3

m (y)

Lα3
m (y)

−�−3

2
−2mω

Table 3. First-generation rational potentials, their eigenfunctions and eigenvalues.

i Ṽ−i (r) ψ̃−n (r) Ẽn

1 Ṽ−1 (r) = V−1 (r)− 2∂2
x (ln Lα1

m (−y))+ R1

(
y(�+1)/2 exp(−(y/2))

Lα1
m (−y)

)
L III,α1

m,n (r) 2ω(n + m)

2 Ṽ−2 (r) = V−2 (r)− 2∂2
x (ln Lα2

m (−y))+ R1

(
y(�+1)/2 exp(−(y/2))

Lα2
m (−y)

)
L I,α2

m,n (r) 2ω(n + m)

3 Ṽ−3 (r) = V−3 (r)− 2∂2
x (ln Lα3

m (y))+ R1

(
y(�+1)/2 exp(−(y/2))

Lα3
m (y)

)
L II,α3

m,n (r) 2ω(n − m)
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Table 4. Explicit expression of the exceptional Laguerre
polynomials.

L j,αi
m,n (r) Expression

L I, α2
m,n (r) Lα2+1

m (−y)Lα2
n (y)− 1

ωr
Lα2

m (−y)∂r Lα2
n (y)

L II, α3
m,n (r)

(
�+ 1

2

)
Lα3+1

m (y)L−α3
n (y)+ r Lα3

m (y)∂r L−α3
n (y)

L III, α1
m,n (r) yL−α1+1

n (y)Lα1
m (−y)+ (m + α1)Lα1−1

m (−y)

× L−α1
n (y)

φ2
2(r)+ 2

(
ωr

2
− (�+ 1)

r
+ ∂r Lα1

m (−y)

Lα1
m (−y)

)
φ2(r)

−∂xφ2(r)− R2 = 0. (56)

We need to solve the above Riccati equation to obtain
φ2(r). Noting that W̄ (r) is nothing but one of the QMF of
Ṽ−1 (r), we can obtain its complete form by fixing φ2(r).

From (56), we can see that φ2(r) has a fixed pole
at r = 0 in addition to 2m fixed poles located at the
zeros of Lα1

m (−y). As we want to construct ES poten-
tials, we continue with the ansatz that for φ2(r) the point
at infinity is an isolated singular point. This implies that
φ2(r) has finite number of moving poles and let there
be N such moving poles. For all ES models, includ-
ing the rational potentials, this ansatz turned out to be
correct [42]. This information allows us to write φ2(r)

as a meromorphic function in terms of its singular and
analytic parts given below:

φ2(r) = b1

r
+ d1

2m∑
i=1

1

r − ai
+ d ′1

N∑
i=1

1

r − b j

+c1r + Q(r). (57)

Here, the first term is the principal part of the Laurent
expansion of φ2(r) around the fixed pole r = 0, with
b1 being the residue. The summation terms describe the
sum of all the principal parts of the individual Laurent
expansions around the 2m fixed poles and the N moving
poles, respectively, with d1 and d ′1 denoting the corre-
sponding residues. The term c1r describes the behaviour
of φ2(r) at infinity as seen from (56) and Q(r) is the ana-
lytical part of φ2(r), which from Liouville’s theorem is
a constant, say C . Writing
2m∑
i=1

1

r − ai
= ∂r Lα1

m (−y)

Lα1
m (−y)

and

N∑
i=1

1

r − b j
= ∂rPN (r)

PN (r)
,

where PN (r) is an N th degree polynomial, and the
above equation becomes

φ2(r) = b1

r
+ d1

∂r Lα1
m (−y)

Lα1
m (−y)

+ d ′1
∂rPN (r)

PN (r)

+c1r + C. (58)

To find the residues at these poles, we expand φ2(r) in
a Laurent expansion around each pole individually and
substitute it in (56). For example, to calculate b1, we do
a Laurent expansion of φ2(r) around r = 0,

φ2(r) = b1

r
+ a0 + a1r + · · · (59)

and substitute it in (56). Equating the coefficients of
1/r2 to zero, we obtain two values for b1, namely

b1 = 0, b1 = 2�+ 1. (60)

Similarly, the dual values of residues at the 2m fixed and
N moving poles are obtained as
d1 = 0, d1 = −3, (61)

d ′1 = 0, d ′1 = −1, (62)

respectively. Next, in order to calculate the behaviour
of φ2(r) at infinity, we perform a change of variable
r = 1/t in (56), which gives

