
A Method for Predicting Protein Complexes from Dynamic

Weighted Protein–Protein Interaction Networks

LIZHEN LIU, XIAOWU SUN, WEI SONG, and CHAO DU

ABSTRACT

Predicting protein complexes from protein–protein interaction (PPI) network is of great sig-
nificance to recognize the structure and function of cells. A protein may interact with different
proteins under different time or conditions. Existing approaches only utilize static PPI net-
work data that may lose much temporal biological information. First, this article proposed a
novel method that combines gene expression data at different time points with traditional
static PPI network to construct different dynamic subnetworks. Second, to further filter out
the data noise, the semantic similarity based on gene ontology is regarded as the network
weight together with the principal component analysis, which is introduced to deal with the
weight computing by three traditional methods. Third, after building a dynamic PPI network,
a predicting protein complexes algorithm based on ‘‘core-attachment’’ structural feature is
applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the
experimental results that our method proposed in this article performs well on detecting
protein complexes from dynamic weighted PPI networks.

Keywords: expression value, PPI network, protein complexes, semantic similarity.

1. INTRODUCTION

Predicting protein complexes from the protein–protein interaction (PPI) networks is a key step in

understanding a protein’s biological process (BP) and function. Benefiting from the development of

high-throughput techniques, millions of protein interaction data are available to construct PPI networks,

which leads the computational method of predicting protein complexes to be more valuable and significant.

A PPI network can be regarded as a graph that consists of vertexes and edges, representing proteins and

different interactions, respectively (Shih and Parthasarathy, 2012). In the past decade, more and more

computational methods of detecting protein complexes from PPI networks have been proposed (Price et al.,

2013). These clustering algorithms can be divided into three categories: graph clustering-based method,

local density method, and hierarchical clustering method. King et al. (2012) proposed an algorithm—

restricted neighborhood search clustering (RNSC), which is based on classical graph clustering. But the

experimental results of RNSC are greatly affected by the parameters. Srihari et al. (2010) proposed another

typical graph cluster method—Markov Clustering, which simulates random walking in a PPI network to

find protein complexes. Spirin (2004) confirms that, by analyzing the structure of PPI network, protein

complexes are related to the density and the connectivity of a local module. The better connectivity of a
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subgraph means that it may be a complex. From the view mentioned previously, molecular complex

detection (MCODE) was presented by Bader and Hogue (2003). And to improve the accuracy (Acc),

DPClus (Shigehiko et al., 2006) made a change to the stopping condition for cluster formation, which

replaces vertex weight with cluster density. Palla et al. (2007) presented clique percolation method to

merge all full connected graphs with k-1 common nodes. Girvan and Newman (2001) provided a method, a

typical presentation for hierarchical clustering, based on removing the edges with the highest betweenness.

The false positive and false negative data provided by high-throughput techniques will play a negative role

during identifying protein complexes (Kouhsar et al., 2016). So how to deal with the data is also an essential

problem. In the past years, many methods are proposed to eliminate the data noise by constructing the

weighted PPI networks (Liu et al., 2009; Price et al., 2013). Traditional methods of computing the weight

mainly regards the topology information of PPI networks as the edge weights, such as the degree of vertex,

average degree, or the density of graph. However, only considering topology information will lead to ignore

and lose a lot of biological information. To take the biological information into account, domain–domain

interaction information has been introduced (Hayashida et al., 2011).

In the past few years, gene ontology (GO) annotations have been introduced and accepted, because it

improved the accuracy of predicting. GO is composed of three domains: BP, molecular functions (MFs), and

cellular components (CCs). GO and annotations of GO are often applied to compute the semantic similarity as

the weight between two different proteins (Wang et al., 2011). GO is modeled as a directed acyclic graph that

represents biological knowledge and the relationship among different genes or the gene product. The higher the

score of semantic similarity between two different proteins is, the more possible an interaction of these two

proteins will be. The mature semantic similarity methods can be grouped into four categories (Price et al., 2013):

(1) path length-based methods, they compute the semantic similarity by observing the path length or the depth to

the common ancestor term of different two GO terms in the ontology structure; (2) information content-based

methods, the GO annotations express a lot of information about the corresponding gene or the gene product, so

the more common a couple of GO annotations are, the more similar the annotations’ product is; (3) common

term-based methods, they measure the repeat parts between two ancestor term sets; and (4) hybrid methods,

integrating the mentioned three methods, hybrid methods incorporate two or more different categories.

