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Study of chaos in chaotic satellite systems
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Abstract. In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré
section, Lyapunov exponents, dissipation, equilibrium points, Kaplan–Yorke dimension etc. Bifurcation diagrams
with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing
axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium
points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos
in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the
form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display
the chaotic nature of the considered system.
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1. Introduction

Satellite system is complex. Uncertainty and distur-
bances (external and internal disturbances) are parts of
the satellite system. External disturbances may include
aerodynamics moment, sunlight pressure torques, grav-
ity gradient torque and magnetic moment, while inter-
nal disturbance includes parameters’ uncertainties [1].
When disturbances occur in the drive satellite system,
then controlling the relative error is directly associ-
ated with smaller errors than traditional tracking control
[2,3].

The disturbances and uncertainty for satellite sys-
tem occur in the form of chaos. It (chaos) is the state
of disorder. It is the phenomenon of occurrence of
bounded aperiodic evolution in completely determin-
istic nonlinear dynamical systems. Chaotic system is
an inevitable phenomenon in nature. Organic evolu-
tion in nonlinear dynamical systems is highly sensi-
tive to initial conditions. This sensitivity is popularly
known as the butterfly effect [4–8]. The sensitivity
to the initial conditions was first observed by Henri
Poincaré (1913) and later by Lorenz (1963). Pio-
neer articles about chaotic systems were discussed by
many researchers and authors (Sarkovski (1964), Smale
(1967), Mandelbrot (1983), Devaney (1989), Stewart
(1989) etc.).

Measure of chaos in the system is a tedious task. Tools
such as bifurcation diagram, complexity, Poincaré sec-
tion map, correlation dimension, Lyapunov exponents
etc. are prerequisites for a good understanding of chaotic
systems. Chaos in nonlinear systems can be observed
by viewing bifurcations after varying the parameters of
the chaotic system. Many researchers (Grassberger and
Procaccia [9], Saha et al [10] and Litak et al [11]) have
measured Lyapunov exponents in chaotic systems. Tra-
jectories of Lyapunov exponents have been displayed
through strange attractor which is framed of the com-
plex patterns. The one of positive Lyapunov exponent
value of a complex dynamical system is an indicator of
chaos [10].

We need to pay much attention for the better under-
standing of satellite dynamics in space technology. The
presence of satellites in orbits plays important roles in
military, civil and scientific activities. A lot of work has
been done in non-linear dynamics, such as chaotic atti-
tude dynamics of satellite systems. Many researchers
and scientists (Tsui and Jones [12]; Kuang and Tan [13];
Kuang et al [14]; Kong et al [15] etc.) have focussed on
such studies. Controlling a Slave satellite is a synchro-
nisation problem. For this, a reference trajectory for the
Slave satellite depends on the states of the Master satel-
lite system. In the formation of satellites applications,
the objective will be to point the measuring instruments
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in the same direction. Therefore, let the reference tra-
jectory of the Slave satellite be the measured attitude of
the Master satellite [12,15].

In this paper, we present the basic concepts of
bifurcation diagrams, Poincaré maps and Lyapunov
exponents for dynamical systems. We formulate the
chaotic satellite systems. We display the bifurcation dia-
grams of the satellite system with varying parameters.
One-dimensional and two-dimensional Poincaré section
maps of different phases of the satellite system are plot-
ted. Lyapunov exponents and Kaplan–Yorke dimension
are calculated. Dissipative nature of the satellite system
is justified. We obtain equilibrium points of the chaotic
satellite system and at each equilibrium point we obtain
the eigenvalue of Jacobian matrix of the satellite system
and verify the stability and instability region.

This paper is organised as follows: Section 1 gives
introduction. Section 2 describes the basic concepts
of bifurcation diagrams, Poincaré maps and Lyapunov
exponents. In §3, we describe the satellite system.
Numerical simulations are used to verify chaos in satel-
lite system. Finally, conclusions are given in §4.

2. Some basic concept of bifurcation and Poincaré
section phenomena

Bifurcation phenomena

Literally, bifurcation means splitting into two parts.
Bifurcation occurs when a tiny smooth change is made to
the parameter values of the dynamical system. Then sud-
den ‘qualitative’ or topological change in its behaviour
is observed through the bifurcation diagram in the
chaotic system. The point, where qualitative change in
behaviour occurs, is known as the bifurcation point. The
term ‘bifurcation’ was first coined by Henri Poincaré in
1885. It occurs in both continuous systems (described by
ODEs, DDEs or PDEs) and discrete systems (described
by maps) [10].

