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1. Introduction

A toric variety is a normal algebraic variety endowed with an action of a torus T such that
over an open subset of this variety the action is free and transitive. Given a toric variety
X , a toric bundle on X is a vector bundle on X endowed with an action of T compatible
with that on X .

Now we are given a complete toric variety X defined over an algebraically closed field
k of characteristic p > 0. In [7, Quesiton 7.6], the authors ask when the projectivization
of a toric bundle on X is Frobenius split. The answer is always affirmative when the toric
bundle is split, i.e. a direct sum of line bundles, since in this case the projectivization is a
toric variety [3, Proposition 7.3.3]. However, in general, very little is known. On the other
hand, in [9] the authors proved that the cotangent bundle of a flag variety is Frobenius
split. In the same vein, Lauritzen raised a question in [11] whether the cotangent bundle
of a smooth toric variety is Frobenius split.

The aim of this paper is to prove the following:

Theorem 1. Let X be a smooth toric variety and TX be its tangent bundle, then P(TX )

(following [6 Definition, p.162], we use P(E) to denote the associated projective space
bundle, i.e. ProjXSym E for a locally free sheaf E on a scheme X ) is Frobenius split.

By [2, Lemma 1.1.11], our main result implies that the cotangent bundle of a smooth
toric variety is Frobenius split. It should be noted that the converse of the lemma loc. cit. is
also true, see [1, Proposition 8.1]. Besides, our main result is also obtained in [1] by using
a different method.

In [1, Question 8.7], the authors ask whether the cotangent bundle is always Frobenius
split for a smooth F-split variety. We answer this question negatively by giving an example
in characteristic 2 at the end of this paper.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-018-0382-7&domain=pdf
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If there is no further specification, we will work throughout over an algebraically closed
field k of characteristic p > 0.

2. Preliminaries

The objective of this section is twofold. The first is to review some facts on toric bundles
and the second is to review a criterion for the Frobenius splitting of a smooth complete
variety. The references for these two parts are [8] and [2] respectively.

2.1 Toric bundles

Here we will recall some facts on toric bundles, among which the Klyachko data of a toric
bundle will play a key role later in the proof of our theorem.

2.1.1. Toric varieties. A toric variety is a normal algebraic variety on which there is an
action of a torus such that over an open subset of the variety this action is free and transitive.
Any affine toric variety can be constructed as follows [4]. Let N be a free abelian group
of rank n, σ ⊆ N ⊗Z R be a strongly convex rational polyhedral cone, σ∨ be the set
of vectors in N∨ ⊗Z R which take nonnegative values on σ . Then Sσ = σ∨ ∩ N∨ is
commutative semigroup and Uσ = Spec k[Sσ ] is an affine toric variety. For a general toric
variety X of dimension n, there exists a fan � in N ⊗Z R from which one can obtain the
toric variety X = X (�) by firstly constructing for each cone σ ∈ � the associated affine
toric varieties Uσ and then gluing {Uσ }σ∈� .

If we denote by T the torus acting on the toric variety X , then the abelian group N∨ can be
chosen to be the character group T̂ = Hom(T,Gm) and N is given by T̂ 0 = Hom(T̂ ,Z).
In the sequel, the operation of the character group T̂ will be written multiplicatively and
the trivial character, i.e. the unit in the character group will be denoted by 0.

For each fan � in N ⊗ R, we use |�| to denote set of ray generators of �.
A toric bundle on X is defined to be a vector bundle endowed with an action of T which

is compatible with the action of T on X [8, 1.2]. In the sequel, by a toric bundle we will
mean the associated locally free sheaf rather than the total space.

2.1.2. Toric bundles over affine toric varieties. The structure of toric bundles on affine
toric varieties are easier to describe than the general case. For convenience, we first record
the following result due to Klyachko.

PROPOSITION 2.1 [8, Proposition 2.1.1]

(1) Let Uσ be an affine toric variety and E be a toric bundle on Uσ , then

E ∼=
⊕

χ i∈T̂ ,1≤i≤n

χiOUσ . (2.1)

The underlying line bundle of χiOUσ isOUσ and if we denote by eiσ the unit of χiOUσ the
action of t ∈ T on χiOUσ is given by

t.eiσ = χi (t)e
i
σ .
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(2) The toric bundle structure of E is uniquely determined by the induced representation of
Tσ on Ex , where x is a point of the unique closed orbit of Uσ and Tσ ⊆ T is the stabilizer
subgroup of x.

The characters {χi }1≤i≤n appearing on the right side of (2.1) might not be uniquely
determined. For instance, any two toric line bundles on a torus are isomorphic.

The inverse images in E of the units {eiσ }1≤i≤n under the isomorphism (2.1) constitute
a basis and will still be denoted by {eiσ }1≤i≤n . This basis will be called an eigen-basis
of E and the characters {χi }1≤i≤n will be called eigen-characters of E associated to the
eigen-basis {eiσ }1≤i≤n .

2.1.3. Klyachko data of a toric bundle. Let X = X (�) be a toric variety and E be a toric
bundle of rank r on X . The Klyachko data associated to E is a vector space of dimension
r together with a family of compatible filtrations indexed by the ray generators of �.

Now we recall how to obtain the Klyachko data associated to a toric bundle E on a toric
variety X = X (�). Firstly we assume X is affine. Let x be a point in the unique closed
orbit of X . Then we have an induced representation of Tσ on Ex , where Tσ ⊆ T is the
stabilizer subgroup of x . By Proposition 2.1, E is trivial as a vector bundle and we take
{ei }1≤i≤r to be its eigen-basis. Let x0 be a point in the open orbit of X and eix (resp. eix0

)
be the image of ei in the fiber Ex (resp. Ex0 ). Then we can identify the vector spaces Ex
with Ex0 by sending eix to eix0

, 1 ≤ i ≤ r . In particular, if we denote by E the vector space
Ex0 , then we have an induced representation of Tσ on E . We extend this representation to a
representation of T on E and let Eχ be the χ -isotypical component of this representation.
Then for each α ∈ |�| and integer i , we define a subspace Eα(i) of E as follows

Eα(i) =
⊕

〈χ,α〉≥i

Eχ . (2.2)

One sees easily that {Eα(i)} is a decreasing filtration on E .
For a toric bundle E on a general toric variety X , one can choose a family of open affine

sub toric varieties {Uσ } covering X . Then for each cone σ and α ∈ |σ | we can define as in
(2.2) a filtration of the vector space E = Ex0 , where x0 is a chosen point of the open orbit
of X . Moreover, one can show ([8, Corollary 2.2.5]) the filtration {Eα(i)} obtained in this
way is independent of the choice of σ that contains α.

The Klyachko data associated to the toric bundle E on X = X (�) is nothing but
the family of filtrations {Eα(i)} on the vector space E indexed by the ray generators
of �. Conversely, given a family of indexed filtrations {Eα(i)}α∈|�| satisfying suitable
compatible conditions one can construct a toric bundle on X = X (�). To sum up, we have
the following theorem.

