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Abstract
This article presents an intelligent algorithm based on extreme learning machine and sequential mutation genetic algorithm
to determine the inverse kinematics solutions of a robotic manipulator with six degrees of freedom. This algorithm is
developed to minimize the computational time without compromising the accuracy of the end effector. In the proposed
algorithm, the preliminary inverse kinematics solution is first computed by extreme learning machine and the solution is
then optimized by an improved genetic algorithm based on sequential mutation. Extreme learning machine randomly
initializes the weights of the input layer and biases of the hidden layer, which greatly improves the training speed. Unlike
classical genetic algorithms, sequential mutation genetic algorithm changes the order of the genetic codes from high to
low, which reduces the randomness of mutation operation and improves the local search capability. Consequently, the
convergence speed at the end of evolution is improved. The performance of the extreme learning machine and sequential
mutation genetic algorithm is also compared with that of a hybrid intelligent algorithm, and the results showed that there
is significant reduction in the training time and computational time while the solution accuracy is retained. Based on the
experimental results, the proposed extreme learning machine and sequential mutation genetic algorithm can greatly
improve the time efficiency while ensuring high accuracy of the end effector.
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Introduction

The inverse kinematics of a robotic manipulator can be

used to describe the mapping of the manipulator and end

effector from the Cartesian space to joint space. It is crucial

to obtain highly accurate inverse kinematics solutions in an

efficient manner in the design, motion planning, and con-

trol of the manipulator.1–3 The main problem in determin-

ing the inverse kinematics solution of a robotic manipulator

1 School of Information Science and Technology, Zhejiang Sci-Tech

University, Hangzhou, China
2 School of Mechanical Engineering, Hangzhou Dianzi University,

Hangzhou, China

Corresponding author:

Yaming Wang, School of Information Science and Technology, Zhejiang

Sci-Tech University, Hangzhou 310018, China.

Email: wangyaming2018@126.com

International Journal of Advanced
Robotic Systems

July-August 2018: 1–15
ª The Author(s) 2018

DOI: 10.1177/1729881418792992
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

http://orcid.org/0000-0003-4487-8192
http://orcid.org/0000-0003-4487-8192
mailto:wangyaming2018@126.com
https://doi.org/10.1177/1729881418792992
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881418792992&domain=pdf&date_stamp=2018-08-16


is to compute each joint angle qðq1; q2; � � �; qnÞ by

algebraic, geometric, iterative optimization, or machine

learning approaches based on the end effector pose

Tðpx ; py ; pz ;ox ;oy ;oz ;ax ;ay ;az ;nx ;ny ;nz Þ .

Determining the inverse kinematics solution of a robotic

manipulator with a high degree of freedom (DOF) is a

complex process. There are three types of methods typi-

cally used to determine the inverse kinematics solution of a

robotic manipulator, namely, geometric, algebraic, and

iterative algorithms. Each method has its own disadvan-

tages. For example, algebraic methods cannot guarantee a

closed-form solution. Geometric methods can be used to

solve the inverse kinematics problem only when the first

three joints of the manipulator have a closed-form solution.

The convergence speed of iterative algorithms is dependent

on the initial position of the robotic manipulator. In addi-

tion, due to the complex geometry of the structure, most

methods are unable to determine the inverse kinematics

solution of the robotic manipulator in a fast, efficient man-

ner. Hence, much effort has been made by researchers to

develop intelligent algorithms in order to compute the

inverse kinematics solutions of robotic manipulators.

Among these intelligent algorithms, artificial neural net-

works (ANNs) and genetic algorithms (GAs) have gained

much attention from researchers in order to solve inverse

kinematics problems of robotic manipulators.

Recently, many researchers proposed neural network-

based inverse kinematics solutions of robotic manipula-

tors.4–6 It has been proven theoretically that neural

networks with three or more layers can fit any nonlinear

system and this forms the basis that ANNs can be used to

solve the inverse kinematics problems of robotic manipu-

lators. Tejomurtula and Kak7 presented a structured ANN

to solve the inverse kinematics problem of a robotic manip-

ulator, which prevents the shortcomings of the backpropa-

gation algorithm in terms of the training time and

computational accuracy. Karlik and Aydin8 used six inde-

pendent ANNs with two hidden layers to compute the

inverse kinematics solution of a 6-DOF manipulator. Kalra

et al.9 proposed a new evolutionary approach to solve the

multimodal inverse kinematics. This algorithm realizes

high real-time and robust control of the inverse kinematics

of the robotic manipulator. Bingul et al.10 proposed an

inverse kinematics algorithm based on backpropagation

ANN. This method is disadvantageous because of the large

joint angle errors and moreover, the method is incapable of

handling multiple solutions. Rasit Köker and Tarık

Cakar11–15 proposed a variety of hybrid intelligent algo-

rithms based on ANN, GA, and simulated annealing

(SA). In their studies, ANN was used to compute a prelim-

inary solution and the fractional part of the inverse kine-

matics solution was optimized by GA or SA. However, the

algorithms are still lacking in terms of the time efficiency

because the training process of the ANN is rather slow

while the optimization process based on the improved

GA and SA requires a significant number of iterations to

obtain a converged solution with high accuracy. A number

of researchers have also proposed inverse kinematics solu-

tions based on genetic GAs9,16 and artificial bee colony

algorithms.17 These optimization algorithms search in the

solution space subject to certain rules and the convergence

speed is unsatisfactory in most situations. All of the afore-

mentioned algorithms suffer from the same fundamental

problem: the iteration process is time-consuming.

In this article, an intelligent algorithm is proposed based

on extreme learning machine (ELM) and sequential muta-

tion genetic algorithm (SGA) to determine the inverse kine-

matics solution of a 6-DOF robotic manipulator. The main

focus of this novel approach is to improve the time effi-

ciency of the algorithm while ensuring high precision of the

end effector inverse kinematics. In this algorithm, forward

kinematics is used to compute a training set from the

joint space qðq1; q2; � � �; qnÞ of the manipulator to the pose

p!ðx; y; zÞ; n!ðx; y; zÞ; o!ðx; y; zÞ; a!ðx; y; zÞ of the end

effector. Following this, the ELM is trained by this training

set to obtain the initial prediction model. Finally, the pre-

liminary inverse kinematics solution is optimized using

SGA to reduce errors of the end effector.