Poincare section phenomena

Poincaré map is one of the interesting tools to measure
the qualitative behaviour of a dynamical system. It help
to visualise the problems for both continuous as well as
discrete dynamical systems. That is, it is a tool for pre-
senting the trajectories of n-dimensional phase space
into an (n − 1)-dimensional space. After sowing one
and more than one phase axes, an intersection surface
is plotted. In continuous system, it is the intersection
of periodic orbit in state space with lower dimensional
subspace of given systems. A Poincaré map can be inter-
preted as a discrete dynamical system with a state space
that is one dimension smaller than the original contin-
uous dynamical system. It preserves many properties

of periodic and quasiperiodic orbits of the original sys-
tem and has a lower-dimensional state space. It is also
used for analysing the original system in a simpler way
[16]. It gives more informative snapshot of the flow than
the full flow portrait of the system. When plotting the
solutions to some nonlinear problems, the phase space
can become overcrowded and the underlying structure
may become obscured. To overcome these difficulties,
Poincaré section map is used.

We consider the kth-dimensional system,

ẋ = f (x).

Let M be a (k − 1)-dimensional surface of the section.
This surface is transverse to the flow of the trajectories.
The trajectories cross the surface and do not flow parallel
to it. The Poincaré map is a mapping that goes from

M → M,

this is obtained by taking every intersection from the
trajectories one after the other. We shall denote xn as
the nth intersection and define the Poincaré map as

xn+1 = P(xn).

Let x0 = f (x0) be a fixed point in the map. The trajec-
tory starting at this point comes back after some time T ,
and this is a closed orbit for the original system. The map
P gets information about the stability of closed orbits
near the fixed points.

Lyapunov exponents

One of the qualitative behaviour of the chaotic system is
measured by Lyapunov exponents, named after the Rus-
sian Engineer Alexander M Lyapunov. A system have
as many Lyapunov exponents as it has dimensions in its
phase space. It is viewed that Lyapunov exponents are
less than zero, indicating that all the nearby initial condi-
tions converge on one another, and the initial small errors
decrease with time. If one of the Lyapunov exponents
is positive, then infinitesimally nearby initial conditions
(points) diverge from one another exponentially fast. It
means the errors in initial conditions will grow with
time. This condition is known as sensitive dependence
on initial conditions of chaos [10,16].

The quantitative test for the chaotic behaviour can
sometimes distinguish it from noisy behaviour due to
random, external influences. With the quantitative mea-
sure of the degree of chaoticity, we can see how chaos
changes as the parameters are varied. Starting from two
close initial values x0 and y0, we have

xn = f (κ, xn−1) = · · · = f n(κ, x0)

and

yn = f n(κ, y0),
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where κ is a constant. If xn and yn are separated expo-
nentially fast in the iterations, then

|yn − xn| = |y0 − x0|enL (L > 0)

and
1

n
ln |yn − xn| → L as n → ∞.

This exponential separation phenomenon can occur if
the two initial values are close enough to each other
within a bounded region. Let

|y0 − x0| → 0.

Before taking the limit n → ∞, we define the constant
as

L = lim
n→∞

1

n
lim|y0−x0|→0

ln

∣∣∣∣ yn − xn

y0 − x0

∣∣∣∣
= lim

n→∞
1

n
lim|y0−x0|→0

ln

∣∣∣∣ f n(κ, y0) − f n(κ, x0)

y0 − x0

∣∣∣∣
= lim

n→∞
1

n
ln

∣∣∣∣d f n(κ, x0)

dx0

∣∣∣∣
= lim

n→∞
1

n

n−1∑
i=0

ln

∣∣∣∣d f n(κ, xi )

dxi

∣∣∣∣ (1)

which is called the Lyapunov exponent of the trajectory

xn = f n(x0), n = 0, 1, . . . .

Kaplan–Yorke dimensions

The Kaplan–Yorke dimension [9] of a chaotic system of
order n is defined as

DKY = j + L1 + L2 + · · · + L j

|L j+1| , (2)

where L1 ≥ L2 ≥ · · · ≥ Ln are the Lyapunov expo-
nents of the chaotic system and j is the largest integer for
which L1 + L2 + · · · + L j ≥ 0. Kaplan–Yorke conjec-
ture states that for typical chaotic systems, DKY ≈ DL ,
the information dimension of the system.