φ2
2(t)+ 2

(
ω

2t
− (�+ 1)t − t2 ∂r Lα1

m (−t)

Lα1
m (−t)

)
φ2(t)

−t2∂tφ2(t)− R2 = 0. (63)

The residue at t = 0 is calculated by doing a Laurent
expansion of φ2(t) around t = 0. Once again we obtain
two values for c1 as

c1 = 0, c1 = −ω. (64)

Substituting φ2(r) into (55) gives

W̄1(r) =
(

c1 + ω

2

)
r + b1 − �− 1

r

+ (d1 + 1)
∂r Lα1

m (−y)

Lα1
m (−y)

+d ′1
∂rPN (r)

PN (r)
+ C. (65)

We need to choose residue values such that (65) will lead
to non-normalisable solutions, more specifically to an
unnormalised ground state. Thus, the choice of residues
at r = 0 and∞ plays an important role. Since 2m fixed
poles do not lie in the domain of orthonormality, we can,
in principle, choose any of the residue values. As for the
residues at N moving poles, we choose the only non-
trivial value available. For the present case, we consider
the combination

b1 = 2�+ 1, d1 = 0, d ′1 = −1, c1 = 0 (66)
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and we can check that weight function obtained using
these residues tends to infinity as r → ∞. Thus, we
obtain

φ2(r) = 2�+ 1

r
− ∂rPN (r)

PN (r)
+ C. (67)

Substituting this into (56) gives the following second-
order differential equation for PN (r) :

∂2
r PN(r)− 2

(
ωr2

2
+ �+ r

∂r Lα1
m(−y)

Lα1
m(−y)

)
1

r
∂rPN (r)

+
(

2(2�+ 1)

(
ω

2
+ 1

r

∂r Lα1
m (−y)

Lα1
m (−y)

)
− R2

)
PN (r)

= 0. (68)

Note that in the process of simplification, by comparing
the coefficients of r , we can show that C = 0. Per-
forming a PCT (1/2)ωr2 = z and dividing the resultant
equation by 2ω, we obtain

z∂2
z PN (z)+

(
−z −

(
�− 1

2

)
− 2z

∂z Lα1
m (z)

Lα1
m (z)

)

×∂zPN (z)+
(

(2�+ 1)

(
1

2
+ ∂z Lα1

m (z)

Lα1
m (z)

)
− R2

2ω

)
×PN (z) = 0. (69)

Redefining � = −d − 1 and putting m = 1, the above
equation reduces to

z∂2
z PN (z)+

(
−z +

(
d + 3

2

)
− 2z

∂z Ld−1/2
1 (z)

Ld−1/2
1 (z)

)

×∂zPN (z)−
(

(2d + 1)

(
1

2
+ ∂z Ld−1/2

1 (z)

Ld−1/2
1 (z)

)

+ R2

2ω

)
PN (z) = 0. (70)

Comparing the above equation with the X1 exceptional
Laguerre equation of L1 type given below [5]

z∂2
z L I, g−1/2

1,n′ (z)

+
(
−z +

(
g + 3

2

)
− 2z

∂z Lg−1/2
1 (z)

Lg−1/2
1 (z)

)

×∂z L I, g−1/2
1,n′ (z)+

(
−2z

∂z Lg+1/2
1 (z)

Lg−1/2
1 (z)

+ n′ + 1

)

×L I, g−1/2
1,n′ (z) = 0, (71)

we can see that both the equations match, except for the
last terms. As R2 is an unknown constant, we fix R2
by demanding that the last terms of eqs (70) and (71)
match. This gives

R2 = −(−n′ + d + 3/2)2ω. (72)

Though for general m, (69) can be reduced to an Xm
exceptional polynomial differential equation by suitably
fixing R2, we find that only for m = 1, R2 turns out to
be a constant. For any other choice of m, R2 turns out
to be a function of r , which violates the initial condition
(27). Thus, the polynomial, PN (r), coincides with

L I, δ
1,n′(y) = Lδ+1

1 (−y)Lδ
n′(y)− 1

ωr
Lδ

1(−y)∂r Lδ
n′(y),

(73)

where δ = d − 1/2 and the degree of the polynomial
is N = n′ + 1. For small values of n′ and �, we have
checked numerically that as long as −2 < R2 < 0,
the polynomial does not have any zeros in the interval
[0,∞). A random check for bigger values of n′ and
� showed the same pattern. Therefore, we conjecture
that as long as we choose n′ and � values such that the
above condition on R2 is satisfied, we have polynomials
L I, δ