The remainder of this article is organized as follows.

The 6-DOF MT-ARM robotic manipulator used in the

experiments and the fundamental theories pertaining to the

forward kinematics of the robotic manipulator, ELM, and

GA are presented in the “Preliminaries” section. In the

“Proposed algorithm” section, we will describe in detail

the proposed inverse kinematics solution of the robotic

manipulator by integrating ELM with SGA, named the

ELM-SGA algorithm. In the “Results and discussion” sec-

tion, we present and compare the simulation and experi-

mental results obtained using the proposed algorithm

(ELM-SGA) and mainstream algorithm (Hybrid). Finally,

the conclusions drawn based on the findings of the ELM-

SGA algorithm are presented in the “Conclusions” section.

Preliminaries

Structure and Denavit–Hartenberg parameters of
the 6-DOF Stanford MT-ARM robotic manipulator

The simulations and experiments are designed based on the

6-DOF Stanford MT-ARM robotic manipulator shown in

Figure 1. The Denavit–Hartenberg method is used to ana-

lyze the kinematics of the manipulator. The basic strategy

involves establishing the space coordinate system for each

joint and then compute the conversion matrix between the

adjacent joint coordinates. The final transformation matrix

from the joint space of the manipulator to the Cartesian

space of the end effector was calculated by the matrix

transfer between each adjacent joint.18 The four Denavit–

Hartenberg parameters ðqi; d; a; aÞ of the MT-ARM

robotic manipulator represent the joint angle, link offset,
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link length, and link twist, respectively, and the values are

summarized in Table 1.

Forward kinematics of the 6-DOF Stanford MT-ARM
robotic manipulator

The forward kinematics of a robotic manipulator can be

described by the mapping from the joint space to the Car-

tesian space.19 The forward kinematics of a robotic manip-

ulator is usually analyzed by the Denavit–Hartenberg

method, which establishes the coordinates for each joint

and then calculates the position matrix by transformation

between each adjacent joint coordinate.20 The key aspect of

the robotic manipulator forward kinematics is the matrix

transformation between the adjacent joint coordinates. This

is the well-known Denavit–Hartenberg transformation

notation, which is given by

nT nþ1 ¼ Anþ1 ¼ Rðz; qnþ1Þ � Tð0; 0; dnþ1Þ � Tðanþ1; 0; 0Þ � Rðx;anþ1Þ

¼

Cnþ1 �Snþ1Canþ1
Snþ1Sanþ1

anþ1Cnþ1

Snþ1 Cnþ1Canþ1
�Cnþ1Sanþ1

anþ1Snþ1

0 Sanþ1
Canþ1

dnþ1

0 0 0 1

2
666664

3
777775

ð1Þ

where nT nþ1 is the transformation from coordinate n to

nþ 1, denoted as Anþ1. Rðz; qnþ1Þ and Rðx;anþ1Þ denote

the basic rotation transformation matrices around

the z-axis and x-axis, respectively. Tð0; 0; dnþ1Þ and

Tðanþ1; 0; 0Þ denote the basic translation transformation

matrices along the z-axis and x-axis, respectively. Snþ1

and Cnþ1 represent sin qnþ1 and cos qnþ1, respectively.

When the matrix transformation between each two adja-

cent joint coordinate systems is determined, the total

transformation matrix from the joint angle space to the

Cartesian space of the end effector can be easily

obtained as

0T 6 ¼ A1A2A3A4A5A6 ¼

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

2
6664

3
7775 ð2Þ

where 0T 6 is the pose of the end effector in the base coor-

dinate system and ½nx; ny; nz�T is the vector representation

of the end effector’s x-axis in the base coordinate system.

Analogously, ½ox; oy; oz�T and ½ax; ay; az�T represent the

vector representations of the end effector’s y-axis and z-

axis, respectively. ½px; py; pz�T is the position of the end

effector in the base coordinate system. Each parameter in

the matrix of equation (2) is calculated as follows

px ¼ �C1fC2½C3C4S5d6 þ S3ðC5d6 þ d4Þ� � S2S4S5d6g þ S1½S3C4S5d6 � C3ðC5d6 þ d4Þ � d2� ð3Þ

py ¼ �S1fC2½C3C4S5d6 þ S3ðC5d6 þ d4Þ� � S2S4S5d6g � C1½S3C4S5d6 � C3ðC5d6 þ d4Þ � d2� ð4Þ

pz ¼ S2fC3½C3C4S5d6 þ S3ðC5d6 þ d4Þ� þ C2S4S5d6g þ d1 ð5Þ

nx ¼ C1fC2½C3ðC4C5C6 � S4S6Þ � S3S5S6� � S2ðS4C5C6 þ C4S6Þg � S1½S3ðC4C5C6 � S4S6Þ þ C3S5C6� ð6Þ

Table 1. Denavit–Hartenberg parameters of the 6-DOF Stanford
MT-ARM robotic manipulator.

Joint no. q d (mm) a a (rad) Joint limit (rad)

1 q1 366.5 0 �p=2 ð�p;pÞ
2 q2 242 0 p=2 ð�p;pÞ
3 q3 0 0 �p=2 ð�2p=3; 2p=3Þ
4 q4 356 0 p=2 ð�p;pÞ
5 q5 0 0 �p=2 ð�2p=3; 2p=3Þ
6 q6 280 0 0 ð�p;pÞ

DOF: degree of freedom.

