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Abstract. It is known that semigroups are Ramsey algebras. This paper is an attempt
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1. Introduction

Ramsey algebra has its roots in Hindman’s theorem [5]. Hindman’s theorem states that,
for each finite partition of the positive integers Z

+, there exists an infinite H ⊆ Z
+

contained in one of the pieces A such that a1 + · · · + an ∈ A whenever a1, . . . , an are
distinct elements of H . (One can also formulate Hindman’s theorem in terms of finite
sets of natural numbers and the set theoretic operation ∪, see [6] for details). This result
can be viewed as a combinatorial result on the algebra (Z+,+). Ramsey algebra, a name
suggested by Carlson, prescribes Ramsey type combinatorics to algebras. Early works on
the topic by Teh can be found in [10,12,13], and [14]. The notion of Ramsey algebra came
into conception when Carlson singled out the class of Ramsey spaces induced by algebras
and saw the potential of a purely combinatorial study of such spaces. Ramsey spaces
had previously been introduced by Carlson [2] as a generalization to the Ellentuck space
introduced in conjunction with Ellentuck’s theorem [3], which generalizes the results by
Galvin and Prikry [4] and Silver [9].

It is known that all semigroups are Ramsey algebras. It is also known that (Z,−), where
− : Z

2 → Z is defined by −(x, y) = y − x , is not a Ramsey algebra (Theorem 2.3.2,
p. 41 of [11]). Effort to identify more binary systems that are Ramsey has, except for
some pedagogical ones, been met with failure thus far. (Z,−) is a good example of an
algebraic systemnot too remote from a semigroup that turns out not to be aRamsey algebra.
We are thus led to ask if associativity is the salient property that makes all semigroups
Ramsey algebras. In this paper, we strive to investigate further the role associativity plays
in determining whether a binary system is Ramsey. According to Baez [1], there are three
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levels of associativity. When every subalgebra of a binary system generated by an element
is associative, then it is said to be power associative. If every subalgebra generated by two
elements is associative, then it is said to be an alternative algebra. It is associative if every
subalgebra generated by three elements is associative, which is the case for semigroups.
The question of interest is whether every alternative algebra is also a Ramsey algebra. In
this paper, we show that the answer is in the negative. In particular, we will show that the
octonions with multiplication forming a nonassociative alternative algebra is not a Ramsey
algebra.
While the result of this paper does not give a complete answer to the role associativity

plays in determining if an algebra is Ramsey, it is our hope that, through this result and its
proof, one may be able to make further progress towards the goal in future work.

2. Preliminaries

The set of natural numbers 0, 1, 2, . . . will be denoted by ω; the set of positive integers,
i.e. ω\{0}, is denoted by Z

+. Infinite sequences will be emphasized by an arrow over a
letter such as �b and �a.

2.1 The octonions with mutiplication

The (real) octonions are real linear combinations of the eight unit octonions e0, e1, . . . , e7.
Multiplication of octonions is nonassociative and noncommutative. The product a · b of
octonions a = ∑7

i=0 ai ei , b = ∑7
j=0 b j e j is given by

∑
i, j∈{0,...,7} aib j ei e j , where the

products of the unit octonions are given in Table 1.
For the product of three or more octonions, nonassociativity begins to factor in. If a =∑7
i=0 ai ei , b = ∑7

j=0 b j e j and c = ∑7
k=0 ckek are octonions, then the products (ab)c

and a(bc) are distinct in general. It is instructive to note that the difference between these
two products has root in the product of unit octonions under the two different bracketings.
The product (ab)c is given by

(ab)c =
∑

i, j,k∈{0,...,7}
aib j ck(ei e j )ek, (1)

Table 1. Multiplication table for the unit octonions.

· e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0
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whereas the product a(bc) is given by

a(bc) =
∑

i, j,k∈{0,...,7}
aib j ckei (e j ek). (2)

Thus,we see that the coefficient ai b j ck of each corresponding summand in the twoproducts
are equal for the same string of unit octonions involving ei , e j , ek in the order indicated;
we conclude that, if associativity fails in this product, then it is the bracketings of the
unit octonions that play a role. This observation applies to the products of three or more
octonions in general; Corollary 3.1 and Proposition 3.1 will address this aspect in greater
detail. Also related are the sets�t

j to be defined in §4.Other pertinent properties of products
of the unit octonions will be given in the next section.