Theorem 2 [8, Theorem 2.2.1]. Giving a toric bundle of rank r on a toric variety X (�) is
equivalent to giving a vector space E of dimension r together with a family of compatible
filtrations {Eα(i)}α∈|�| of E indexed by the ray generators of � satisfying the following
condition.
For each cone σ ∈ �, there exists a decomposition

E ∼=
⊕

χ∈T̂σ

E [σ ](χ), (2.3)
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where T̂σ is the group of characters of the stabilizer subgroup Tσ ⊆ T of any point in the
unique closed orbit of Uσ , such that

Eα(i) ∼=
⊕

〈χ,α〉≥i

E [σ ](χ)

for any α ∈ |σ | and i ∈ Z.

2.1.4. Global sections of a toric bundle and their local restrictions. Given a toric bundle
E on a smooth toric variety X = X (�), there is an induced action of T on H0(X, E). The
χ -isotypical component H0(X, E)χ of H0(X, E) can be described in terms of the Klyachko
data of E .

PROPOSITION 2.2 [8, Corollary 4.1.3(i)]

Let X (�) be a smooth toric variety and E be a toric bundle on X , then

H0(X, E)χ =
⋂

α∈|�|
Eα(〈χ, α〉). (2.4)

Remark 2.3. From the proposition above, one observes that the dimension of H0(X, E)χ
is bounded by the rank of E . On the other hand, there might exist two different characters
χ1 and χ2 and sections si ∈ H0(X, E)χi , i = 1, 2 such that s1 and s2 correspond to the
same vector in E .

By the proposition above one reads readily the χ -isotypical component of the space
of global sections of a toric bundle E on a smooth toric variety X = X (�) from the
associated Klyachko data. Now given a vector in E that corresponds to a global section s
in H0(X, E)χ and a cone σ ∈ �, we consider the image of s under the restriction map

ρ : H0(X, E) → �(Uσ , E). (2.5)

Firstly it is easy to see that the image of s under the restriction map (2.5) falls in the
χ -isotypical component of �(Uσ , E), i.e. for all t ∈ T , we have

t.ρ(s) = χ(t)ρ(s).

Next we investigate the local sections of E appearing in the χ -isotypical component of
�(Uσ , E). By Proposition 2.1, we have

E |Uσ
∼=

⊕

1≤i≤r

χ i
σOUσ .

We take {eiσ } to be an eigen-basis of E |Uσ whose associated eigen-characters are {χ i
σ }.

Since Uσ is smooth, we can find αm+1, . . . , αn ∈ N = T̂ 0 such that |σ | ∪ {αm+1, . . . , αn}
constitute a basis of N . Let u j ∈ T̂ be the characters defined by 〈ui , α j 〉 = δi j , 1 ≤ i, j ≤
n, then

Uσ
∼= k [u1, . . . , um, u±1

m+1 . . . , u±1
n ]
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and an element of �(Uσ , E) can be written as

s =
∑

1≤i≤r

ai e
i
σ , ai ∈ k[u1, . . . , um, u±1

m+1, . . . , u
±1
n ]. (2.6)

By a suitable choice of the multiplicative coordinates of the torus T , the actions of
t = (t1, . . . , tn) ∈ T on ui , 1 ≤ i ≤ n, and u−1

j ,m + 1 ≤ j ≤ n are given by

t.ui = t−1
i ui , t.u−1

j = t j u
−1
j .

Then, the action of T on a monomial b = ui11 . . . uinn , i1, . . . , im ≥ 0, im+1, . . . , in ∈ Z is
given by

t.b = χb(t)b, χb(t) =
∏

1≤ j≤n

t
−i j
j . (2.7)

PROPOSITION 2.4

Let {eiσ }1≤i≤r be an eigen-basis of E |Uσ and {χ i
σ }1≤i≤r be the corresponding eigen-

characters. Then s = ∑
1≤i≤r ai e

i
σ falls in the χ -isotypical component iff ai =

ci
∏

1≤ j≤n u
〈χ i

σ ,α j 〉−〈χ,α j 〉
j , where ci ∈ k and 1 ≤ i ≤ r .

Proof. Let ai = ∑
h cihbih , where cih ∈ k, bih ∈ k[u1, . . . , um, u±1

m+1, . . . , u
±1
n ] is a

monomial. Then by (2.7) the action of t ∈ T on v is given by

t.s =
∑

i

∑

h

cihχbih (t)bihχ
i
σ (t)eiσ . (2.8)

If s is in the χ -isotypical component of �(Uσ , E), then we have

∑

i

∑

h

cihχbih (t)bihχ
i
σ (t)eiσ =

∑

i

∑

h

cihχ(t)bihe
i
σ .

By comparing the two sides of the above equality, one sees easily ai is a monomial for

1 ≤ i ≤ r . Moreover, by (2.7) we have χai = χ

χ i
σ

and ai = ci
∏

1≤ j≤n u
〈χ i

σ ,α j 〉−〈χ,α j 〉
j with

ci ∈ k. Conversely, if ai can be written in the form ci
∏

1≤ j≤n u
〈χ i

σ ,α j 〉−〈χ,α j 〉
j , one checks

easily s = ∑
i ai e

i
σ falls in the χ -isotypical component of �(E,Uσ ). �

As mentioned in Remark 2.3, for a vector v ∈ E the characters χ ∈ T̂ allowing the
existence of a global section s ∈ H0(X, E)χ corresponding to v (Proposition 2.2) might
not be unique. Later we will consider the images of such sections under the restriction
map (2.5). For that purpose, we choose an eigen-basis {eiσ }1≤i≤r of E |Uσ . Moreover, we
will take the point x0 from which we obtain the Klyachko data of E to be the distinguished
point in the open orbit, i.e. the point with the defining ideal (u1 − 1, u2 − 1, . . . , un − 1)

in k[Uσ ]. Let eix0
be the image of eiσ under the restriction map E |Uσ → E ⊗ k(x0). Then

by the choice of x0 and Proposition 2.4, we get the following.
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COROLLARY 2.5

Let s ∈ H0(X, E)χ be a global section corresponding to v = ∑
i ci e

i
x0

, ci ∈ k and x0 be
the distinguished point in the open orbit. Then the image of s under the restriction map

(2.5) is
∑

1≤i≤r ai e
i
σ , where ai = ci

∏
1≤ j≤n u

〈χ i
σ ,α j 〉−〈χ,α j 〉

j .

2.1.5. Examples

Example 2.6 [8, §2.3, Example 5]. The cotangent and tangent bundle of a smooth toric
variety.

The below two propositions first appear in [8, §2.3, Example 5] without proof.