Figure 1. Six-DOF Stanford MT-ARM robotic manipulator. DOF:
degree of freedom.
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ny ¼ S1fC2½C3ðC4C5C6 � S4S6Þ � S3S5S6� � S2ðS4C5C6 þ C4S6Þg � C1½S3ðC4C5C6 � S4S6Þ þ C3S5C6� ð7Þ

nz ¼ �S2½C3ðC4C5C6 � S4S6Þ � S3S5S6� � C2ðS4C5C6 þ C4S6Þ ð8Þ

ox ¼ �C1fC2½C3ðC4C5C6 þ S4S6Þ � S3S5S6� � S2ðS4C5C6 � C4C6ÞgþS1½S3ðC4C5C6 þ S4S6Þ þ C3S5C6� ð9Þ

oy ¼ �S1fC2½C3ðC4C5C6 þ S4S6Þ � S3S5S6� � S2ðS4C5C6 � C4S6Þg � C1½S3ðC4C5C6 þ S4S6Þ þ C3S5C6� ð10Þ

oz ¼ S2½C3ðC4C5C6 þ S4S6Þ � S3S5S6� þ C2ðS4C5C6 � C4S6Þ ð11Þ

ax ¼ �C1½C2ðC3C4S5 þ S3C5Þ � S2S4S5� � S1ðS3C4S5 � C3C5Þ ð12Þ

ay ¼ �S1½C2ðC3C4S5 þ S3C5Þ � S2S4S5� � C1ðS3C4S5 � C3C5Þ ð13Þ

az ¼ S2ðC3C4S5 þ S3C5Þ þ C2S4S5 ð14Þ

Extreme learning machine

ELM21–23 is the learning algorithm for single hidden layer

neural networks proposed by Huang et al.21 in 2006. As a

single hidden layer feedforward neural network (SLFN),

the training phase of the ELM consists of two stages: (1)

random feature mapping and (2) solution of the linear para-

meters. In the first stage, ELM randomly initializes the

hidden layer to map the input data into a feature space using

nonlinear mapping functions, which can be any nonlinear

piecewise continuous functions.24,25 In ELM, the weights

of the input layer and biases of the hidden layer are ran-

domly initialized and they are not adjusted during the train-

ing process. In order to achieve better results, the weights

of the input layer and biases of the hidden layer are set

within a range of [�1, 1] and [�1, 1], respectively, during

random initialization. Hence, ELM can greatly improve the

training speed compared with conventional neural net-

works. The fundamental theory of ELM is briefly described

as follows.

For N arbitrary distinct samples ðXi; TiÞ, where Xi ¼
½xi1; xi2; � � �; xin�T is the input and Ti ¼ ½ti1; ti2; � � �; tim�T is

the output, the standard SLFNs with N hidden nodes and

activation function gðxÞ are mathematically modeled as

XN

i¼1

bigðWi � Xj þ biÞ ¼ Oj; j ¼ 1; � � �;N ð15Þ

where Wi ¼ ½wi1;wi2; � � �;win�T is the weight vector con-

necting the ith hidden node and the input nodes,

bi ¼ ½bi1;bi2; � � �;bim�T is the weight vector connecting the

ith hidden node and the output nodes, bi is the threshold of

the ith hidden node, and Oj is the output vector. Ideally, the

main goal of the training process is to obtain bi for the

function gðxÞ such that the output vector will have no error

approximation to the target value of the training sample,

that is,
PN

j¼1 jjOj � Tjjj ¼ 0. Hence, equation (15) can be

rewritten as

XN

i¼1

bigðWi � Xj þ biÞ ¼ Tj; j ¼ 1; � � �;N ð16Þ

This equation can be expressed in matrix form as

follows

Hb ¼ T ð17Þ

where

HðW1;W2; � � �;WN ; b1; b2; � � �; bN ;X1;X2; � � �;XN Þ

¼

gðW1 � X1 þ b1Þ � � � gðWN � X1 þ bN Þ

..

. ..
. ..

.

gðW1 � XN þ b1Þ � � � gðWN � XN þ bN Þ

2
6664

3
7775

ð18Þ
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b ¼

b T
1

..

.

b T
N

2
6664

3
7775

N�m

and T ¼

T T
1

..

.

T T
N

2
6664

3
7775

N�m

ð19Þ

where H is the output matrix of the hidden layer, b is the

output weight matrix, and T is the target matrix. It shall be

noted that Wi and bi are randomly initialized. Thus, the sole

target of the training process is to compute the output

weight matrix b, which can be easily determined using the

least squares method. The formula is expressed as

_

b ¼ H yT ð20Þ

where Hy is the Moore–Penrose generalized inverse matrix

H . Algorithm 1 shows the steps involved in the ELM

algorithm.

Genetic algorithm

GA is a stochastic search optimization algorithm derived

from the survival rules in the biological evolution theory.

GA was first proposed by Holland26 in 1975. The basic idea

of GA is to optimize the object by genetic operations, cross-

over, and mutation, and then select the optimal genetic solu-

tions according to the fitness function.27 GA has been used

extensively in optimization problems. However, conven-

tional GA is usually less efficient than other optimization

methods. To improve its computational efficiency, GA is

integrated with other evolutionary algorithms. Köker and

Cakar11 used SA as an operator in GA to optimize the

inverse kinematics solution of a robotic manipulator. Garg28

developed a hybrid technique by integrating GA with parti-

cle swarm optimization to solve the constrained optimization

problems. In this work, a sequential mutation operation is

proposed to improve local search ability of GA in order to

optimize the inverse kinematics solution of the 6-DOF Stan-

ford MT-ARM robotic manipulator. The adaptive crossover

rate and mutation rate are selected for the GA. First, numbers

within a range of [0, 1] are randomly generated and then

compared with the crossover rate and mutation rate. When

the crossover rate and mutation rate are smaller than the

randomly generated number, the number will cross and vary.

Proposed algorithm

The proposed ELM-SGA algorithm used to determine

inverse kinematics solution of the 6-DOF Stanford

MT-ARM robotic manipulator is presented in this sec-

tion. The main problem in inverse kinematics of

robotic manipulators is to determine the joint angle

qðq1 ;q2 ;q3 ;q4 ;q5 ;q6 Þ according to the pose Tðpx ; py ;

pz ;ox ;oy ;oz ;ax ;ay ;az ;nx ;ny ;nz Þ of the end effector.