2.2 Binary systems, bracketed strings, assignments

Our notion of a Ramsey algebra will be made in the setting of binary systems; a binary
system (G, ·) is an algebra where · is a binary operation on G. The multiplicative notation
will be assumed throughout this paper; specifically, the symbol · will be omitted when the
context is clear. Towards this end, let G denote a nonempty set and · a binary operation on
G. We also fix a set V = {x0, x1, . . .} of variables throughout.
Strings of V will eventually be given values in G. To be more precise, it is strings with

bracketing that will be given values in G. We first have to define the notion of a bracketing
on strings or bracketed strings; this will be done on an arbitrary set A. Bracketed strings
are defined recursively as follows:

DEFINITION 2.1

The set TA of bracketed strings of A is the set of strings of A ∪ {(, )} such that

(1) each a ∈ A is a bracketed string, and
(2) if t1, t2 are bracketed strings, then (t1t2) is a bracketed string.

Readers familiar with logical terminologies will notice that bracketed strings of A are
similar to what are known as terms, hence the notation T to denote the set of bracketed
strings. If t is a bracketed string, we write ť to denote the string obtained from t by omitting
the brackets and we call ť unbracketed.

A function μ : V → G will be known as an assignment on V to abstract the idea of μ

assigning a value to each variable in V , value of which lying in G.

DEFINITION 2.2

For each t ∈ TV and each assignment μ : V → G, we will define tμ ∈ G recursively as
follows:

(1) For each n ∈ ω, xnμ = μ(xn).
(2) If (t1t2) ∈ TV , then (t1t2)μ = t1μt2μ.

We remark that, for any G, each t ∈ TG has its natural interpretation. For instance, if G
is the set of unit octonions, then t = (e1(e2e3)) evaluates to −e0. On the other hand, given
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any string in s = TG , there exists an assignment μ and t ∈ TV such that tμ = s (equality
as elements of G).

2.3 Reductions and Ramsey algebras

The concept of a reduction is central to the notion of a Ramsey algebra. To define the
concept, let us identify each unbracketed string ť = a0 · · · an of A with its corresponding
finite sequence 〈a0, . . . , an〉 and, when t, t ′ are finite sequences, we write t�t ′ to denote
the concatenation of t with t ′.

DEFINITION 2.3

If �a = 〈a0, a1, . . .〉 and �b = 〈b0, b1, . . .〉 are infinite sequences of G such that there exist
bracketed strings ti of G for each i ∈ ω such that

(1) ť�0 ť�1 · · · forms an infinite subsequence of �b and
(2) ti evaluates to ai for each i ∈ ω,

then we say that �a is a reduction of �b, denoted by �a ≤ �b.

If �b is an infinite sequence of G, then any infinite subsequence of �b is a trivial example
of a reduction of �b. For another example, if �a, �b are such that a0 = b1, a1 is the value of
(b2(b3b4)), a2 is the value of ((b6b7)b9), . . ., then �a is a reduction of �b. We mention in
passing that ≤ is reflexive and transitive on the set of infinite sequences of G.
One subclass of TV is of particular interest, namely the class of t ∈ TV such that the

indices of the variables occurring in t are strictly increasing from left to right; members of
this classwill be called orderly bracketed strings of variables.Wedenote this class byOT V .
This class of strings is important when we are concerned with reductions. Specifically, the
fact that ť�0 ť�1 · · · in Definition 2.3 forming a subsequence of �b forces each of the ti to
be ‘orderly.’ Furthermore, if t, t ′ ∈ OT V , we write t ≺ t ′ to mean that the greatest index
occurring in the variables of t is less than the least index in the variables occurring in t ′.
Thus, �a ≤ �b if and only if there exist orderly bracketed strings of variables ti ≺ ti+1 for
each i ∈ ω such that ai = tiμ under the assignment μ(xn) = bn , n ∈ ω.
The sets FR(�a)’s are also integral to the notion of a Ramsey algebra.

DEFINITION 2.4

Given an infinite sequence �a of G, define g ∈ FR(�a) ⊆ G if and only if g is the value of
a bracketed string t of terms of �a such that ť is a finite subsequence of �a.

In the orderly terminology, g ∈ FR(�a) if and only if g = tμ for some orderly t ∈ TV ,
where μ is the assignment replacing xi with the i-th term of �a. Note that, for any sequence
�a of G, the set FR(�a) is nonempty since each term of �a is an element of the set.
We can now define when a binary system (G, ·) is a Ramsey algebra.