3. Numerical simulation

Attitude dynamics of the satellite in the inertial coordi-
nate system [17–19] is written as

Ṁ = Ta + Tb + Tc, (3)

where M is the total momentum acting on the satel-
lite. Ta , Tb and Tc are the flywheel torque, gravitational
torque and disturbance torque respectively. The total
momentum M is written as

M = Iw, (4)

where I is the inertia matrix and w is the angular
velocity.

The derivatives of the total momentum M is
written as

Ṁ = I ẇ + w × Iw. (5)

The symbol × stands for the cross-product of the vec-
tors. Combining these equations, we get

I ẇ + w × Iw = Ta + Tb + Tc. (6)

We choose, I = diag(Ix , Iy, Iz)

Ta =
⎡
⎣Tax

Tay
Taz

⎤
⎦ ; Tb =

⎡
⎣Tbx

Tby
Tbz

⎤
⎦ ; Tc =

⎡
⎣Tcx

Tcy
Tcz

⎤
⎦ .

The satellite system [2,17,18,20,21], is written as

Ix ẇx = wywz(Iy − Iz) + hx + ux ,

Iyẇy = wxwz(Iz − Ix ) + hy + uy,

Izẇz = wxwy(Ix − Iy) + hz + uz, (7)

where ux , uy and uz are the three control torques; and

hx = [
(Tax + Tbx + Tcx )

]
,

hy = [
(Tay + Tby + Tcy)

]
,

hz = [
(Taz + Tbz + Tcz)

]
,

where hx , hy and hz are perturbing disturbance torques.
We assume that Ix > Iy > Iz = 1. We take Ix = 3,
Iy = 2 and Iz = 1. The perturbing torques [12] can be
written as⎛
⎝hx

hy
hz

⎞
⎠ =

⎛
⎝−1.2 0

√
6/2

0 0.35 0
−√

6 0 −0.4

⎞
⎠

⎛
⎝wx

wy
wz

⎞
⎠ . (8)

Three-dimensional chaotic satellite system is written
as

ẋ = σx yz − 1.2

Ix
x +

√
6

2Ix
z,

ẏ = σy xz +
√

6

Iy
y,

ż = σzxy −
√

6

Iz
x + 0.4

Iz
z,

(9)

where σx = (Iy − Iz)/Ix ; σy = (Iz − Ix )/Iy ; σz =
(Ix − Iy)/Iz and σx = 1

3 , σy = −1 and σz = 1.
Three-dimensional chaotic satellite system is rewrit-

ten as

ẋ = (1/3)yz − ax + (1/
√

6)z,

ẏ = −xz + by,

ż = xy − √
6x − cz,

(10)

where, a, b and c are known parameters. We have a =
0.400, b = 0.175 and c = 0.400.



13 Page 4 of 9 Pramana – J. Phys. (2018) 90:13

3.1 Lyapunov exponents and Kaplan–Yorke
dimension

Using the parameter values a = 0.4, b = 0.175 and
c = 0.4, the Lyapunov exponents of satellite system (10)
at t = 300 are obtained as: L1 = 0.1501, L2 = 0.0050
and L3 = −0.7802. On calculating the Lyapunov expo-
nents for 3D satellite system (10), we observe that out of
these three Lyapunov exponents, one is positive, one is
negative and one of these tends to zero which is the
required condition for chaotic systems. It establishes
that three-dimensional satellite system is chaotic. It is
shown in figure 8. The maximal Lyapunov exponents of
satellite system (10) is L1 = 0.1501.

The sum of Lyapunov exponents are obtained as
L1 + L2 + L3 = −0.6251 < 0.

Thus, it shows that satellite system (10) is dissipative.
The Kaplan–Yorke dimension of satellite system (10) is
obtained as

DKY = 2 + L1 + L2

|L3| = 2.1988. (11)

Figure 8 shows the dynamics of the Lyapunov expo-
nents of satellite system (10).

3.2 The system is dissipative

In vector notation, we can rewrite system (10) as

Ẋ(t) = f (x) =
⎡
⎣ f1(x, y, z)

f2(x, y, z)
f3(x, y, z)

⎤
⎦ , (12)

where X (t) = (x, y, z) and

f (x) =
⎡
⎣ f1(x, y, z) = (1/3)yz − ax + (1/

√
6)z,

f2(x, y, z) = −xz + by
f3(x, y, z) = xy − √

6x − cz

⎤
⎦ ,

where a = 1.2, b = 0.175 and c = 0.4.