The algorithms of detecting protein complexes already mentioned are focused on the static networks. In fact,

the relationship of any two different proteins is not immutable, which means that a protein might interact with

different proteins under different conditions. It pointed out that a protein may interact with different proteins in

different stages of a cell cycle to perform a completely different protein complex (Wang et al., 2013). Because

the static networks lost much temporal biological information that reduces the Acc of predicting protein

complexes, many researchers realized that we should pay more attention to the dynamic networks instead of the

static networks (Chen et al., 2014). Combining the PPI networks data with gene expression data has become a

popular approach to construct dynamic networks. The easiest method of processing expression data just

chooses the average value of all proteins’ gene expression value as a benchmark; if an expression value is

higher than the benchmark, the protein is activated at the time point. But this method is rarely applied, because

the expression values of different proteins at different time points vary vastly, in addition to that, there is also

inevitable background noise associated with the expression value, so the benchmark is hard to be calculated.

Another classical algorithm is three-sigma that is proposed by Wang et al. (2011). But these proteins with low

expression level will be filtered out, which is the disadvantage of three-sigma.

To reveal the dynamics of PPI network and boost the Acc rate, this article mainly focuses on the following

aspects:

1. Integrating expression data and static interaction data that come from high-throughput experiments to

construct the dynamic PPI networks.

2. Introducing GO semantic similarity as the weight to filter out the data noise.

3. Proposing a method based on ‘‘core-attachment’’ structure to predict protein complexes.

2. METHODS

Figure 1 shows the expression activity values among different proteins at different time points. Based

on the observation from Figure 1, we can conclude that there is a significant difference among different

proteins’ expression values. So the important challenge of this research will be, at a particular time point,
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how to judge whether a protein is active and whether an interaction from the static high-throughput data

is valid.

The simplest way is using a global threshold to identify the active time point. If the expression value is

greater than the threshold, then the protein is active at that time point. But this method does not work well

in all situations, (1) because the levels of different proteins vary from protein to protein, there is no global

threshold that can suit all proteins and (2) the data are generated by high-throughput experiments that may

be embedded with inevitable noise. To construct dynamic networks, Wang et al. (2013) proposed a method

called three-sigma to identify active time points of each point. But, the three-sigma method did not work

well on the data set with low expression values, such as the YLR332W. This article improves the three-

sigma method based on parameter estimation to optimize the variance and mean for each protein.

The number of expression data provided by the experiment method is much smaller than that in a real

cellular cycle. So the expression data that we got can be considered as a sample of the population. What we

need to do is to estimate the population’s variance and mean by those samples. In statistics, we know the

interval estimation is often used to calculate the population’s variance or mean when the mean or the

variance of sample is given. So the interval estimation is introduced to improve the three-sigma algorithm.

2.1. Determine the interval of population’s mean and variance

As the expression values of proteins in the static PPI network vary with the time or environment, thus, a

static PPI network PN can be broken down into several dynamic networks with smaller size expressed as

PNi, and i(i = 1‚ 2‚ � � � 36) is the active time point. So the set PN can be written as PN = fPN1‚ PN2‚ � � �
PNi‚ � � �PN36g, where 36 is the number of time points provided by gene expression data (Wang et al.,

2013). For example, in Figure 2, the network PN is a static network, but the other three networks PN2, PN6,

and PN10 are dynamic networks. From this figure, it can be concluded that not all of the proteins are active

at all time points.

Figure 3 illustrates that the expression values vary cyclically every 12 time points. To reduce the time

complexity, the expression value of each moment spanning the 12 time points is calculated by the average

of three cycles as given in Equation (1).

newValueTi
=

valueTi
+ valueTi + 12

+ valueTi + 24

3
‚ (1)

where valueTi
stands for the expression value at time point Ti.