Figure 2 shows the flowchart of the proposed ELM-

SGA algorithm and it can be seen that the algorithm

consists of two stages. In the first stage, ELM is used

to compute the preliminary inverse kinematics solution

and in the second stage, SGA is used to optimize the

preliminary inverse kinematics solution. Unlike con-

ventional neural networks, ELM randomly initializes

the weights of the input layer and biases of the hidden

layer and the weights of the output layer are updated

only during the training process, which significantly

Algorithm 1. Steps involved in the ELM algorithm.

1: Input: Training dataset
fðXi; TiÞj Xi 2 Rn; Ti ¼ Rm; i ¼ 1; 2; � � � ; Ng;
activation function g(x), and hidden layer size L.

2: Randomly initialize the input weights Wi and hidden bias bi.
3: Compute the hidden layer output matrix H.
4: Compute the output weight matrix b :

_

b ¼ HyT.
5: Output: Trained ELM model.

Figure 2. Flowchart of the proposed ELM-SGA algorithm used to
compute and optimize the inverse kinematics solution of the
robotic manipulator. ELM: extreme learning machine; SGA:
sequential mutation genetic algorithm.
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reduces the training time. ELM sacrifices the accuracy of

the preliminary inverse kinematics solution to a small

extent in order to improve the time efficiency. SGA is

then used to optimize the preliminary inverse kinematics

solution and therefore, it is not necessary for the ELM to

attain a highly accurate inverse kinematics solution. It is

deemed reasonable to sacrifice the precision of the prelim-

inary inverse kinematics solution to a small extent in order

to significantly reduce the training time. The roles of ELM

and SGA in the ELM-SGA algorithm will be described in

detail in the following subsections.

Computation of the preliminary inverse kinematics
solution for 6-DOF Stanford MT-ARM robotic
manipulator using ELM

As a single hidden layer neural network, ELM is designed to

boost training speed. Unlike conventional neural networks,

ELM randomly initializes the weights of input layer and

biases of hidden layer only during the training process. This

in turn reduces the training process. It is deemed reasonable

that ELM sacrifices the accuracy of the preliminary inverse

kinematics solution to a small extent in order to improve

time efficiency. Solving the inverse kinematics problem

using ELM consists of two stages: (1) training and (2) pre-

diction. The training process is more crucial compared with

the prediction process because it determines the success or

failure of the prediction model. There are two issues that

need to be considered during the training process. The first

issue is to generate a suitable training data set, whereas the

second issue is to select the appropriate number of hidden

layers for the ELM model. Once the kinematic parameters of

the robotic manipulator are known, a forward kinematics

model can be formulated using equations (1) to (14). To

ensure rationality of the training set, the joint angles

qðq1 ;q2 ;q3 ;q4 ;q5 ;q6 Þ of the manipulator are randomly

initialized. Following this, the forward kinematics model is

used to determine the pose of the end effector

Tðpx ; py ; pz ;ox ;oy ;oz ;ax ;ay ;az ;nx ;ny ;nz Þ in response to

the joint angles qðq1 ;q2 ;q3 ;q4 ;q5 ;q6 Þ of the manipulator.

The number of hidden layer nodes is changed for each train-

ing process in order to determine the suitable ELM architec-

ture. The mean square error (MSE) of the test data set is

recorded to determine the best ELM architecture. Figure 3

shows the training and prediction processes involved in the

ELM model in order to compute the preliminary inverse

kinematics solution of the robotic manipulator. Algorithm

2 shows the steps involved in the ELM algorithm in comput-

ing the preliminary inverse kinematics solution.

Optimization of the inverse kinematics solution
using SGA

The second stage of the proposed ELM-SGA algorithm

involves optimizing the preliminary inverse kinematics

solution. Even though GA is widely used for optimization

problems, the crossover and mutation operations of GA

process randomly, resulting in poor local search capability.

Thus, conventional GA is not suitable to optimize highly

precise preliminary inverse kinematics solutions, which

only require micro adjustments during the optimization

process. Hence, in this work, SGA is used to enhance the

local search capability of GA, especially at the end of the

evolution. In the SGA algorithm, the mutation operation is

performed bit by bit from high to low. In each generation,

the value of a specific bit is mutated and determined by the

fitness function. The weight of the high bit is larger than

that of the low bit and therefore, it has a greater contribu-

tion to the final solution. Thus, the local search capability

Figure 3. Details of the training and prediction processes in the
ELM algorithm. ELM: extreme learning machine.

Algorithm 2. Steps involved in the ELM algorithm to compute
the preliminary inverse kinematics solution of the robotic
manipulator.

Training process:
Use forward kinematics to compute the training set
fðqi; TiÞjqi 2 Rn ;Ti 2 Rm; i ¼ 1; 2; � � � ;Ng.

Choose the activation function gðxÞ and hidden layer size L.
Randomly initialize weights Wi of the input layer and biases bi of

the hidden layer.
Compute the output matrix of the hidden layer H.
Compute the output weight matrix b :

_

b ¼ HyT.
Trained model: ELMfb; gðxÞ; Lg.
Prediction process:
Input:T 0 ¼ðpx ; py ; pz ;ox ;oy ;oz ;ax ;ay ;az ;nx ;ny ;nzÞ
Prediction model: ELMfb; gðxÞ; Lg
Output: Preliminary inverse solution q0 ¼ ðq1; q2; � � � ; q6Þ

6 International Journal of Advanced Robotic Systems



of GA can be enhanced significantly with the SGA

algorithm.

The details of the optimization process using SGA are as

follows. First, the preliminary inverse kinematics solution

q preliminaryðq1; q2; � � � ; q6Þ obtained from the ELM model is

encoded into binary format. Each binary format chromo-

some represents a joint angle of the robotic manipulator.