We consider any region �(t) ∈ R3 with a smooth
boundary and �(t) = �t (�), where �t is the flow of
f. Let V (t) be the volume of �(t). Using Liouville’s
theorem, we get

V̇ (t) =
∫

�(t)
(∇ · f )dx dy dz. (13)

The divergence of satellite system (10) is obtained as

∇ · f =
[
∂ f1

∂x
+ ∂ f2

∂y
+ ∂ f3

∂z
=−a + b − c = −0.625

]
.

(14)

From (13) and (14), we obtain the first-order ordinary
differential equation as

V̇ (t) = −0.625V (t). (15)

Integrating eq. (15), we get the solution as

V (t) = e−0.625t V (0). (16)

That is, the volumes of initial points are reduced by
a factor of e with respect to time t . Thus, from eq. (16)
V (t) → 0 as t → 0. The limit sets of the system is
restricted to the specific limit set of zero volume. The
asymptotic motion of satellite system (10) determines
onto a strange attractor of the system. Thus, satellite
system (10) has dissipative nature.

3.3 Equilibrium points

The equilibrium points of satellite system (10) are
obtained by solving the following system of equations
Ẋ(t) = 0:

f (x) =
⎡
⎣ (1/3)yz − ax + (1/

√
6)z = 0

−xz + by = 0
xy − √

6x − cz = 0

⎤
⎦ .

Equilibrium points are

E0 =
⎡
⎣0

0
0

⎤
⎦ , E1 =

⎡
⎣1.1910

2.5766
0.3785

⎤
⎦ , E2 =

⎡
⎣ 0.1582

−1.3641
−1.5086

⎤
⎦ ,

E3 =
⎡
⎣−0.1582

−1.3641
1.5086

⎤
⎦ , E4 =

⎡
⎣−1.1910

2.5766
−0.3785

⎤
⎦ . (17)

The Jacobian matrix of satellite system (10) is
obtained by

J (X) =
⎡
⎣ −a 0.33 ∗ z (0.33 ∗ y − 1/

√
6)

−z b −x
(y − √

6) x −c

⎤
⎦ .

(18)

The Jacobian matrix at E0 = (0, 0, 0) is calculated as

J0 = J (E0) =
⎡
⎣ −0.4 0 0.4082

0 0.175 0
−2.4495 0 −0.4

⎤
⎦. (19)

In this equilibrium point, we obtain the eigenval-
ues, λ1 = −0.4 + 0.99ι, λ2 = −0.4 + 0.99ι and
λ3 = 0.175. This equilibrium point E0 is saddle-
focus, which is unstable. The Jacobian matrix at E1 =
(1.1910, 2.5766, 0.3785) is calculated as

J1 = J (E1) =
⎡
⎣−0.4000 0.1240 1.2585

−0.3785 0.1750 −1.1910
0.1271 1.1910 −0.4000

⎤
⎦ .

(20)

At this equilibrium point, we obtain the eigenval-
ues, λ1 = −0.7999, λ2 = 0.0875 + 1.2075ι and



Pramana – J. Phys. (2018) 90:13 Page 5 of 9 13

4
2

0
2

4
x

0
2

4
6y

2

0

2

z

Figure 1. Three-dimensional phase portrait of the chaotic
satellite system (without the controller).

λ3 = 0.0875 − 1.2075ι. This equilibrium point E1 is
saddle-focus, which is unstable. The Jacobian matrix at
E2 = (0.1582, −1.3641, −1.5086) is calculated as

J2 = J (E2) =
⎡
⎣−0.4000 −0.4978 −0.0420

1.5086 0.1750 −0.1582
−3.8136 0.1582 −0.4000

⎤
⎦ .

(21)

At this equilibrium point, we obtain the eigenval-
ues, λ1 = 0.0875 + 0.8766ι, λ2 = 0.0875 − 0.8766ι

and λ3 = −0.8. This equilibrium point E2 is saddle-
focus, which is unstable. The Jacobian matrix at E3 =
(−0.1582, −1.3641, 1.5086) is calculated as

J3 = J (E3) =
⎡
⎣−0.4000 0.4978 −0.0420

−1.5086 0.1750 0.1582
−3.8136 −0.1582 −0.4000

⎤
⎦ .