Suppose that samples x1‚ x2‚ � � � ‚ xn are extracted from a population that obeys normal distribution

N(l‚ r2), we can get the following conclusion:

FIG. 1. Expression values of different proteins at different time points.
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Y =
( x

-
- l)

ffiffiffi
n
p

s
*t(n - 1)‚ (2)

Z =
(n - 1)s2

r2
*v2(n - 1)‚ (3)

where l and r are the arithmetic mean and standard deviation of population, respectively, x and s are the

sample’s mean and standard deviation. The reason why the two distributions are introduced is that l and r
cannot be derived from the sample.

Under the condition of confidence level a = 0:05, the maximum possible interval of the mean distribution

is shown in Figure 4, which is equal to Equation (4).

pfjY j � ta=2(n - 1)g = 1 - a (4)

Based on Equations (2) and (4), Equation (5) about population’s mean can be inferred as follows:

pf x
- - ta=2(n - 1)

sffiffiffi
n
p � l � x

- + ta=2(n - 1)
sffiffiffi
n
p g = 1 - a (5)

So the confidence interval of the population’s mean l is [ x
-

- ta=2(n - 1) sffiffi
n
p ‚ x

-
+ ta=2(n - 1) sffiffi

n
p ].

FIG. 2. Convert static network into dynamic network at different time points.

FIG. 3. Periodic expression among different proteins.
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FIG. 4. T-distribution function.

FIG. 5. Chi-square distribution function.
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In a similar manner, the maximum possible interval of variance shown in Figure 5 can be written as the

mathematical expression as Equation (6).

pfv2

1 -a=2
(n - 1) � Z � v2

a=2
(n - 1)g = 1 - a (6)

Thus, combining Equations (3) and (6), we can get Equation (7).

pf (n - 1)s2

v2
a=2

(n - 1)
� r2 � (n - 1)s2

v2
1 - a=2

(n - 1)
g = 1 - a (7)

In summary, the confidence interval of the population’s variance r2 is
h

(n - 1)s2

v2
a=2

(n - 1)
‚ (n - 1)s2

v2
1 - a=2

(n - 1)

i
.

2.2. Improved three-sigma method

The traditional three-sigma method described as Equation (8) is likely to filter out active proteins with

low expression.

Act-thr(p) = s1(p) · F(p) + s2(p) · (1 - F(p))‚ (8)

in which s1(p) = l(p)‚ s2 = l(p) + 3r(p)‚ F(p) = 1
1 + r2(p)

, and p represents a kind of protein.

From Equation (8), it is observed that the active threshold depends on the mean and variance. A protein

with low expression value at most time points, such as YLR331C, will be filtered out incorrectly according

to this formula. To solve this problem, this article makes some improvements on l(p) and r(p), as shown in

Equation (9).

Imp - act(p) = S01(p) · F(p) + S02(p) · (1 - F(p))‚ (9)

where l0 = x
-

- ta=2(n - 1) sffiffi
n
p + d · max ( exp (p)) - min ( exp (p))

36
and r02 = (n - 1)s2

v2
a=2

(n - 1)
+ d · max ( exp (p)) - min ( exp (p))

36
,

exp (p) is the expression value of protein p, d is a parameter to adjust the mean or the variance of a protein

in the range of its confidence interval, and x
-

- ta=2(n - 1) sffiffi
n
p is the low boundary of mean’s confidence

interval. Similarly, (n - 1)s2

v2
a=2

(n - 1)
is the low boundary of variance’s confidence interval. If at a certain time point,

a protein’s expression value exp (pi) is lower than Imp - act(p), then the active probability pi is 0; in

contrast, if exp (pi) is higher than threshold Imp - act(p), then pi is 1. Consequently, the whole dynamic PPI

networks can be represented as act - neti:

act - neti = Pi � PT
i ‚

where Pi is a column vector about the active probability of all proteins at time point i, and PT
i is the

transposition of Pi.