PROPOSITION 2.7

Given a smooth toric variety X = X (�) of dimension n, the cotangent bundle 	1
X is a

toric bundle on X. The associated Klyachko data is given by

Eα(i) =

⎧
⎪⎨

⎪⎩

	 = T̂ ⊗ k, if i ≤ −1;
{ω ∈ 	 | 〈ω, α〉 = 0}, if i = 0;
0, if i > 0.

(2.9)

Proof. It suffices to prove (2.9) for affine smooth toric varieties. In this case, X is isomor-
phic to A

d × G
n−d
m for some 0 ≤ d ≤ n. Let {αi }1≤i≤n be a basis of the dual lattice T̂ 0 of

the character lattice T̂ , then X can be realized as the affine toric variety associated to the
cone � generated by {αi }1≤i≤d if d ≥ 1 or the origin if d = 0.

Now we take a basis {ui }1≤i≤n of the character lattice T̂ such that 〈ui , α j 〉 = δi j ,
1 ≤ i, j ≤ n. Then the open immersion T ↪→ X is given by

k[u1, . . . , ud , u
±1
d+1, . . . , u

±1
n ] ↪→ k[u±1

1 , . . . , u±1
n ]

and the action of an element t = (t1, . . . , tn) on OX is given by

t.ui = t−1
i ui , 1 ≤ i ≤ n. (2.10)

Thus the action of t on dui is given by

t.dui = t−1
i dui , 1 ≤ i ≤ n. (2.11)

Then {dui }1≤i≤n consist of an eigen-basis of 	1
X and {χi }1≤i≤n defined by χi (t) = t−1

i
for t = (t1, . . . , tn) ∈ T and the associated eigen-characters.

Now let α be a ray generator of �. Then α = αl for some 1 ≤ l ≤ d. By Theorem 2,
we have

Eαl ( j) =
⊕

〈χi ,αl 〉≥ j

kdui .
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By identifying the k-vector spaces with basis {dui }1≤i≤n and {ui }1≤i≤n , we obtain the
conclusion of the proposition. �

The tangent bundle TX is also a toric bundle on X and over any open affine sub toric
variety of X the representation of the torus associated to TX (see Proposition 2.1(2)) is the
dual of the representation associated to 	1

X . Thus we have the following

PROPOSITION 2.8

The Klyachko data associated to the tangent bundle TX of a smooth toric variety is given
by

Eα(i) =

⎧
⎪⎨

⎪⎩

T = T̂ 0 ⊗ k, if i ≤ 0;
kα, if i = 1;
0, if i > 1.

(2.12)

Proof. It suffices to prove the case when X is an affine toric variety. Following the notations
in the proof of Proposition 2.7, we have an eigen-basis { ∂

∂ui
}1≤i≤n of TX . Moreover, the

action of an element t = (t1, . . . , tn) of T on the eigen-basis is given by

t. ∂
∂ui

= ti
∂

∂ui
, 1 ≤ i ≤ n.

Similar as in the proof of Proposition 2.7, one gets the Klyachko data associated to TX is
(2.12). �

By applying Proposition 2.2 to the tangent bundle, we get the following.

COROLLARY 2.9

Let X be a smooth toric variety and 0 ∈ T̂ be the trivial character. Then the restriction
map H0(X, TX )0 → H0(T, TT )0 is bijective.

The corollary above says nothing but the dimension of global T -invariant tangent vector
fields of a smooth toric variety is equal to the dimension of the toric variety.

Example 2.10. The tensor product, symmetric product and wedge product of toric bundles.

Let X be a toric variety and E be a toric bundle on X whose Klyachko data is given
by {Eα(i)}α∈|�|, i ∈ Z. We define the following integer-valued function on E for each
α ∈ |�|:

ϕα
E : E → Z, e �→ max

i
{i ∈ Z | e ∈ Eα(i)}.

Let E and F be two toric bundles on X , whose Klyachko data are given by {Eα(i)}α∈|�|
and {Fα(i)}α∈|�|. Then E ⊗ F is also a toric bundle and the Klyachko data can be read
from those of E and F as follows: For each α ∈ |�|, (E ⊗ F)α(i) is the subspace spanned
by the set of vectors

{e ⊗ f | e ∈ E, f ∈ F; ϕα
E (e) + ϕα

F ( f ) ≥ i}.
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Similarly, for each integer m ≥ 1 and n ≤ r , where r is the rank of E , the symmetric
product SmE and wedge product ∧nE are also toric bundles. The associated Klyachko data
of these toric bundles are the families of filtrations on the vector spaces SmE and ∧n E
described as follows:

(SmE)α(i) =
⎧
⎨

⎩
∑ ∏

1≤ j≤m

e j | e j ∈ E, 1 ≤ j ≤ m;
∑

1≤ j≤m

ϕα
E (e j ) ≥ i

⎫
⎬

⎭ ,

(∧n E)α(i) =
⎧
⎨

⎩
∑

e1 ∧ · · · ∧ e j ∧ · · · ∧ en | e j ∈ E, 1 ≤ j ≤ n;

∑

1≤ j≤m

ϕα
E (e j ) ≥ i

⎫
⎬

⎭ .

Example 2.11. The determinant of a toric bundle.

LetE be a toric bundle on a toric variety X whose Klyachko data is given by {Eα(i)}α∈|�|,
i ∈ Z as in Theorem 2. Now for each α ∈ |�|, we introduce a finite subset of integers
I α(E) ⊂ Z, which is defined by

i ∈ I α(E) ⇔ Eα(i + 1) � Eα(i).

Then the Klyachko data associated to the line bundle det E is given by the integer-valued
function [8, §2.3, Example 1]

ρ �→
∑

i∈Iα(E)

di i , (2.13)

where di is the dimension of the vector space Eα(i)/Eα(i + 1).

Example 2.12. The pullback of a toric bundle by a toric morphism.

Let X1, X2 be two toric varieties and f : X1 → X2 be a toric morphism, i.e. a morphism
compatible with the actions of Ti on Xi , i = 1, 2. Then one checks easily for any toric
bundle E on X2 the pullback F = f ∗E is a toric bundle on X1.

Next we consider the Klyachko data of F . By Theorem 2, it suffices to investigate the
special case when both X1 and X2 are affine. In this case we assume Xi is isomorphic to
Uσi , where σi is a strongly convex rational polyhedra cone in Ni = T̂ 0

i ⊗ R, i = 1, 2.
Since f is a toric morphism it induces a homomorphism T1 → T2 and the following
homomorphisms of lattices

ϕ : N1 → N2, ϕ∨ : N∨
2 → N∨

1 .

By abuse of notation, we still denote by ϕ the induced morphism N1 ⊗Z R → N2 ⊗Z R.
Then the image of σ1 under ϕ falls in σ2 since f is a toric morphism.

Suppose the toric bundle E over X2 has the following decomposition:

E ∼=
⊕

1≤ j≤r

χ jOX2
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with eigen-basis {e jσ2}1≤ j≤r and eigen-characters {χ j }1≤ j≤r . Then F = f ∗E over X1
decomposes as

F = f ∗E ∼=
⊕

1≤ j≤r

ϕ∨(χ j )OX1 .