Assuming that the preliminary inverse kinematics solution

q preliminary has already achieved high accuracy, only the

decimal part of the solution needs to be encoded and opti-

mized. When the joint angle approaches zero, even a small

adjustment in precision will change the sign. Hence, a sign

bit is assigned at the head of the chromosome to rectify this

issue. Second, the original population of the SGA is ran-

domly initialized except for the ones obtained from the

ELM model. Third, the fitness value of each individual is

calculated according to equations (21) and (22)

F forward kinematicsðq1; q2; q3; q4; q5; q6Þ
¼ ðpx ; py ; pz ;ox ;oy ;oz ;ax ;ay ;az ;nx ;ny ;nzÞ

ð21Þ

F fitness ¼ TP error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP0 � TPÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0x � pxÞ2 þ ðp0y � pyÞ2 þ ðp0z � pzÞ2

q ð22Þ

where TP ¼ ðpx; py; pzÞ represents the coordinate values of

the attitude matrix computed by the forward kinematics

model and TP0 ¼ ðp0x; p0y; p0zÞ represents the coordinate

values of the initialization attitude matrix.

The artificial potential field method is chosen as the

obstacle avoidance method. The environment in which the

robot is located is defined by the potential field. The posi-

tion information is used to control the robot arm in order

to avoid obstacles. If the computed results indicate the

possibility of collisions, the experimental results will be

discarded. The computed results are retained if there are

no collisions.

Next, the convergence criteria are set, which serve as the

basis for termination of the SGA algorithm. In this work,

the convergence criteria are determined by the maximum

number of generations and a predefined tolerance value.

When the maximum number of generations or the prede-

fined convergence error is reached, the algorithm termi-

nates the iterative loop. Fourth, in order to ensure the

diversity of the population, the best 10 individuals are

selected as the candidates. These individuals are then

mutated in the order from high to low. For six joints and

two mutation results (0 and 1), there are 26 different can-

didate individuals. In each generation, the SGA determines

the value of the corresponding bit. The SGA then iterates

from step 4 to 3 until the solution converges. Algorithm 3

shows the steps involved in the SGA algorithm used to

optimize the inverse kinematics solution of the robotic

manipulator. Figure 4 shows the flowchart of the SGA

algorithm. Figure 5 shows the details of the mutation

between the ith and (iþ 1)th generations for one individual.

Results and discussion

The performance of the proposed ELM-SGA algorithm in

solving the inverse kinematics problem of the robotic

manipulator is validated by performing simulations and

experiments, which will be described in this section. The

simulations are divided into three parts in order to deter-

mine the time efficiency during the training process, opti-

mization process, and computational process. In part 1, the

ELM and ANN models with different hidden layer nodes

are compared in order to determine the performance of

these models in computing the preliminary inverse kine-

matics solution of the robotic manipulator. The perfor-

mance of the ELM and ANN models are assessed in

terms of the training time and output MSE. In part 2, the

proposed SGA and Hybrid11 algorithms are compared in

order to determine the performance of these algorithms in

optimizing the preliminary inverse kinematics solution

determined using the ELM and ANN models, respectively.

The convergence process is assessed based on the end

effector error. In part 3, the performance of the ELM,

Hybrid, dual redundant camera robot based on genetic algo-

rithm (DRCRB-GA),12 and proposed ELM-SGA algo-

rithms will be compared in detail. The ELM-SGA

algorithm is then applied to the 6-DOF Stanford MT-

ARM robotic manipulator in order to validate the perfor-

mance of the algorithm. The final experiments consist of six

experiments to validate the accuracy of different end effec-

tor poses as well as a fixed-point grasping experiment. The

algorithms are coded using Visual Studio Cþþ.NET 2003

on a personal computer installed with an Intel Core i7-

4720HQ @2.60 GHz processor and the application frame-

work uses the Microsoft Basic Class Library version 7.0

(i.e. the MFC library). The time points are set before and

after the inverse kinematics solution is computed and the

time difference between the two time points is used as an

index to evaluate the time efficiency of the algorithms.

Experiments are then performed on the 6-DOF Stanford

MT-ARM modular robotic manipulator.

Algorithm 3. Steps involved in the SGA algorithm used to
optimize the inverse kinematics solution of the robotic
manipulator.

Input: Preliminary inverse kinematics solution obtained from the
ELM model q ¼ðq1; q2; � � � ; q6Þ

Coding: Decimal q to binary code q binary. A sign bit, some float bits.
Random initial population except for the input obtained from the

ELM model.
While iþþ < Lengthðq binaryÞjjT error < e do
Compute the fitness value.
Select the best 10 individual genes for the next generation.
Mutate ith value of each q binary to generate 64 new genes for every

individual.
End
Output: Final inverse kinematics solution obtained by SGA
q final ¼ðq1; q2; � � � ; q6Þ.
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Comparison between ELM and ANN in computing
the preliminary inverse kinematics solution of robotic
manipulator

The performance between the ELM and ANN models in com-

puting the preliminary inverse kinematics solution of a 6-DOF

Stanford MT-ARM robotic manipulator is presented in this

section. Figure 3 shows the processes involved in solving the

inverse kinematics problem using the ELM model. In order to

obtain the training set, the joint vector qðq1; q2; q3; q4; q5; q6Þ
is randomly initialized and then the forward kinematics model

is used to generate the mapping from the joint space of the

manipulator to the pose of the end effector

Tðpx ; py ; pz ;ox ;oy ;oz ;ax ;ay ;az ;nx ;ny ;nzÞ in the Cartesian

space. The number of data sets in the simulations is 10,000.

The total number of dimensions for each data set is 18 (12 for

pose and 6 for joint angles). A total of 8000 data are used to

train the ELM model, whereas 2000 data are used for testing.

In order to determine the best ELM model, the number of

hidden layer nodes of the ELM and ANN models is varied

during the training process. The MSE and training time are

recorded for each model. The main objectives of the simula-

tions are to determine the best ELM model to determine the

preliminary inverse kinematics solution and compare the

performance of the ELM and ANN models. The Leven-

berg–Marquardt algorithm with the sigmoid activation func-

tion is used to adjust the parameters in the output layer.