2.3. GO semantic similarity

As a measure of filtering out data noise, weighted network has become more essential. Among these

proposed approaches, topological information (Li et al., 2012) is the first applied method. However, the

weight of a protein interaction does not only depend on the topological structure but also relies on the

biological information. Ozawa et al. (2010) and Ma et al. (2012) applied the domain interaction information

into constructing a weighted PPI network and confirmed that the bioinformatics plays a pivotal role in

predicting protein complexes. At the meantime, more researchers tend to look favorably on GO semantic

similarity, which is a function computing closeness in meaning between terms with an ontology in the past

few years. Three approaches that are Jiang and Conrath (1997), Lin (1998), and SimGIC (Lu et al., 2012)

are adopted in this article to calculate the semantic similarity.

These three semantic similarity measures contribute from different perspectives: to integrate the different

information and remove redundant information, principal component analysis (PCA) is introduced, which

is a statistical procedure and its function is to reduce the dimension of the sample feature. The weight of an

interaction i in the network computed by different methods can be represented as a vector Vi:

Vi = (Ji‚ Li‚ Si), where Ji‚ Li, and Si represent the score computed by Jiang and Conrath (1997), Lin (1998),

and SimGIC methods. We can consider interaction i as a sample, and the scores computed by Jiang and

Conrath (1997), Lin (1998), and SimGIC are the three properties of the sample. Then PCA is used to
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translate those three properties into one property. The process already mentioned is adopted to deal with

BP, MF, and CC, respectively. The last weight between an interaction is the average of those three parts.

Some GO without annotations will influence the construction of weighted PPI network. In this article, the

mean of semantic similarity values with annotation will be considered as the weight of interaction without

annotation.

So far, we can build a complete network at any time point i.

DINi = act - neti �Wi‚

where wi is the weight matrix and � is element-wise multiplication.

2.4. Algorithm of predicting protein complexes

Dezso et al. (2003) and Gavin et al. (2006) pointed out that the structure of a protein complex can be

described as a core-attachment as shown in Figure 6, where proteins A, B, C, and D form a group called core,

all of the proteins E, F, G, and H are the attachments around the core. By the inspiration of this structure, a

novel algorithm called DWCOACH is proposed in this article. The new method mainly contains several

subfunctions, including filtering seed proteins, construction of cores, adjunction of attachment proteins, and

elimination of redundant protein complexes. Algorithm 1 describes the main process of predicting protein

complexes. The static PPI network is regarded as the input, and the protein complexes are the output. Line 3 is

to deal with the expression value by using the three-sigma method to shift static PPI network to dynamic PPI

network. The main task of lines 4–6 is to compute all the weighted local clustering coefficient, and add the

proteins with its clustering coefficient into a set Initial-protein, which will be used in the seed-Generation

subfunction to find the seed for the construction of core in line 7. In line 8, the selected seeds and the dynamic

subnetworks are used in the other subfunction—core-Construction, to construct a protein group made up of

seed proteins as a core of a protein complex. To expand a core, the attachment proteins that satisfy the

judgment condition will be added into a core as shown in lines 9–10. Many redundancies are generated from

the first 10 lines, so the last thing we need to do is refine the complexes as shown in line 11.

Algorithm 1: General Framework of DWCOACH

Input: static PPI network SPN

Output: protein complexes

1. Initial-protein = { }

2. complexes 5 { }

3. PN = threeSigma(SPN)

4. for each protein pi in dynamic PPI network PNj:

5. Initial-protein.add(pi‚ CC(pi)))

6. end for

7. seed = seed-Generation(Initial-protein)

8. core = core-Construction(seed, PNj)

9. complex = attachment(core)

10. complexes = complexes [ complex

11. Refinement(complexes)

FIG. 6. Core-attachment structure.
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Algorithm 2 is to generate some seeds to prepare for constructing the core. At the beginning, the seeds

from subnetwork PNj must be active at the time point j, and the number of protein adjacent vertex ADij j
should be more than two vertexes, as shown in lines 2–3. In line 4, the protein with high-weighted local

clustering coefficient computed by Equation (10) will be chosen as seeds

CC(pi) =

P
j

wij

ADij j · ( ADij j - 1)
‚ (10)

where wij is the weight given by GO annotations of protein pi and protein pj in the static PPI network. To

avoid the attachment protein being chosen as the seed protein, ( ADij j - 1) is introduced, because in most

cases, the attachment protein’s degree is 1 such as proteins E and F shown in Figure 6.