Let x0 be a point in the open orbit of X1, F = F ⊗ k(x0) and e j , 1 ≤ j ≤ n be the
image of e jσ2 under the restriction map E → E ⊗ k( f (x0)). Then by Theorem 2 for each
β ∈ |σ1| and i ∈ Z, we have

Fβ(i) =
⊕

〈ϕ∨(χ j ),β〉≥i

k(1 ⊗ e j ) =
⊕

〈χ j ,ϕ(β)〉≥i

k(1 ⊗ e j ) (2.14)

since 〈ϕ∨(χ j ), β〉 = 〈χ j , ϕ(β)〉. In particular, if ϕ(β) is a ray generator of σ2 and the
Klyachko data of E is given by {Eα(i)}α∈|σ2|, we have Fβ(i) = f ∗(Eϕ(β)(i)).

Following the notations of Example 2.12, if we assume further X1 and X2 are both
smooth, then we have an induced morphism TX1 → f ∗TX2 . Since f is toric, this mor-
phism is T1-equivariant. Next we will compute the corresponding morphism between the
Klyachko data of TX1 and f ∗TX2 . By Proposition 2.8, this is indeed a morphism from
N1 ⊗ k to N2 ⊗ k. Moreover, it is the dual of the morphism from N2

∨ ⊗ k to N1
∨ ⊗ k

which corresponds to the morphism f ∗	1
X2

→ 	1
X1

.One can check easily over the open
orbit that the latter morphism is nothing but the one induced from ϕ∨ : N2

∨ → N1
∨ hence

the morphism N1 ⊗ k → N2 ⊗ k is the one induced from ϕ : N1 → N2, which defines
the toric morphism X1 → X2. To sum up, we get the following.

PROPOSITION 2.13

Let X1 → X2 be a toric morphism of smooth toric varieties, then the induced morphisms
f ∗	1

X2
→ 	1

X1
and TX1 → f ∗TX2 are morphisms of toric bundles and the corresponding

morphisms on Klyachko data are those induced from ϕ∨ : N2
∨ → N1

∨ and ϕ : N1 → N2,
respectively.

2.2 A criterion for Frobenius splitting of smooth complete varieties

Given an algebraic variety X over k, it is said to be Frobenius split or F-split if the injective
morphism

OX → FX∗OX (2.15)

defined by sending a section to its p-th power splits as a homomorphism of OX -modules.
It is easy to see that to prove an algebraic variety X is F-split can be reduced to find

a global section ϕ of H om(F∗OX ,OX ) such that ϕ(1) = 1. Based on this fact, we will
give a more explicit description of Hom(F∗OX ,OX ).

By definition of the upper shriek functor [6, Chapter 2, exe. 6.10], we have the following
isomorphism

H om(FX∗OX ,OX ) ∼= FX∗H om(OX , F !OX ). (2.16)
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Then by [5], we have an isomorphism

F !OX ∼= H om(F∗ωX , ωX ) ∼= ω
1−p
X . (2.17)

Now by combining (2.16) and (2.17), we have the following isomorphism of sheaves of
OX -modules,

FX∗ω1−p
X

∼= H om(FX∗OX ,OX ), (2.18)

whence there is an induced isomorphism on spaces of global sections.
Next we recall a more direct way to derive (2.18). First, note that we have the following

isomorphism:

ε : FX∗ω1−p
X

∼= FX∗H om(F∗
XωX , ωX ) ∼= H om(ωX , FX∗ωX ). (2.19)

We will define an isomorphism from H om(ωX , FX∗ωX ) to H om(FX∗OX ,OX ) and our
new description of (2.18) will be the composite of this isomorphism with (2.19). For this
purpose, we need to use the trace map

τ : FX∗ωX → ωX .

Recall that τ is the composite of the projection FX∗ωX → Hn(FX∗	•
X/k) with the Cartier

isomorphism

Hn(FX∗	•
X/k)

≈−→ ωX ,

where n = dim X . The trace map can be written explicitly in terms of local coordinates as
follows.

Lemma 1 [2, Proposition 1.3.6]. Let X be a nonsingular variety of dimension n and
x1, . . . , xn be a set of local coordinates at a point x of X. Then the trace map τ is given by

τ( f dx1 ∧ · · · ∧ dxn) = Tr( f )dx1 ∧ · · · ∧ dxn,

where f = ∑
i fix

i ∈ OX,x ⊂ k[[x1, . . . , xn]] and

Tr( f ) :=
∑

i

f
1
p
i x j

with the summation taken over all multi-index i such that i = p − 1+ pj for some j ∈ Nn.

By introducing the trace map τ , one can prove the isomorphism (2.18) is nothing but
the composite of (2.19) and a morphism ι given by the following

Lemma 2 [2, Proposition 1.3.7]. The morphism

ι : H om(ωX , FX∗ωX ) → H om(FX∗OX ,OX ) (2.20)

defined by ι(ψ)( f )ω = τ( f ψ(ω)), where f is a local section of OX and ω is a local
generator of ωX , is an isomorphism.
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Now by replacing the isomorphism (2.18) with the composite ιε, we can give the fol-
lowing criterion for Frobenius splitting.

PROPOSITION 2.14

Let X be a smooth variety over k. Then X isFrobenius split iff there existsϕ ∈ H0(X, ω
1−p
X )

such that ι(ε(ϕ))(1) = 1.

For simplicity, from now on we will just say ϕ ∈ H0(X, ω
1−p
X ) defines a Frobenius

splitting of X if it satisfies ι(ε(ϕ))(1) = 1.
We conclude this section with the following lemma, which will be used later.

Lemma 3. Let X be a smooth algebraic variety, E be a vector bundle of rank r on X and
π : P(E) → X be the projection. Then for any integer n ≥ 0, we have the following
isomorphism:

π∗ω−n
P(E)

∼= SrnE ⊗ (det E)−n ⊗ ω−n
X . (2.21)

Proof. Firstly, we have the following relative Euler exact sequence over P(E),

0 → 	1
P(E)/X → π∗E ⊗ OP(E)(−1) → OP(E) → 0.

By taking determinant, we get

ωP(E)/X
∼= det(π∗E) ⊗ OP(E)(−r) ∼= π∗ det E ⊗ OP(E)(−r).

Therefore, ωP(E)
∼= ωP(E)/X ⊗ π∗ωX ∼= π∗(det E ⊗ ωX ) ⊗ OP(E)(−r) and ω−n

P(E)
∼=

π∗((det E)−n ⊗ ω−n
X ) ⊗OP(E)(nr). Then by applying the projection formula one gets the

isomorphism (2.21). �

3. Frobenius splitting of projectivization of toric bundles

By Proposition 2.14, to prove a smooth algebraic variety Y is F-split, it suffices to find
an element of H0(Y, ω

1−p
Y ) whose image under ιε sends 1 to 1. We will see later (3.4)

that for Y = P(E), where E is a toric bundle on a toric variety X , the vector space
H0(Y, ω

1−p
Y ) is endowed with an action of the torus. In this case, we obtain a new cri-

terion (Proposition 3.3) for the Frobenius splitting of Y , by which we prove our main
theorem.