To compare the performance of the ELM and conven-

tional ANN models, seven data sets are recorded, including

the training time and MSE. The initial number of nodes is

25 and the number of nodes is increased in steps of 50, as

shown in Table 2. When the ELM model is used to compute

Figure 4. Flowchart of the SGA algorithm. SGA: sequential mutation genetic algorithm.
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the inverse kinematics solution of the MT-ARM robotic

manipulator, it is found that the MSE of the output joint

angle decreases with an increase in the number of hidden

layer nodes. The MSE is 1.98028593 when the number of

hidden layer nodes is 275. The corresponding training time

is 0.3814 s. The simulations are repeated using the ANN

model. Likewise, the MSE of the output joint angle

decreases with an increase in the number of hidden layer

nodes. The lowest MSE (1.65137561) is attained when the

number of hidden layer nodes is 175, while the correspond-

ing training time is 13.9127 s. Comparing the results

obtained for the ELM model (275 hidden layer nodes) and

ANN model (175 hidden layer nodes), it can be seen that

the ANN model has a slightly higher precision than the

ELM model. However, the training time for the ANN

model is 4.36 times the training time for the ELM model.

Figure 6(a) and (b) shows the variations of the MSE and

training time for the ELM and ANN models. It is evident

that the ANN model has a slightly higher accuracy than the

ELM model. However, this is negated by the fact that the

ANN model is more time-consuming compared with the

ELM model, as indicated by the increasing trend in

the training time (Figure 6(b)). The simulation results indi-

cate that ELM model can significantly reduce the training

time without compromising the accuracy of the solution

since the precision of the output is comparable to that for

the ANN model.

Optimization of inverse kinematics solution
of the robotic manipulator using SGA

As described in the previous section, ELM is used to compute

the preliminary inverse kinematics solution of the robotic

manipulator. The main purpose of the ELM model is to

reduce the training time. However, the end effector error

obtained from the ELM model is on the order of a few cen-

timeters, which is undesirable. Hence, SGA is used to opti-

mize the preliminary inverse kinematics solution and the

results will be presented and discussed in this section. Even

though GA has been used extensively to solve optimization

problems, the poor local search capability of GA reduces its

convergence speed, especially at the end of the evolution.

Hence, the SGA algorithm is used in this work to compensate

the disadvantages of classic GA and promote its convergence

speed. The SGA algorithm is used to optimize the preliminary

inverse kinematics solution obtained from the ELM model.

The coding, details of the sequential mutation, and end effec-

tor errors are recorded for each generation. The performance

of the ELM-SGA and Hybrid11 algorithms are compared in

order to determine their convergence capability.

Table 2. Comparison of the MSE and training time between the ANN and ELM models with different number of hidden layer nodes.

No. of nodes 25 75 125 175 225 275 325

ELM MSE 2.3004 2.1505 2.0559 2.0254 1.9930 1.9802 1.9818
Training time (s) 0.0254 0.0571 0.1035 0.1662 0.2701 0.3814 0.4518

ANN MSE 1.9212 1.7358 1.6932 1.6513 1.66364 1.6672 1.6541
Training time (s) 0.7105 3.5217 8.4615 13.9127 22.3125 33.2743 54.9453

MSE: mean square error; ELM: extreme learning machine; ANN: artificial neural network.
Note: The bold values represent the minimum mean square error and the minimum training time in different algorithms.

Figure 5. Details of the mutation between the ith and (i þ 1)th generations.
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Table 3 shows the preliminary inverse kinematics solu-

tions obtained by the ELM model and their corresponding

binary formats based on the rules described in the

“Optimization of inverse kinematics solution of the robotic

manipulator using SGA” section. The binary format of each

joint angle consists of a sign bit and 34 binary bits con-

verted from the floating parts of each joint angle. After

coding, the population is initialized, the fitness value is

computed, the convergence criteria are evaluated, and the

selection operations are run. The principle of SGA is the

same as classic GA and therefore, the procedure will not be

elaborated in detail in this section. The inverse kinematics

solutions presented in Table 3 are taken as the example in

order to demonstrate the sequential mutation process of the

SGA, as shown in Figure 7. The evolutions between the

fourth and fifth generations are recorded. In the fourth

generation, the fourth bit (highlighted in red) mutates and

generates 26 new individuals. The fitness value is then

computed in order to identify which individuals are inher-

ent to the next generation. To ensure diversity of the pop-

ulation, the algorithm does not select the best mutated

individual as its offspring for each individual, rather the

algorithm chooses a certain number of best fit individuals

as the offspring.

A hybrid intelligent algorithm based on ANN, GA, and

SA is used to compare with the convergence ability of the

ELM-SGA algorithm developed in this work during the

optimization process. Köker and Cakar11 proposed this

hybrid intelligent algorithm to solve the inverse kinematics

problem of a robotic manipulator in 2016. In the hybrid

intelligent algorithm, ANN is used to compute the prelim-

inary inverse kinematics solution. Following this, an

improved GA with SA is used to optimize the inverse kine-

matics solution. In one study,12 the DRCRB-GA algorithm

is proposed by setting two variable parameters, which con-

strains two redundant DOFs. The structure of the optimized

objective function is more flexible than the basic GA and

the algorithm is shown to be more efficient. The ELM-

SGA, DRCRB-GA, and Hybrid algorithms are used to

compute the inverse kinematics solution for the same pose.

The end effector errors are recorded for each of these algo-

rithms in each generation.

Figure 8 shows the comparison of the convergence pro-

cess between the SGA and Hybrid algorithms. The abscissa

represents the algebra of Gas, whereas the ordinate repre-

sents the end effector error. The blue data markers repre-

sent the results of the Hybrid algorithm proposed by Köker

and Cakar,11 whereas the red data markers represent the

SGA algorithm proposed in this study. Since the SGA uses

the preliminary inverse kinematics solution determined by

the ELM model, the accuracy of the solution is slightly

lower compared with that for the ANN model. Therefore,

the end effector error is larger for the SGA algorithm com-

pared with that for the Hybrid algorithm at the beginning of

the optimization process. However, the SGA algorithm has

faster convergence speed than the Hybrid algorithm and the

end effector error of the SGA algorithm begins to approach

zero in the 29th generation. In contrast, the Hybrid algo-

rithm achieves convergence in the 36th generation. This

indicates that the proposed ELM-SGA algorithm improves

the optimization of the inverse kinematics solution of a

robotic manipulator.