1,n′(y) with no zeros in the orthonormality interval.
Thus, for all such values, we can write

φ2(r) = 2�+ 1

r
− ∂r L I, δ

1,n′(y)

L I, δ
1,n′(y)

, (74)

which in turn gives

W̄1(r) = ωr

2
− �

r
+ ∂r Lα1

1 (−y)

Lα1
1 (−y)

− ∂r L I, δ
1,n′(y)

L I, δ
1,n′(y)

. (75)

Thus, W̄1(r) has rational terms involving the logarithmic
derivative of Laguerre polynomials and X1 exceptional
Laguerre polynomials of L1 type X1 EOPs. The poten-
tial V̄+1 (r) is constructed by substituting φ2(r) in (30)
and we obtain

V̄+1 (r) = V+1 (r)+ 2∂r

(
2�+ 1

r
−∂r L I, δ

1,n′((1/2)ωr2)

L I, δ
1,n′((1/2)ωr2)

)

+ 2ω

(
�− n′ − 1

2

)
, (76)

which is the second generation rational extension of the
radial oscillator V+(r). For different values of n′ we get
different V̄+1 (r). For each case, the eigenvalues can be
calculated using (35) as

Ēn = 2ω

(
n − n′ + �+ 1

2

)
. (77)

Thus, we can construct a family of generalised rational
potentials indexed by n′. Next, we calculate the solutions
of V̄+1 (r) using

ψ̄+n (r) = Āψ̄−n (r), n = 1, 2, . . . , (78)

where the intertwining operators are defined in (32).
We know ψ̄−n (r), since by definition V̄−1 (r) ≡ Ṽ−1 (r)
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and therefore their solutions are equal, apart from the
normalisation constant. Thus, from tables 3 and 4, we
get

ψ̄−n (r) =
(

y(�+1)/2 exp(−(y/2))

Lα1
1 (−y)

)
L III,α1

1,n (y). (79)

Substituting this in (78) and operating Ā on it gives

ψ̄+n (r) =
(

y�/2 exp(−(y/2))

Lα1
1 (−y)L I,δ

1,n′(y)

)
Qα1,δ

m=1,n′, n(y), (80)

where

Qα1,δ
m=1,n′,n(y) = (2�+ 1)L I,δ

1,n′(y)L III,α1
1,n (y)

+ r L I,δ
1,n′(y)∂r L III,α1

1,n (y)

− r L III,α1
1,n (y)∂r L I,δ

1,n′(y). (81)

Here, Qα1,δ
m=1,n′,n(y) is an EOP with two indices m = 1

and n′ taking values 1, 2, . . . , provided the condition
on R2 is taken care off. It can be seen that these poly-
nomials have a complicated yet interesting structure of
zeros, consisting of both the exceptional and the regular
zeros. A careful investigation is needed to obtain more
information regarding their distribution. As discussed
in §4, the non-polynomial part in (80) gives the rational
weight function

w(r) = y�/2 exp(−(y/2))

Lαi
1 (−y)L I,δ

1,n′(y)
, (82)

with respect to which Qα1,δ
m=1,n′,n(y) are orthonormal, in

the interval [0,∞). As discussed earlier, for appropriate
choices of � and n′ values, these polynomials appear-
ing in the denominator will not have any real zeros in
this interval. This takes care of the weight regularity
problem. Thus, we are led to a family of EOPs with
two indices, which are explicitly written in terms of the
single indexed EOPs. One can continue to iterate this
process and construct a hierarchy of rational potentials
with multi-index EOPs in their solutions.

5.2.2 Construction of V̄+2 (r). The second family of
rational potentials is constructed by substituting

W̃2(r) = ωr

2
+ �

r
+ ∂r Lα2

m (−y)

Lα2
m (−y)

(83)

in eqs (26) and (28). The equation for φ2(r) turns out to
be

φ2
2(r)+ 2

(
ωr

2
+ �

r
+ ∂r Lα2

m (−y)

Lα2
m (−y)

)
φ2(r)

−∂xφ2(r)− R2 = 0 (84)

with α2 = �− 1/2. As in the above case, the meromor-
phic form of φ2(r) is

φ2(r) = b1

r
+ d1

∂r Lα2
m (−y)

Lα2
m (−y)

+ d ′1
∂rPN (r)

PN (r)