3.1 Frobenius splitting of a toric variety

Next we investigate the Frobenius splitting of a toric variety in detail. By the main result
of [10], all smooth toric varieties are F-split. Then Proposition 2.14 implies that for any
smooth complete toric variety X there exists a global section of ω

1−p
X defining a Frobenius

splitting of X . On the other hand, we have the following decomposition:
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H0(X, ω
1−p
X ) ∼=

⊕

χ∈T̂
H0(X, ω

1−p
X )χ , (3.1)

where H0(X, ω
1−p
X )χ is the χ -isotypical component of H0(X, ω

1−p
X ). The global section

of ω
1−p
X defining the Frobenius splitting of X can be chosen as described in the following.

PROPOSITION 3.1

Let X be a smooth toric variety and T be its open orbit, then there is a character χ ∈ T̂
and a nonzero element of H0(X, ω

1−p
X )χ defining a Frobenius splitting of X. Moreover,

trivial character is the only character satisfying this property.

Proof. Firstly, by [2, Exe. 1.3.6], there exists a unique T -equivariant Frobenius splitting
of X . Therefore, there is an unique character χ ∈ T̂ such that this Frobenius splitting is
defined by an element of H0(X, ω

1−p
X )χ (Proposition 2.14). Next we prove the second

claim. Since the image of H0(X, ω
1−p
X )χ under the restriction morphism

H0(X, ω
1−p
X ) → �(T, ω

1−p
X )

falls in the χ -isotypical component �(T, ω
1−p
X )χ , it suffices to prove the claim in the

special case when X = T . Let {αi }1≤i≤n be a basis of the lattice T̂ 0 and u j ∈ T̂ be the

characters defined by 〈u j , αi 〉 = δi j , 1 ≤ i, j ≤ n. Then an eigen-basis of ω
1−p
T is given

by

(
∂

∂u1
∧ · · · ∧ ∂

∂un

)⊗(p−1)

.

Moreover, by Proposition 2.7 and Example 2.10, the corresponding eigen-character χ0
is defined by 〈χ0, αi 〉 = p − 1, 1 ≤ i ≤ n. Now by Proposition 2.4, an element of
H0(T, ω

1−p
T )χ is of the following form:

c
∏

i

u p−1−〈χ,αi 〉
i

(
∂

∂u1
∧ · · · ∧ ∂

∂un

)⊗(p−1)

, c ∈ k.

By Lemma 1 and Lemma 2, the above section defines a Frobenius splitting of T iff c = 1
and 〈χ, αi 〉 = 0 for all 1 ≤ i ≤ n, i.e. χ is the trivial character as desired. �

3.2 Proof of the main theorem

Before proving our main result, we will investigate Frobenius splittings of the projectiviza-
tion of a toric bundle in a little more general setting.

Let X be a smooth algebraic variety, E be a vector bundle on X of rank r , Y = P(E)

and f : Y → X be the projection. Then we have an isomorphism OX ∼= f∗OY , which
induces a morphism

Hom(FY∗OY ,OY ) → Hom(FX∗OX ,OX ), ϕ �→ f∗ϕ. (3.2)
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One sees easily that ϕ defines a Frobenius splitting of Y iff f∗ϕ defines a Frobenius
splitting of X . By applying the isomorphism (2.18) to both sides of (3.2), we get the
following morphism:

η : H0(Y, ω
1−p
Y ) → H0(X, ω

1−p
X ). (3.3)

On the other hand, by Lemma 3, we have the following isomorphism:

β : H0(Y, ω
1−p
Y ) ∼= H0(X, Sr(p−1)E ⊗ (det E)1−p ⊗ ω

1−p
X ). (3.4)

If X is a toric variety and E is a toric bundle on X , then Sr(p−1)E ⊗ (det E)1−p ⊗ ω
1−p
X is

also a toric bundle on X . Hence there is an induced action of T on H0(Y, ω
1−p
Y ). Next we

will prove the following.

PROPOSITION 3.2

The morphism ηβ−1 is T -equivariant.

Proof. It suffices to show for any χ ∈ T̂ , the image of the χ -isotypical component
H0(Y, ω

1−p
Y )χ under η falls in H0(X, ω

1−p
X )χ and this can be checked locally. Thus

we may just assume X = T . Since any two toric line bundles on T are isomorphic as toric
bundles we can assume E is a direct sum of toric line bundles with trivial eigen-characters.
Hence det E is a trivial toric line bundle. Let {ei }1≤i≤r be an eigen-basis of E . Then

eI = ek1
1 · · · ekrr ,

indexed by I ∈ S = {(k1, . . . , kr ) | k1, . . . , kr ≥ 0, k1 + · · · + kr = r(p − 1)} form an
eigen-basis of Sr(p−1)E .

Let {αi }1≤i≤n be a basis of the lattice T̂ 0u j , 1 ≤ j ≤ n and χ0 be the characters defined
as follows:

〈u j , αi 〉 = δi j , 〈χ0, αi 〉 = p − 1, 1 ≤ i, j ≤ n.

Then by Proposition 2.7, the toric line bundle ω
1−p
T is isomorphic to χ0OT and the eigen-

basis is

w0 =
(

∂
∂u j

∧ · · · ∧ ∂
∂un

)⊗(p−1)

.

Then the toric bundle Sr(p−1)E ⊗ ω
1−p
T is isomorphic to

⊕

I∈S
χ0OT ,

where the corresponding eigen-basis is {eI ⊗ w0}I∈S . Then a section s in the χ -isotypical
component of H0(Sr(p−1)E ⊗ ω

1−p
T ) can be written as

s =
∑

I∈S
aIe

I ⊗ w0,
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with aI ∈ OT are as described in Proposition 2.4.
Next we consider β−1(s). Let x be a closed point of T and V be the fiber Ex and ei,x be

the image of ei in Ex . Then we have Y ∼= P(V ) × T . Let p1 : Y → P(V ), p2 : Y → T be
the two projections. Then we get

ω
1−p
Y

∼= p∗
1ω

1−p
P(V )

⊗ p∗
2ω

1−p
T

and

H0(ω
1−p
Y ) ∼= H0(ω

1−p
P(V )) ⊗ H0(ω

1−p
T ).

Moreover, recall that we have the following isomorphism:

γ : H0(ω
1−p
P(V )

) ∼= H0(OP(V )(r(p − 1))).