(22)

At this equilibrium point, we obtain the eigenval-
ues, λ1 = 0.0875 + 0.8766ι, λ2 = 0.0875 − 0.8766ι

and λ3 = −0.8. This equilibrium point E3 is saddle-
focus, which is unstable. The Jacobian matrix at E4 =
(−1.1910, 2.5766, −0.3785) is calculated as

J4 = J (E4) =
⎡
⎣−0.4000 −0.1240 1.2585

−0.3785 0.1750 1.1910
0.1271 −1.1910 −0.4000

⎤
⎦ .

(23)

At this equilibrium point, we obtain the eigenval-
ues, λ1 = −0.7999, λ2 = 0.0875 + 1.2075ι and
λ3 = 0.0875 − 1.2075ι. This equilibrium point E4
is saddle-focus, which is unstable. Thus, all these five
equilibrium points of satellite system (10) are unstable
equilibrium points.
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Figure 2. Two-dimensional phase portrait of the chaotic
satellite system (without the controller).

3.4 The y-axis is invariant

From system equations (10), we observe that if x(0) = 0
and z(0) = 0, then x and z remain zero for all t . Thus
the y-axis is an orbit, for which

ẏ(t) = by(t), hence y(t) = y(0)ebt ; for x, z = 0.

(24)
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Figure 3. Time series graphs of the chaotic satellite system
(without the controller).

Thus the y-axis is part of the unstable manifold at the
origin for the equilibrium.

Simulation

At initial condition for satellite systems (x(0), y(0),

z(0)) = (3, 4, 2)T , figure 1 shows the three-dimensional
phase portrait of the chaotic satellite systems. Fig-
ures 2a–2c are shown as the two-dimensional phase
portraits of the chaotic satellite system in the xy, yz
and zx components with respect to time. Similarly,
figures 3a–3c show time-series graphs of the satellite
system. Figures 4a–4c show the bifurcation diagrams
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Figure 4. Bifurcation diagrams with the parameters a, b
and c.

with respect to the parameters a, b and c respec-
tively. Figures 5a–5c show the Poincaré section in
one-dimensional phase portraits. We have sowed the
axes x , y and z respectively. Different points for dif-
ferent orbits (sections) are shown using straight lines.
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system sowing axis x
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Figure 5. Poincaré section sowing the axes x , y and z.

Figures 6a–6c show the Poincaré section in two dimen-
sions. We have sowed the axes xy, yz and zx and fixed
t = 0–1, t = 0–3 and t = 0–3 respectively. We observe
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Figure 6. Poincaré section sowing the axes xy, yz and zx at
(a) t = 0–1, (b) t = 0–3, (c) t = 0–3.

the strange attractor in these figures. Figures 7a–7c show
the Poincaré section in two dimensions. We have sowed
the axes xy, yz and zx at z = 0, x = 0 and y = 0
respectively. We find the strange attractor in these fig-
ures. We have computed the Lyapunov exponent of the
satellite system, when t = 300. We have L1 = 0.1501,

L2 = 0.0050 and L3 = 0.7802. On calculating the Lya-
punov exponents for the satellite system, we observe that
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(a)

(b)

(c)

Figure 7. Poincaré section sowing the axes xy, yz and zx at
(a) z = 0, (b) x = 0 and (c) y = 0.

out of these three Lyapunov exponent values, one is pos-
itive, one is negative and one of these tends to zero which
is the required condition for a chaotic system indicating
that satellite system is chaotic. It is shown in figure 8.

4. Conclusions

In this paper, we have measured chaos in the satellite
system. We have used different tools such as the bifur-
cation diagrams, Poincaré section maps, dissipative as
well as Lyapunov exponents and Kaplan–Yorke dimen-
sion for viewing chaos in the satellite system. We have
observed that the qualitative behaviour of the satellite
systems through bifurcation diagrams, Poincaré section
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Lyapunov Exponents Satellite System
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Time
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ap

un
ov

 E
xp
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en

ts

Figure 8. Lyapunov exponent of the chaotic satellite system.

maps and Lyapunov exponents confirm chaos in the
satellite system. Bifurcation diagrams with respect to
known parameters of the satellite systems have been
analysed. Poincaré section with different sowing axes
of the satellite are drawn. Lyapunov exponents are
also calculated. These tools determine the existence
of chaos. The Kaplan–Yorke dimension of the satel-
lite system is DKY = 2.1988. Solution of the satellite
system of equations are drawn in the form of three-
dimensional, two-dimensional and time series phase
portraits.
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