+c1r + Q(r) (85)

with b1, d1 and d ′1 being residues at r = 0, 2m fixed

poles due to of Lα2
m (−y) and N moving poles due to

PN (y). Because the point at infinity is assumed to be an
isolated singularity, the analytical part Q(r) is a constant
C . Proceeding as in the previous case, the residue values
turn out to be

b1 = 0, −2�− 1; d1 = 0, −3;
d ′1 = 0, −1; c1 = 0, −ω. (86)

We choose the combination b1 = 0, d1 = 0, d ′1 =
−1, c1 = −ω, such that W̄2(r) is constructed, leading
to a non-normalisable ground state. With these values,
we get

φ2(r) = −ωr − ∂rPN (r)

PN (r)
+ C, (87)

which when substituted in (84) gives C = 0 and

∂2
r PN (r)+ 2

(
ωr2

2
− �− r

∂r Lα2
m (−y)

Lα2
m (−y)

)
1

r
∂rPN (r)

−
(

2ω

(
�− 1

2

)
+ 2ωr

∂r Lα2
m (−y)

Lα2
m (−y)

+ R2

)
PN (r)

= 0. (88)

Doing a PCT (1/2)ωr2 = −z and dividing the resultant
equation by 2ω reduces the above equation to

z∂2
z PN (z)+

(
−z −

(
�− 1

2

)
− 2z

∂z Lα2
m (z)

Lα2
m (z)

)

×∂zPN (z)+
((

�− 1

2

)
+ 2z

∂z Lα2
m (−z)

Lα2
m (−z)

+ R2

2ω

)
×PN (z) = 0. (89)

Redefining the potential parameter � = −a − 1 and
considering the special case m = 1, the above equation
reduces to the differential equation of the L2 type, X1
exceptional Laguerre polynomial,

z∂2
z PN (z)+

(
−z +

(
a + 3

2

)
− 2z

∂z Lβ
1 (z)

Lβ
1 (z)

)

×∂zPN (z)+
(

1+ n′ − 2

(
a + 1

2

)
∂z Lβ+1

1 (z)

Lβ+1
1 (z)

)

×PN (z) = 0, (90)
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where β = −a − 3/2. As in the previous case, only for
m = 1, we obtain

R2 =
(

a + 1

2
+ n′

)
2ω, (91)

a constant. Therefore,

PN (y) ≡ L II,β
1,n′(−y) =

(
a + 1

2

)
Lβ+1

1 (−y)L−β

n′ (−y)

+ r Lβ
1 (−y)∂r L−β

n′ (−y) (92)

with the degree N = 1+n′. Here again, we have checked
numerically that for small values of n′ and �, these
polynomials will not have any zeros in the orthonormal-
ity interval, provided the potential parameters satisfy
certain conditions. We have observed that the above
polynomial has no zeros in the orthonormality interval,

1. if R2 ≥ −1.5 for both n′ and � being odd and
2. if R2 ≤ −2.5 for both n′ and � being even.

Therefore, by taking suitable parameter values we can
obtain PN (z) with the required behaviour. Thus, we get

φ2(r) = −ωr − ∂r L II,β
1,n′(−y)

L II,β
1,n′(−y)

(93)

and

W̄2(r) = −ωr

2
+ �

r
+ ∂r Lα2

1 (−y)

Lα2
1 (−y)

− ∂r L II,β
1,n′(−y)

L II,β
1,n′(−y)

.

(94)

Using W̄2(r), the new rational potential can be con-
structed from (30) as

V̄+2 (r) = V+(r)− 2∂r

(
∂r L II,β

1,n′(−y)

L II,β
1,n′(−y)

)

+2ω

(
n′ + a + 1

2

)
, (95)

clearly a different rational extension of the radial oscil-
lator. The eigenvalues calculated using (35) will be

Ēn =
(

n + n′ − �+ 1

2

)
2ω. (96)

Thus, we have another family of generalised rational
potentials, indexed by n′. The eigenfunctions ψ̄+n (r) are

obtained by applying the corresponding Ā on ψ̄−n (r) =
ψ̃−n (r), obtained from tables 2 and 3. The eigenfunctions
turn out to be

ψ̄+n (r) =
(

y�/2 exp(−(y/2))

Lα2
1 (−y)L II,β

1,n′(−y)

)
Qα2,β

m=1,n′,n(y), (97)

where

Qα2,β

m=1,n′,n(y) = (2�+ 1− 2y)L I,α2
1,n (y)L II,β

1,n′(−y)

− r L II,β
1,n′(−y)∂r L I,α2

1,n (y)

− r L I,α2
1,n (y)∂r L II,β

1,n′(−y). (98)

The above polynomials are orthonormal with respect to
to the rational weight function

w(r) =
(

y�/2 exp(−(y/2))

Lα2
1 (−y)L II,β

1,n′(−y)

)
. (99)

These polynomials again have both exceptional and reg-
ular zeros and well behaved rational weight functions
as long as the conditions on the parameters are taken
into account. Thus, we obtain another set of generalised
rational potentials and L1 type-two indexed exceptional
Laguerre polynomials.