Then we get

β−1(eI ⊗ aIw0) = p∗
1(γ −1(eIx )) ⊗ p∗

2(aIw0),

where eIx = ∏
1≤i≤r e

ki
i,x for I = (k1, . . . , kr ). By definition, the image of β−1(eI ⊗ aIw0)

under η is nonzero only if eIx defines a Frobenius splitting of P(V ), which by [2, Exe
1.3.(1)] is true only for I = p − 1 = (p − 1, p − 1, . . . , p − 1). Thus we can assume
s = ap−1ep−1 ⊗ w0.

Next we prove for s = ap−1ep−1 ⊗ w0 contained in the χ -isotypical component of

H0(Sr(p−1) ⊗ ω
1−p
X ), ηβ−1(s) falls in the χ -isotypical component of H0(ω

1−p
X ). By the

above argument, one sees easily ηβ−1(s) = ap−1w0. By our assumption on E , the eigen-
character corresponding to ep−1 is the trivial character. Then by Proposition 2.4,

ap−1 = c
∏

1≤ j≤n

u
p−1−〈χ,α j 〉
j

for some c ∈ k. Consequently, ap−1w0 falls in the χ -isotypical component of H0(ω
1−p
X )

as desired. �

Now by combining Propositions 3.2 and 3.1, one gets the following

PROPOSITION 3.3

Let E be a toric bundle on a smooth complete toric variety X. Then Y = P(E) is F-split iff
there exists w ∈ H0(Y, ω

1−p
Y )0, where 0 ∈ T̂ is the trivial character, such that η(w) (see

(3.3)) is nonzero.

Proof of Theorem 1. By Proposition 3.3, to prove the theorem, it suffices to find that w ∈
H0(P(TX ), ω

1−p
P(TX )

)0 such that η(w) (see (3.3)) is nonzero. Now we consider the following
diagram:
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H0(X, Sn(p−1)TX )0 H0(P(TX ), ω
p−1
P(TX )

)0
βX ηX

H0(X, ω
p−1
X )0 = k

H0(T, Sn(p−1)TT )0 H0(P(TT ), ω
p−1
P(TT )

)0
βT ηT

H0(T, ω
p−1
T )0 = k

in which the horizontal arrows are defined as (3.3) and (3.4) and the vertical arrows are
restrictions to the open orbit T and the open subset P(TT ) of P(TX ). Note that by Corol-
lary 2.9, we have H0(X, TX )0 ∼= H0(T, TT )0. Let fi , 1 ≤ i ≤ n be n linearly indepen-
dent elements of H0(T, TT )0. One sees easily that f p−1

1 · · · f p−1
n defines a nonzero ele-

ment of H0(T, Sn(p−1)TT )0 and H0(X, Sn(p−1)TX )0. Moreover, ηXβ−1
X ( f p−1

1 · · · f p−1
n )

is nonzero iff ηTβ−1
T ( f p−1

1 · · · f p−1
n ) is. Therefore, we are reduced to the case when X is

a torus. If we follow the notations of the proof of Proposition 3.2 and take fi = ∂
∂ui

, 1 ≤
i ≤ n, then ηTβ−1

T ( f p−1
1 · · · f p−1

n ) is nothing but u p−1
1 · · · u p−1

n ( ∂
∂u1

∧ · · · ∧ ∂
∂un

)⊗(p−1),
hence the theorem is proved. �

Remark 3.4. The theorem above provides a (p−1)-th power Frobenius splitting ([2, Exe.
1.3(2)]) for the cotangent bundle of a toric variety. Moreover, like toric varieties, this
Frobenius splitting is indeed defined over Z. In other words, we can find an element s in
H0(ω−1

P(TX )
) for a toric variety X defined over Z such that the image of s p−1 induces a

Frobenius splitting of the reduction of P(TX ) modulo p for each prime p.

3.3 An F-split variety whose cotangent bundle is not F-split

In [1, Question 8.7] the authors asked whether the cotangent bundle of an F-split variety
is always F-split. The following proposition combined with [1, Lemma 8.9] provides a
negative answer in characteristic 2. It is not known whether this proposition is true in larger
characteristics.

PROPOSITION 3.5

Let S be a del Pezzo surface of degree 6 over an algebraically closed filed k of characteristic
2, P be a point of S and BlP S be the blow-up of S at P. Then the cotangent bundle of
BlP S is Frobenius split iff P is a fixed point of S under the torus action.

First we prove a lemma, which will be used in the proof of the proposition.

Lemma 4. Let P be a closed point of A
2 ∼= Spec k[x, y], IP = (x − a, y − b) be the

defining ideal of P in OA2 , X = BlPA
2 be the blow-up of A

2 at P and π : X → A
2

be the projection. Then π∗S2TX regarded as a submodule of S2TA2 is generated by the
following elements:

(1) (x − a)2( ∂
∂x )2, (x − a)(y − b)( ∂

∂x )2, (y − b)2( ∂
∂x )2;

(2) (x − a)2( ∂
∂y )

2, (x − a)(y − b)( ∂
∂y )

2, (y − b)2( ∂
∂y )

2;

(3) (x − a)2 ∂
∂x

∂
∂y , (x − a)(y − b) ∂

∂x
∂
∂y , (y − b)2 ∂

∂x
∂
∂y ;

(4) (y − b) ∂
∂x

∂
∂y + (x − a)( ∂

∂x )2;
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(5) (x − a) ∂
∂x

∂
∂y + (y − b)( ∂

∂y )
2.

Proof. It is easy to see that one needs only to prove the lemma in the special case when
IP = (x, y). In this case X is a toric variety endowed with an action by a two-dimensional
torus T . As is shown in the figure below, the toric structure of X can be given by the fan
� in N ⊗ R = T̂ 0 ⊗ R ∼= R2 (see Definition 2.1) with |�| = {α1, α2, α1 + α2}.

α1

α2α2
α1+α2

Let σ be the cone with |σ | = {α1, α2}, then Uσ
∼= A

2. Note that the identity map of N
induces a map of fans � → σ , whose corresponding toric morphism is nothing but the
projection π : X → A

2. Then by Proposition 2.13, π induces a morphism of toric bundles

φ : TX → π∗TA2 .

One sees easily the morphism above is an isomorphism when restricted to the open subset
V = X\{C}, whereC is the exceptional curve. Therefore the following induced morphism

ϕ : S2TX → S2(π∗TA2) ∼= π∗S2TA2

is injective. By projection formula, we have H0(π∗S2TA2) ∼= H0(S2TA2). Therefore,
to prove the lemma it suffices to decide the subspace ϕ(H0(S2TX )) of H0(π∗S2TA2).
Furthermore, since ϕ is equivariant, we are reduced to decide the subspace ϕ(H0(S2TX )χ )

of H0(π∗S2TA2)χ for each χ ∈ T̂ .
Let E be the k-vector space spanned by α1, α2. Then by Proposition 2.8, the Klyachko

data for TX and TA2 can be realized as families of filtrations on E indexed by ray generators
of |�| and |σ | respectively. Then by applying Examples 2.10 and 2.12, the Klyachko data
of S2TX and π∗S2TA2 can be realized as families of filtration on S2E indexed by α1, α2
and α1 +α2. Moreover, the morphisms of Klyachko data corresponding to φ and ϕ are the
identity maps of E and S2E respectively.