Comparison of the inverse kinematics solutions
between the ELM, Hybrid, DRCRB-GA, and ELM-SGA
algorithms for 10 different random poses

In order to prevent randomness of a single simulation, the

ELM, Hybrid, DRCRB-GA, and proposed ELM-SGA

algorithms are used to compute the inverse kinematics

solutions for 10 random poses. The simulation results are

presented in Table 4, including the average end effector

Figure 6. Variations of the (a) MSE and (b) training time of the
ANN and ELM models with different number of hidden layer
nodes. MSE: mean square error; ANN: artificial neural network;
ELM: extreme learning machine.
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error, standard deviation of the end effector error, average

computational time, and standard deviation of the compu-

tational time. It can be seen from Table 4 that the accuracy

of the inverse kinematics solution is significantly higher for

the ELM-SGA algorithm compared with other algorithms,

while the computational time is less than that those for the

Hybrid and DRCRB-GA algorithms. Table 5 shows the

results of the Wilcoxon signed test for the Hybrid,

DRCRB-GA, ELM, and ELM-SGA algorithms. The sig-

nificance level is 0.05. If the calculated significance level is

less than 0.05, this indicates that the difference in the

result between two algorithms is significant. In contrast,

if the calculated significance level is greater than 0.05,

this indicates that there is no significant difference in the

result between two algorithms. Indeed, there is a signifi-

cant difference in the time efficiency between the pro-

posed ELM-SGA algorithm and other algorithms. In

addition, there is a significant difference in error between

the ELM-SGA and ELM algorithms. Based on the results,

it can be deduced that the ELM-SGA algorithm can

achieve the same accuracy as the Hybrid and DRCRB-

GA algorithms, but with higher time efficiency compared

with other algorithms.

Figure 7. Sequential mutation from the ith generation to (iþ 1)th generation. MSE: mean square error; ANN: artificial neural network;
ELM: extreme learning machine.

Figure 8. Comparison of the convergence process between the
SGA and Hybrid algorithms. SGA: sequential mutation genetic
algorithm.

Table 3. Binary formats of the preliminary inverse kinematics solutions obtained from the ELM model.

Joint no. Inverse kinematics solution Sign Floating part Binary format

1 �40.2685051658 � 2685051658 1 0010100000 0000101010 1000110000 1010
2 �83.2850305087 � 2850305087 1 0010101001 1110010000 1101000011 1111
3 41.4126445869 þ 4126445869 0 0011110101 1111010010 0100010010 1101
4 60.0713016643 þ 0713016643 0 0000101010 0111111111 0001010100 0011
5 74.2925152099 þ 2925152099 0 0010101110 0101101001 0001110110 0011
6 �56.7779402578 � 7779402578 1 0111001111 1011000001 0000110101 0010

ELM: extreme learning machine.
Note: The bold values indicate positive and negative signs, 0 for positive and 1 for negative.

Table 4. Average end effector error and average computational
time for the Hybrid, DRCRB-GA, ELM, and ELM-SGA algorithms.

Average end
effector

error (mm)

Standard
deviation
of end

effector
error

Average
computational

time (ms)

Standard
deviation of

computational
time

Hybrid 0.0255 0.0084 5.84 0.0696
DRCRB-GA 0.0265 0.0125 5.73 0.1157
ELM 11.9852 4.5668 0.91 0.1118
ELM-SGA 0.0225 0.0081 5.52 0.1297

ELM: extreme learning machine; SGA: sequential mutation genetic
algorithm.
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In order to compare the capability of the algorithms in

computing the inverse kinematics solution, the end effector

errors and computational time are plotted for the Hybrid,

DRCRB-GA, and ELM-SGA algorithms, as shown

in Figure 9. The red, blue, and green polylines in

Figure 9(a) indicate the end effector errors for the ELM-

SGA, Hybrid, and DRCRB-GA algorithms, respectively.

The errors of the three algorithms fall within a range of

0.005–0.045 mm. The trajectory of the three polylines is

very close and therefore, it can be deduced that the algo-

rithms achieve the same accuracy. Even though the ELM-

SGA algorithm can obtain a more precise inverse

kinematics solution, the main concern here is the conver-

gence speed of the algorithm. Thus, the convergence cri-

terion is set such that the end effector error is less than 0.05

mm. The red, blue, and green polylines in Figure 9(b) indi-

cate the computational time of the ELM-SGA, Hybrid, and

DRCRB-GA algorithms, respectively. It can be seen that

the ELM-SGA algorithm is less time-consuming compared

with the Hybrid and DRCRB-GA algorithms, indicating

that the proposed algorithm achieves faster convergence

than other algorithms while attaining the same precision.

Based on Table 4, the average computational time of the

ELM-SGA algorithm is lower than those for the Hybrid and

DRCRB-GA algorithms by 5.5% and 3.7%, respectively.

Experiments using the 6-DOF Stanford MT-ARM
robotic manipulator

Two groups of validation experiments are conducted and the

proposed ELM-SGA algorithm is used to determine the

inverse kinematics solution of the Stanford MT-ARM robotic

manipulator, which will be presented in this section. The

robotic manipulator has been described in detail in the

“Structure and Denavit–Hartenberg parameters of the 6-DOF

Stanford MT-ARM robotic manipulator” section. In the first

group of experiments, the forward kinematics of the robotic

manipulator is used to verify the accuracy of the ELM-SGA

algorithm in computing the inverse kinematics solution. In the

second group of experiments, the ELM-SGA algorithm is used

to compute the inverse kinematics solution in order to realize

fixed-point grasping of the robotic manipulator.