5.2.3 Construction of V̄+3 (r). The third family of
rational potentials is constructed deforming Ṽ−3 (r)

using

W̄3(r) = −ωr

2
− �+ 1

r
+ ∂r Lα3

m(y)

Lα3
m (y)

(100)

in table 2. Following the same procedure as in the pre-
vious two cases, the equation of φ2(r) turns out to be

φ2
2(r)+ 2

(
−ωr

2
− �+ 1

r
+ ∂r Lα3

m (y)

Lα3
m (y)

)
φ2(r)

− ∂rφ2(r)− R2 = 0, (101)

with α3 = −� − 3/2. Again the meromorphic form of
φ2(r) is written as

φ2(r) = b1

r
+ d1

∂r Lα3
m (y)

Lα3
m (y)

+ d ′1
∂rPN (r)

PN (r)

+ c1r + C, (102)

with b1, d1 and d ′1 being the residues at r = 0, 2m fixed
poles due to Lα3

m (y) and N moving poles due to PN (y)

respectively. The residue values turn out to be

b1 = 0, 2�+ 1; d1 = 0, 3;
d ′1 = 0, −1; c1 = 0, ω. (103)

The suitable choice b1 = 2� + 1, d1 = 0, d ′1 =−1, c1 = 0 gives

φ2(r) = 2�+ 1

r
− ∂rPN (r)

PN (r)
+ C, (104)
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which when substituted in (101) gives C = 0 and

∂2
r PN (r)− 2

(
−ωr2

2
+ �+ r

∂r Lα3
m (y)

Lα3
m (y)

)
1

r
∂rPN (r)

+
(

2(2�+ 1)

r

(
−ωr

2
+ ∂r Lα3

m (y)

Lα3
m (y)

)
− R2

)
PN (r)

= 0. (105)

A PCT (1/2)ωr2 = −z and redefining � = −b − 1
and taking the special case of m = 1 reduces the above
equation to the L1-type exceptional Laguerre differen-
tial equation

z∂2
z PN (z)+

(
−z +

(
b + 3

2

)
− 2z

∂z Lb−1/2
1 (−z)

Lb−1/2
1 (−z)

)

×∂zPN (z)+
(

2z
∂z Lb+1/2

1 (−z)

Lb−1/2
1 (−z)

+ n′ − 1

)
PN (z)

= 0 (106)

and in the process fixes R2 = (n′ + b + 3/2)2ω. Thus,
the polynomial PN (z) coincides with

L I,γ
1,n′(−y) = Lγ+1

1 (y)Lγ

n′(−y)

+ 1

ωr
Lγ

1 (y)∂r Lγ

n′(−y), (107)

where γ = b − 1/2 and the degree N = 1+ n′. These
polynomials do not have any zeros in the orthonormal-
ity interval with the following conditions placed on the
parameters. For small values of n′ and �, we have numer-
ically checked that the polynomial will not have zeros
for a given n′,

1. if � is even and R2 is greater than 3/2,
2. if � is odd R2 is less than 0.

Therefore, for all such values, we obtain

W̄3(r) = −ωr

2
+ �

r
+ ∂r Lα3

1 (y)

Lα3
1 (y)

− ∂r L I,γ
1,n′(−y)

L I,γ
1,n′(−y)

.

(108)

The new rational potential turns out to be

V̄+3 (r) = V+3 (r)− 2∂r

(
∂r L I,γ

1,n′(−y)

L I,γ
1,n′(−y)

)

+2ω(n′ − �+ 1/2), (109)

the third rational extension of the radial oscillator
belonging to the second generation. The eigenvalues
turn out to be

Ēn =
(

n + n′ − �− 1

2

)
2ω, (110)

calculated using (35). The eigenfunctions calculated
using with Ā = (d/dr)+ W̄3(r) are

ψ̄+n (r) =
(

y�/2 exp(−(y/2))

Lα3
1 (y)L I,γ

1,n′(−y)