Now we will apply Proposition 2.2 to represent the global section by using Klyachko
data. To eliminate ambiguity of notations, we use E1 and E2 to denote E equipped with
indexed filtrations corresponding to the Klyachko data of TX and π∗TA2 respectively. Then
we get

H0(S2TX )χ = S2Eα1
1 (〈χ, α1〉) ∩ S2Eα2

1 (〈χ, α2〉) ∩ S2Eα1+α2
1

(〈χ, α1 + α2〉) (3.5)

and

H0(π∗S2TA2)χ = H0(S2TA2)χ = S2Eα1
2 (〈χ, α1〉) ∩ S2Eα2

2 (〈χ, α2〉). (3.6)
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Since for any χ ∈ T̂ , H0(π∗S2TA2)χ can be regarded as a subspace of S2E , hence it can
be written as

c1α
2
1 + c2α1α2 + c3α

2
2

with ci ∈ k, i = 1, 2, 3. Then c1α
2
1 + c2α1α2 + c3α

2
2 is also the image of an element of

H0(S2TX )χ iff the multiplicity of the irreducible factor α1 + α2 in c1α
2
1 + c2α1α2 + c3α

2
2

is at least 〈χ, α2 + α2〉. Let i1 = 〈χ, α1〉, i2 = 〈χ, α2〉, then it is easy to see we have only
the following possible cases:

(1) i1 ≤ 0, i2 ≤ 0;
(2) i1 = 1, i2 < 0;
(3) i1 < 0, i2 = 1;
(4) i1 = 1, i2 = 0;
(5) i1 = 0, i2 = 1;
(6) i1 = 2, i2 ≤ −2;
(7) i1 ≤ −2, i2 = 2.

In the cases above, H0(S2TX )χ regarded as a subspace of H0(S2TA2)χ are spanned by
the following vectors respectively:

(1) α2
1, α2

2, α1α2;
(2) α2

1, α1α2;
(3) α2

2, α1α2;
(4) α1(α1 + α2);
(5) α2(α1 + α2);
(6) α2

1;

(7) α2
2.

On the other hand, an eigen-basis of S2TA2 over A
2 is given by ( ∂

∂x )2, ∂
∂x

∂
∂y , (

∂
∂y )

2,

whose corresponding eigen-characters are x2, xy, y2 respectively. Moreover, let x0 be the
distinguished point of the open orbit. Then the images of this eigen-basis in the fiber
S2TA2 ⊗ k(x0) are α2

1, α1α2, α
2
2 respectively. Therefore by applying Corollary 2.5 and

Proposition 2.4, the vectors listed above correspond to the following sections of H0(S2TA2)

respectively:

(1) x2−i1 y−i2( ∂
∂x )2, x1−i1 y1−i2 ∂

∂x
∂
∂y , y

2−i2( ∂
∂y )

2;

(2) xy−i2( ∂
∂x )2, y1−i2 ∂

∂x
∂
∂y ;

(3) x−i1 y( ∂
∂y )

2, x1−i1 ∂
∂x

∂
∂y ;

(4) y ∂
∂x

∂
∂y +x( ∂

∂x )2;

(5) x ∂
∂x

∂
∂y +y( ∂

∂y )
2;

(6) y−i2( ∂
∂x )2;

(7) x−i1( ∂
∂y )

2.

Now by using the conditions on i1, i2, one checks easily that π∗S2TX regarded as a sub-
module of S2TA2 is generated by the following sections:

(1) x2( ∂
∂x )2, xy( ∂

∂x )2, y2( ∂
∂x )2;

(2) x2( ∂
∂y )

2, xy( ∂
∂y )

2, y2( ∂
∂y )

2;
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(3) x2 ∂
∂x

∂
∂y , xy

∂
∂x

∂
∂y , y

2 ∂
∂x

∂
∂y ;

(4) y ∂
∂x

∂
∂y + x( ∂

∂x )2;

(5) x ∂
∂x

∂
∂y + y( ∂

∂y )
2.

�

Proof of Proposition 3.5. Let X = BlP S and π : X → S be the projection. If P is a fixed
point of S under the torus action, then X is also a toric variety hence P(TX ) is Frobenius
split by Theorem 1.

Now suppose P(TX ) is F-split, then by (3.4) there exists a section s ∈ H0(S2TX ) such
that β−1

X (s) defines a Frobenius splitting of P(TX ). By Lemma 4, we notice that π∗S2TX

is contained in S2TS ⊗ IP . In particular, we have the following inclusion:

i : H0(S2TX ) ↪→ H0(S2TS).

On the other hand, let U = X\C , where C is the exceptional curve. Then π defines an
isomorphism π−1(U ) ∼= U and β−1

S (i(s)) induces a Frobenius splitting of P(TU ) hence
also defines a Frobenius splitting of P(TS).

As is shown in the figure below, a toric structure of S can be given by a fan � in R
2

with a set of ray generators |�| = {α1, α2, α1 + α2,−α1,−α2,−α1 − α2}.

α1+α2

−α1−α2
α1

−α1

α2

−α2

σ

We may just assume that P is a closed point of Uσ , where σ is the cone with ray
generators α1 and α1 + α2. Next we will prove that P must be the unique fixed point of
Uσ under the torus action.

To simplify notations, we will just write s for i(s) from now on, then s can be written as

s =
∑

χ∈T̂
sχ , (3.7)

where sχ ∈ H0(S2TS)χ . Since S is complete, H0(S2TS)χ �= 0 for finitely many χ ∈ T̂
hence the sum (3.7) has only finitely many terms. Note that by Proposition 3.3, β−1

S (s0)

defines a Frobenius splitting of P(TS) but s0 might not be liftable to an element of
H0(S2TX ).

We divide the remaining part of this proof into three steps.

Step 1. First we will decide all the characters χ ∈ T̂ such that H0(S2TS)χ �= 0. By
applying Propositions 2.2 and 2.8, an element of the χ -isotypical component H0(S2TS)χ
corresponds to a homogeneous polynomial in two variables of degree 2, say, F(α1, α2).
Given a ray generator α of |�|, it is obviously a linear combination of α1 and α2 with
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integer coefficients. If 〈χ, α〉 > 0, in order that H0(S2TS)χ �= 0, the multiplicity of the
irreducible factor α in F(α1, α2) is at least 〈χ, α〉. Under such restrictions one checks
easily that χ must be defined by one of the following conditions:

(1) 〈χ, α1〉 = 〈χ, α1 + α2〉 = −1;
(2) 〈χ, α1〉 = 〈χ, α1 + α2〉 = 1;
(3) 〈χ, α1〉 = 〈χ, α1 + α2〉 = 0;
(4) 〈χ, α1〉 = 1, 〈χ, α1 + α2〉 = 0;
(5) 〈χ, α1〉 = 0, 〈χ, α1 + α2〉 = 1;
(6) 〈χ, α1〉 = 0, 〈χ, α1 + α2〉 = −1;
(7) 〈χ, α1〉 = −1, 〈χ, α1 + α2〉 = 0.