End effector errors for six poses of the robotic manipulator
obtained from ELM-SGA algorithm. In this section, the pro-

posed ELM-SGA algorithm is applied to the 6-DOF Stanford

MT-ARM robotic manipulator to verify the accuracy of the

inverse kinematics solution. Each joint angle of the robotic

manipulator is set equidistantly from 15� to 90�with a pitch of

15� and the pose data T returned by the robotic manipulator is

recorded. The ELM-SGA algorithm is then used to compute

the inverse kinematics solution q for each pose T . The inverse

kinematics solutions obtained are set as the joint parameters

of the robotic manipulator. The error between the observed

pose T 0 and expected pose T of the end effector (i.e. end

effector error) is calculated using equation (22) in order to

verify the accuracy of the ELM-SGA algorithm.

The results shown in Table 6 indicate that the ELM-

SGA algorithm yields highly precise inverse kinematics

solutions for the 6-DOF Stanford MT-ARM robotic manip-

ulator. Figure 10 shows the six poses of the robotic manip-

ulator corresponding to the inverse kinematics solutions

tabulated in Table 6. In general, all of the end effector

errors are less than 5 mm. The end effector errors are con-

tributed by the following factors: (1) error between the

Table 5. Results of the Wilcoxon signed test for the Hybrid,
DRCRB-GA, ELM, and ELM-SGA algorithms.

Algorithms

Significance level
for end effector

error

Significance level
for computational

time

Hybrid and ELM-SGA 0.5708 1.7963e-04
DRCRB-GA and ELM-SGA 0.2730 0.0073
ELM and ELM-SGA 1.8267e-04 1.8165e-04

ELM: extreme learning machine; SGA: sequential mutation genetic
algorithm.
Note: The bold values indicate whether there is a significant difference,
the bold indicates that there is a significant difference between the two
algorithms, and the non-bold indicates that the two algorithms have no
significant difference.

Figure 9. Comparison of the end effector errors and computa-
tional time between the Hybrid, DRCRB-GA, and ELM-SGA
algorithms. ELM: extreme learning machine; SGA: sequential
mutation genetic algorithm.
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inverse kinematics solution obtained by the ELM-SGA

algorithm and ideal inverse kinematics solution whose end

effector error relative to the target position equals zero and

(2) accuracy of the arm-drive motor as well as drawbacks

of the software control system. The input parameters of the

MT-ARM robotic manipulator must be rounded to the near-

est integer, which is the major contributor of the errors

listed in Table 6. In summary, the error contributed by the

ELM-SGA algorithm is less than 5 mm and therefore, it can

be deduced that the proposed algorithm is capable of giving

highly precise inverse kinematics solutions.

Fixed-point grasping experiments based on the ELM-SGA
algorithm. Fixed-point grasping experiments are conducted

to verify the accuracy of the inverse kinematics solutions

obtained from the ELM-SGA algorithm. The experimental

procedure is described as follows. First, a set of joint angles

q0¼ð45;�110; 40; 0; 30; 180Þ is randomly selected as the

joint parameters of the MT-ARM robotic manipulator and

the position T0 ¼ ð�312:698; 550:647; � 95; 778Þ of the

end effector is recorded. Following this, a black rubber

block is placed at T0, as shown in Figure 11(a). The

ELM-SGA computes the inverse kinematics solution

Table 6. Validation of the inverse kinematics solutions obtained from the ELM-SGA algorithm for six poses.

No. 1 2 3 4 5 6
Angle 15 30 45 60 75 90

Inverse kinematics solution 32.273 61.2974 84.6442 100.3162 104.8313 90.0085
�15.0027 �30.0001 �45.0064 �59.9931 �74.9983 90.0086
�15.0023 �29.9999 �45.0064 �59.9929 �74.9981 89.9912

32.1415 67.3406 �72.4333 �24.4772 32.746 90.0085
25.8107 44.2927 �51.5755 �51.4838 �58.6461 90.0086
27.3888 52.8848 �101.351 �88.6134 �92.1772 89.9914

Target position �424.235 �622.713 �553.477 �365.03 �239.187 �242
744.566 448.001 202.752 137.759 209.583 278
444.082 629.244 812.49 896 851.382 722.5

Real position �421.364 �621.12.0 �552.189 �366.183 �239.539 �242.083
745.96 452.737 198.785 142.073 209.956 279.884
444.011 628 813.166 895.988 849.692 722.658

Error 3.19 4.78 4.23 4.47 1.76 1.89

ELM: extreme learning machine; SGA: sequential mutation genetic algorithm

Figure 10. Validation of the inverse kinematics solutions obtained from the ELM-SGA algorithm for six poses using the 6-DOF Stanford
MT-ARM robotic manipulator. DOF: degree of freedom; ELM: extreme learning machine; SGA: sequential mutation genetic algorithm.
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qELM�SGA of the target position T0. Following this,

qELM�SGA is set as the input parameter of the MT-ARM

robotic manipulator to perform the grasping operation.

Table 7 shows the details of the data. The theoretical error

is 0.0177, whereas the actual error is 0.6400 mm. The

error is within the allowable range of the grasping oper-

ation. Figure 11(a) to (h) shows the fixed-point grasping

experiments using the 6-DOF Stanford MT-ARM

robotic manipulator.

Conclusions

An intelligent ELM-SGA algorithm has been proposed in

this article in order to obtain the inverse kinematics solu-

tions of a 6-DOF robotic manipulator. This is the first time

ELM is used to compute the inverse kinematics solution of

a 6-DOF robotic manipulator. The proposed ELM-SGA

algorithm computes the inverse kinematics solution of the

robotic manipulator in two stages. In the first stage, ELM is

used to compute the preliminary inverse kinematics

solution. In the second stage, SGA is used to optimize the

preliminary inverse kinematics solution obtained from

the ELM model. ELM randomly initializes the weights of

the input layer and biases of the hidden layer, which greatly

improves the training speed. Sequential mutation signifi-

cantly improves the local searching capability of the GA.

The ELM-SGA algorithm sacrifices the accuracy of pre-

liminary inverse kinematics solution to a small extent,

which significantly reduces the training time. The simula-

tion and experimental results indicate that the ELM-SGA

algorithm significantly improves the computational time

without compromising the accuracy of the inverse kine-

matics solution of the robotic manipulator.
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