DEFINITION 2.5 (Ramsey algebra)

Let (G, ·) be a binary system. Then (G, ·) is said to be a Ramsey algebra if, given an X ⊆ G
and an infinite sequence �b of elements of G, there exists an �a ≤ �b such that FR(�a) ⊆ X
or FR(�a) ⊆ XC .
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We want to emphasize that the definitions above are adapted to deal with the class of
binary systems. The general treatment of Ramsey algebras can be found in [10] and a
generalization to heterogeneous algebras can be found in [16].

2.4 Finite Moufang loops and M(G, 2)

We take a brief digression to see that all finite Moufang loops as well as the class of
Moufang loops M(G, 2), one for each group G, are Ramsey algebras. In either of these
cases, the key to being a Ramsey algebra owes to the fact that every given infinite sequence
has a ‘nice’ reduction that leads to the binary system being Ramsey.

Theorem 2.1. Every finite Moufang loop is a Ramsey algebra.

Proof. Given any infinite sequence of the Moufang loop, one of the elements of the loop
will occur infinitely often in the sequence. Since each element of the loop has finite order,
we can find a reduction of the given sequence made up of the identity element. �

Now, let (G, ·) be a group and introduce a new symbol u not already in G. Define Gu to
be the set of symbols {gu : g ∈ G}. Then, M = G ∪ Gu, along with the binary operation
∗ to be introduced below, is a Moufang loop by adopting the following rules for ∗:
(1) ∗ restricted to G coincides with ·.
(2) For all g, h ∈ G,

(a) (gu)h = (gh−1)u,
(b) g(hu) = (hg)u,
(c) (gu)(hu) = h−1g.

This Moufang loop is denoted by M(G, 2) and it is associative if and only if G is abelian.
Rule 2(c) in the list is the key to the following theorem:

Theorem 2.2. M(G, 2) is a Ramsey algebra for any group G.

Proof. The idea is that every infinite sequence of M has a reduction consisting of elements
of G. Given an infinite sequence of M , we can find a reduction of the sequence consisting
only of group elements, either by taking an infinite subsequence or applying Rule 2(c) in
the list above. Then, since groups are Ramsey algebras, we have the desired result. �

3. Preparatory results

This section will set up the required components for §4.

3.1 Basic properties of products of unit octonions

Some basic properties of octonion multiplication will come in handy. An interesting ref-
erence concerning the octonions is [1]. Now, a glance through the multiplication table
reveals two immediate properties:

ei e j = −e j ei for all distinct, nonzero i, j (3)
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and

e2i = −e0 for all i 
= 0. (4)

Of course, as the identity element, e20 = e0.
Less evident is the fact that, for distinct, nonzero i, j, k such that ei e j 
= ek , we have

ei (e j ek) = −(ei e j )ek . (5)

This property can be checked, albeit tediously, by going through the multiplication table
given in §2 above. In addition, because the unit octonions form a Moufang loop, we have
what are called the left, right alternative identities and the flexible identity, and they yield
ei (ei e j ) = (e2i )e j , (ei e j )e j = ei (e2j ) and ei (e j ei ) = (ei e j )ei . A deeper account of all the
properties listed above can be found in [8].

Thus, as we see above, the product of three unit octonions under different bracketings
are equal up to a sign difference. More of this will be discussed in the next subsection.

3.2 Strings of unit octonions

Strings of unit octonions play an important role in our analysis of products of octonions.
We begin by singling out a class of bracketed strings called right-associative strings of
octonions, where all brackets are associated to the right. For example, (e0(e1(e2e3))) is
a right-associative bracketing of the string e0e1e2e3. This class of bracketed strings will
serve as a point of reference to compare with other bracketed strings.
Call two octonions e, f equal up to a sign difference if f and e are equal or each is the

negative of the other and denote the relation by f ∼ e. (Note that equality up to sign is an
equivalence relation on the octonions.)

Lemma 3.1. Every bracketed string of unit octonions evaluates, up to a sign difference, to
the value of its right-associative form.

Proof. We prove the lemma by an induction on the number of unit octonions in the brack-
eted string. The base case is trivial as the bracketings are each unique.
Now, given the bracketed string t of unit octonions such that ť = ei1 · · · eiN+1 , let t be

such that t = (t1t2), where t1, t2 ∈ T{e0,...,e7} and ť1 = ei1 · · · ein for some n ∈ {1, . . . , N }.
Let s1, s2 be the right-associative forms corresponding respectively to t1, t2; we also

let s′
1, s ∈ T{e0,...,e7} be such that s1 = (ei1s

′
1) and s the right-associative form of (s′

1s2).
Then, applying induction hypothesis and the basic properties of octonion multiplication
as required, we have

(t1t2) ∼ (s1s2) (6)

∼ ((ei1s
′
1)s2) (7)

∼ (ei1(s
′
1s2)) (8)

∼ (ei1s), (9)

where we note that (9) is in the right-associative form. �
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COROLLARY 3.1

Up to a sign difference, different bracketings of a string of unit octonions evaluate to the
same unit octonion.