The i-th character appearing in the list above will be denoted by χi from now on. Let E
be the k-vector space spanned by α1, α2. Then by Propositions 2.2, 2.8 and Example 2.10,
the vector space H0(S2TS)χ corresponds to the following subspaces of S2E :

(1) kα1(α1 + α2);
(2) kα1(α1 + α2);
(3) S2E ;
(4) kα1α2;
(5) k(α1 + α2)α2;
(6) k(α1 + α2)α2;
(7) kα1α2.

Now we choose x, y ∈ T̂ such that 〈x, α1〉 = 1, 〈x, α1 + α2〉 = 0 and 〈y, α1〉 =
0, 〈y, α1 + α2〉 = 1. Then ∂

∂x , ∂
∂y form an eigen-basis of TUσ . Therefore by applying

Corollary 2.5 and Proposition 2.4, the image of an element of H0(S2TS)χi , 1 ≤ i ≤ 5
under the restriction map (2.5) can be written in following forms:

(1) c1x2y2 ∂
∂x

∂
∂y ;

(2) c2
∂
∂x

∂
∂y ;

(3) c3xy
∂
∂x

∂
∂y + c4x2( ∂

∂x )2 + c5y2( ∂
∂y )

2;

(4) c6(x(
∂
∂x )2 + y ∂

∂x
∂
∂y );

(5) c7(x
∂
∂x

∂
∂y + y( ∂

∂y )
2);

(6) c8(x3( ∂
∂x )2 + x2y ∂

∂x
∂
∂y );

(7) c8(y3( ∂
∂y )

2 + xy2 ∂
∂x

∂
∂y );

where ci ∈ k, 1 ≤ i ≤ 9. We denote by sχi the section appearing in the i-th item of the
list above. Let ρ : H0(S2TS) → �(Uσ , S2TS) be the restriction map, then for a global
section s of S2TS , we have

ρ(s) =
∑

1≤i≤5

sχi (3.8)

for some ci ∈ k, 1 ≤ i ≤ 7. This can be also written as

ρ(s) = f1(x, y)
∂
∂x

∂
∂y + f2(x, y)

(
∂
∂x

)2 + f3(x, y)
(

∂
∂y

)2
. (3.9)
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Note that the local sections sχi , 1 ≤ i ≤ 5 are extendable to global sections of S2TS , but
the three terms in the sum (3.9) are necessarily not.

Step 2. Next we will prove if P is not the fixed point ofUσ under the torus action. Then the
section s defining the Frobenius splitting of P(TS) can be chosen such that the coefficients
f2(x, y) and f3(x, y) in (3.9) are both 0.

First we will prove when we choose s such that f2(x, y) = f3(x, y) = 0. Since ρ(s)
can be represented as a sum in another way (3.8), one obtains

f2(x, y) = c8x
3 + c4x

2 + c6x, f3(x, y) = c9y
3 + c5y

2 + c7y

in all cases. By Lemma 4, ρ(s) ∈ S2TS⊗ IP . In particular, let (x−a, y−b) be the defining
ideal of P , then f2(a, b) = f3(a, b) = 0, i.e. c8a3 +c4a2 +c6a = c6y3 +c5y2 +c7y = 0.

Now we consider the following two local sections:

s1 = c6(y − b) ∂
∂x

∂
∂y + (c4x

2 + c6x)
(

∂
∂x

)2

= −bc6
∂
∂x

∂
∂y + c4x

2 (
∂
∂x

)2 + c6

(
y ∂

∂x
∂
∂y + x

(
∂
∂x

)2
)

, (3.10)

s2 = c7(x − a) ∂
∂x

∂
∂y + (c5y

2 + c7y)
(

∂
∂y

)2

= −ac7
∂
∂x

∂
∂y + c5y

2
(

∂
∂y

)2 + c7

(
x ∂

∂x
∂
∂y + y

(
∂
∂y

)2
)

. (3.11)

One observes that s1 and s2 can be extended to global sections of S2TS . On the other hand,
since c4a2 + c6a = c5b2 + c7b = 0, the sections s1 and s2 can be written as

s1 = c6

(
(y − b) ∂

∂x
∂
∂y + (x − a)

(
∂
∂x

)2
)

+ c4(x − a)2 (
∂
∂x

)2
, (3.12)

s2 = c7

(
(x − a) ∂

∂x
∂
∂y + (y − b)

(
∂
∂y

)2
)

+ c5(y − b)2
(

∂
∂y

)2
. (3.13)

Then one sees by Lemma 4 that the above sections fall in �(Uσ , π∗S2TX ). Furthermore,
let U = S\{P}, then π induces an isomorphism π−1(U ) → U . Therefore, the sections s1
and s2 are indeed liftable to global sections of S2TX . We still denote their global liftings
by s1 and s2. Then one checks easily

ρ(s − s1 − s2) = f (x, y) ∂
∂x

∂
∂y (3.14)

for some f (x, y) ∈ k[x, y]. Moreover, the section β−1
S (s−s1−s2) still defines a Frobenius

splitting of P(TS) as s1 + s2 has no contribution to the coefficient of the element xy ∂
∂x

∂
∂y .

Now we get a section satisfying the condition described at the beginning of this step.

Step 3. Next we prove a section s defining a Frobenius splitting of P(TX ) such that

ρ(s) = f (x, y) ∂
∂x

∂
∂y (3.15)

for some f (x, y) ∈ k[x, y]. Then P must be the unique fixed point of Uσ under the torus
action. By comparing (3.15) and (3.8) one sees easily f (x, y) = c1x2y2 + c2xy + c3.
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Moreover, by Lemma 4, f (x, y) ∈ I 2
P , where IP = (x − a, y − b) is the defining ideal of

P in OUσ .
If P is not the fixed point of Uσ under the torus action, one of a, b is nonzero. Let

f (z) = c1z2 + c2z + c3 = c(z + w1)(z + w2), c, w1, w2 ∈ k. Then we claim in order
that f (xy) ∈ I 2

P , w1 = w2. Indeed, neither xy + w1 nor xy + w2 falls in I 2
P hence both

fall in IP . If w1 �= w2, we will have nonzero intersection of IP with k, a contradiction.
Thus f (z) has a multiple root and hence c2 = 0 since p = 2. However, by Proposition
3.1, this implies that s does not define a Frobenius splitting of P(TS), which contradicts
our assumption. �
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