)
Qα3,γ

m=1,n′,n(y), (111)

where

Qα3,γ

m=1,n′,n(y) = (2�+ 1− 2y)L I,γ
1,n′(−y)L II,α3

1,n (y)

+ L I,γ
1,n′(−y)r∂r L II,α3

1,n (y)

− L II,α3
1,n (y)r∂r L I,γ

1,n′(−y). (112)

The well-behaved rational weight function with respect
to which these polynomials are orthonormal is

w(r) =
(

y�/2 exp(−(y/2))

Lα3
1 (y)L I,γ

1,n′(−y)

)
. (113)

These polynomials too have both exceptional and reg-
ular zeros. Thus, we have a third family of generalised
rational potential with L2 type-two indexed exceptional
Laguerre polynomials as solutions.

6. Discussion

6.1 The other combinations of residues

In all the three cases studied above, we have consid-
ered only one combination of the residues in obtaining
the meromorphic form of φ2(r). Among the remaining
combinations, there will be one combination, which will
lead to the superpotential W̄i (r) in each case. The use
of the remaining combinations of residues in φ2(r) will
lead to two different scenarios.

1. The second-order differential equation for PN (r)

does not reduce to any of the known Xm excep-
tional Laguerre equations. Therefore, we need to
check whether the differential equation can be
solved exactly and what is the nature of the solu-
tions in each case.

2. In this case, the differential equation for PN (r)

does reduce to an EOP differential equation. In
these cases, R2 turns out to be a function of r ,
which violates our initial condition (27). This also
implies that we have a distinct V̄−i (r) too. These
potentials may or may not be ES and we cannot use
the supersymmetric techniques to obtain solutions
of V̄±(r).

Thus, there is a need for a careful investigation of these
cases. We cannot rule out the possibility of some more
rational potentials, which can be ES or quasiexactly
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solvable. It will be interesting to study the nature of
their solutions.

6.2 New rational potentials and EOPs

It is clear that we can continue to rationally extend
the potentials constructed in this paper and obtain new
ES potentials for suitable potential parameters. These
potentials will have solutions involving multi-indexed
EOPs and we can explicitly construct the polynomials.
In each iteration we can perform the singularity struc-
ture analysis of the Riccati equation. The appropriate
choice of the residues allows us to construct the gener-
alised superpotential. We have seen that the choice of
the residues at fixed poles coinciding with the end points
of the orthonormality interval is very crucial to ensure
that the weight regularity problem does not arise.

In the case of other fixed poles, laying off the orthonor-
mality interval, we can choose any value in principle.
However, we see that only certain values ensure that
the differential equation for PN (r) reduces to a known
orthogonal polynomial equation and that the resultant
polynomials do not have any zeros in the orthonormal-
ity interval. Other choices may lead to new potentials,
but further analysis is required to comment about the
nature of these potentials and their solutions. Thus, it is
clear that with proper choice of residues, we can con-
struct a hierarchy of rational potentials using isospectral
deformation. The zeroth member in the hierarchy is the
radial oscillator with COPs as solutions and is followed
by a rational potential with EOPs as solutions where
the number of indices in the polynomials increases with
each iteration.

7. Conclusions

In this study, we have explicitly constructed the ratio-
nal potentials and their eigenvalues and eigenfunctions.
We have also shown that the latter are in terms of the
double indexed exceptional Laguerre polynomials. This
method can be used to construct newer ES rational
potentials with their solutions involving multi-indexed
EOPs. The method is simple and makes use of the
supersymmetric machinery and inputs from the QHJF,
which involves the singularity structure analysis of the
generalised superpotential. The fact that the isospectral
deformation of a potential leads to the QMF of its shape
invariant partner has been a crucial input to arrive at
the complete form of the new generalised superpoten-
tials W̄i (r). We have shown that appropriate choices
of residues will automatically take care of the weight
regularity problem and we obtain a complete set of well-
behaved solutions. This singularity structure analysis

allows us to completely fix the rational terms, which
extend the original potentials and makes our method
different from the existing ones.

The same method can be used to rationally extend
other ES models having Hermite and Jacobi COPs and
first-order EOPs as solutions. This study is currently
underway and will be published elsewhere. In addition,
the existence of multi-indexed EOPs leads to a lot of
questions about the classification of the orthogonal poly-
nomials, their impact on the Bochner’s theorem, Sturm–
Liouville’s theory, ES quantum mechanical models and
other related areas. Therefore, a systematic study of
these new polynomials and potentials is required.
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