Proof. By the transitivity of ∼. �

PROPOSITION 3.1

Suppose t, t ′ ∈ OT V are distinct and are such that ť = ť ′. Then, there exists an assignment
μ : V → {e0, . . . , e7} such that tμ = e4 = −t ′μ.

Proof. We prove by induction on the complexity of bracketed strings in OT V .
Let t, t ′ ∈ OT V be such that ť = ť ′. If t, t ′ each has 3 variables, then one is (v1(v2v3))

and the other is ((v1v2)v3) for some v1, v2, v3 ∈ V . Use any assignmentμwhere v1, v2, v3
are respectively assigned e5, e6, e7. Then, the former is evaluated to −e4 while the latter
is evaluated to e4.
For the inductive step, let t = (t1t2) and t ′ = (t ′1t ′2) for some nonempty orderly bracketed

strings t1 ≺ t2, t ′1 ≺ t ′2 such that ť = v1 · · · vN = ť ′. Then we have t1 
= t ′1 or t2 
= t ′2.
If t1 
= t ′1, two possibilities can arise, namely ť1 = ť ′1 or ť1 
= ť ′1. In the former case, we

may apply induction hypothesis to obtain an assignment μ such that tμ1 = −t ′1μ while the
variables in t2 and t ′2 are all assigned e0; then, tμ = −t ′μ. In the latter case, let ť1 be a
subsequence of ť ′1 without loss of generality and let k be such that 1 < k < N and vk is
a symbol in t ′1, but not in t1. Then, assign e5 to v1, e6 to vk , and e7 to vN while all other
symbols are assigned e0. One computes t to evaluate to e4 while t ′ evaluates to −e4.

If t1 = t ′1, then it must be the case that t2 
= t ′2. Similar argument as the case above then
applies. This completes the proof. �

Note that we have arrived at e4 out of wit; we could have chosen assignments that
evaluate to other unit octonions in place of e4.

4. The main result

We will show that the octonions with multiplication is not a Ramsey algebra by exhibiting
a bad sequence �b and a set X ⊆ O such that for each �a ≤ �b, we have FR(�a) ∩ X 
= ∅ and
FR(�a) ∩ XC 
= ∅, the contrapositive of the defining statement of a Ramsey algebra. The
bad sequence �b = 〈b0, b1, . . .〉 is given by

bn = 22
8n+1

e0 + · · · + 22
8n+8

e7 =
7∑

i=0

22
8n+1+i

ei . (10)

This bad sequence will be called �b throughout this section.
We will be appealing to the nonadjacent form of representation of the integers in the

proof of our main theorem. The n-digit nonadjacent form representation (NAF) of an
integer a is qn−1qn−2 · · · q0 with
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a =
n−1∑

j=0

q j2
j , (11)

where q j ∈ {−1, 0, 1}, j ∈ {0, . . . , n − 1}, and q j × q j+1 = 0 for each j ∈ {0, . . . , n −
2}. This representation of the integers is unique [7]. NAF, as its name suggests, is a
representation of integers such that there is at least a 0 between any adjacent pair of
nonzero digits. We will capitalize on the uniqueness of the NAF representation throughout
this section.
In the proof of the main theorem, we will encounter quantities of the form 28n1+1+α1 +

· · · + 28nN+1+αN in abundance, where n1 < · · · < nN are nonnegative integers and
αi ∈ {0, . . . , 7} for i ∈ {1, . . . , N }. Note that these quantities are essentially the usual
binary representations of the integers. Hence, for different sets of n1 < · · · < nN or
αi ∈ {0, . . . , 7}, the quantities so defined are distinct. In fact, since each of these quantities
are multiples of 2, the difference between any distinct two is at least 2. This observation
is of particular importance for an application of the uniqueness of NAF in the proof of our
main theorem.

Observation 4.1. For different sets of n1 < · · · < nN or αi ∈ {0, . . . , 7}, the quantities of
the form 28n1+1+α1 + · · · + 28nN+1+αN are distinct and are with difference of at least 2.

Before proceeding to the main theorem, we introduce some notations and conventions
to be used in the proof. For each t ∈ OT V and α ∈ {0, . . . , 7}N such that ť = xn1 · · · xnN ,
we let μt

α : V → {e0, . . . , e7} be any assignment such that μt
α(xni ) = eαi for each

i ∈ {1, . . . , N }. For each such t , denote by �t
j the set of α = (α1, . . . , αN ) ∈ {0, . . . , 7}N

such that tμ
t
α evaluates to e j up to sign difference. Note that if t 
= t ′ are such that ť = ť ′,

then Corollary 3.1 implies that �t
j = �t ′

j .

Theorem 4.1. The octonions with multiplication is not a Ramsey algebra.

Proof. Throughout the proof, let μ denote the assignment μ(xn) = bn . We will be using
the bad sequence given by (10) and the set X ⊆ O given by

X = {
(t1(t2t3))

μ : t1, t2, t3 ∈ OT V and t1 ≺ t2 ≺ t3
}
. (12)

If t ∈ OT V such that ť = xn1 · · · xnN , observe that

tμ =
∑

α=(α1,...,αN )∈{0,...,7}N
22

8n1+1+α1+···+28nN+1+αN tμ
t
α (13)

=
7∑

j=0

⎛

⎜
⎝

∑

α∈�t
j

ptα

⎞

⎟
⎠ e j , (14)

where, for each α ∈ �t
j , p

t
α is defined by

ptα =
{
22

8n1+1+α1+···+28nN+1+αN if tμ
t
α = e j

−22
8n1+1+α1+···+28nN+1+αN if tμ

t
α = −e j .
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Claim. Suppose that t1 ≺ t2 ≺ t3 and t ′1 ≺ t ′2 ≺ t ′3 are orderly bracketed strings of variables
and t = (t1(t2t3)), t ′ = ((t1t2)t3). Then, tμ 
= t ′μ.

Proof of Claim. Consider first the case where ť = ť ′. We learn from Proposition 3.1 that
there is a corresponding α ∈ �t

4 = �t ′
4 such that

tμ
t
α = −t ′μt ′

α . (15)

Therefore, we see that for this α, ptα and pt
′

α differ in sign. Consequently, although �t
4 =

�t ′
4 , the coefficients of e4 in the products t

μ and t ′μ are different by the uniqueness of the
NAF because of the sign difference brought about by (15).
As for the casewhere t = (t1(t2t3)) and t ′ = ((t ′1t ′2)t ′3) have different sets {xn1, . . . , xnN }

and {xm1 , . . . , xmM } of variables, we note that the quantities 28n1+1+α1 +· · ·+28nN+1+αN

and 28m1+1+β1 + · · · + 28mM+1+βN for (α1, . . . , αN ) ∈ {0, . . . , 7}N and (β1, . . . , βM ) ∈
{0, . . . , 7}M are different by the uniqueness of the binary representation of integers. This
in turn implies that {ptα : α ∈ �t

0} 
= {pt ′β : β ∈ �t ′
0 }, which means that the coefficients

∑
α∈�t

0
ptα and

∑
β∈�t ′

0
pt

′
β of e0 in the products tμ, t ′μ are different by the uniqueness of

the NAF representation of integers. Therefore, tμ 
= t ′μ. �

Finally, if 〈a1, a2, a3, . . .〉 = �a ≤ �b, then there exist orderly bracketed strings t1 ≺
t2 ≺ t3 such that a1 = t1μ, a2 = t2μ, a3 = t3μ. We may now conclude that the value of
(a1(a2a3)) is in X while the value of ((a1a2)a3) is in XC , hence FR(�a) ∩ X 
= ∅ and
FR(�a) ∩ XC 
= ∅. This concludes the proof that (O, ·) is not a Ramsey algebra. �

5. Conclusion

We have seen that finite Moufang loops are Ramsey algebras and so are M(G, 2) for
every group G. A finite Moufang loop is Ramsey because every given infinite sequence
has an element of the loop that occurs infinitely often, which can then be reduced to the
identity element through a finite order argument. M(G, 2) is a Ramsey algebra because
every sequence of M has a reduction all of whose terms satisfy associativity. For the case
of octonion multiplication, our proof showed that there exists a sequence all of whose
reductions do not have terms that obey associativity. We will be interested to understand
how associativity plays a role in decidingwhether a binary system is Ramsey or not through
the results contained in this paper. Somework along these lines can be found in [15], which
investigates a local version of Ramsey algebra.
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