Algorithm 2: Seed-Generate

Input: all proteins in the subnetwork PNj

Output: seed proteins set

1. seed = { }

2. for each protein i in subnetwork:

3. if ADij j > 2 and i is active

4. if CC(i) > cluster-threshold:

5. seed = seed [i

6. end if

7. else:

8. break

9. end for

10. return seed

Algorithm 3 is designed to construct a core—a group of proteins selected from the seed set. At the

beginning, each protein in the seed set will be regarded as a subgraph as shown in lines 2–4. To expand the

core, in line 5, the protein, which is generated through the subfunction core-Expand, will be regarded as an

alternative protein to expand the core. Whether the alternative protein can be added into the subgraph

depends on the jugging condition in lines 6–8, which describes that the density of subgraph must increase

after appending a protein. And the density of a graph can be computed by Equation (11) as follows:

d(G) =
2 ·
P

e

w(e)

Vj j( Vj j - 1)
‚ (11)

where
P

e

w(e) is the sum of all the weight in the network and Vj j is the number of edges. Subfunction—

core-Expand, its main function is to decide which protein should be selected to expand the core. In lines 1–

7, it adds all the adjacent points of the proteins in the core into the subgraph. In lines 8–10, the proteins with

the maximum sum of weight will be returned as the final selected protein to Algorithm 3.

Algorithm 3: Core-Construct

Input: seed set, dynamic subnetwork PNj

Output: core

1. core = { }

2. for each protein i in seed:

3. core.add(i)

4. subgraph = core

5. chosen-pro = core-Expand(core)

6. while(d(core) < d(core [ chosen - pro)) do

7. core = core+chosen-pro

8. chosen-pro = core-Expand(core)

9. end while

10. return core
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Algorithm 4: Subfunction: Core-Expand (Core, Subgraph)

Input: core, subgraph

Output: selected protein with max weight sum

1. for each protein l in core:

2. for each protein j in PNj:

3. if j is the adjacent of l:

4. subgraph.add(j)

5. end for

6. end for

7. for p in subgraph and p not in core:

8. sub - wp =
P

k

sub - wpk

9. end for

10. return max(sub-wp)

Figure 7 shows the process of a core’s expansion. At first, only protein A is in the subgraph, then the

adjacent points of protein A are connected with A, a protein is added into the core whose density is 0.86. In

the second step, B, C, and D are chosen as the adjacent proteins of cores A and E, the sum of D’s weight is

the most maximum, so D is selected to expand the core, which leads the density of the new core to grow up

to 0.8733. In the third step, it adopts a similar operation in the first two steps, but the core does not update

because the density reduces from 0.8733 to 0.64, which does not satisfy the jugging condition. So the core

is composed of A, D, and E.

When the construction of core is complete, the next problem is how to determine the attachment. Equation

(12) is considered as an evaluation function to measure the closeness between the attachment and the core, if

the value of evaluation function is satisfactory enough, the protein represented by v in the function will be

integrated into the core as an attachment. The complete process is described in Algorithm 5.

FIG. 7. An example of the core’s expansion process.
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attachScore(v‚ VsubG) =
P

u2VsubG
wvu

VsubGj j (12)

As shown in line 2, all of the cores are considered as a complex firstly, then line 4 considers the proteins

in the PPI network who is the adjacent points of the proteins in the core but not in the core, will be the

alternative attachments; if its attach-score is more than the threshold which is value of 0.3 in this article, the

alternative attachment will be added into the complex, as performed in lines 4–13. At last, a full complexes

set will be gotten. However, there is a lot of redundancy among the complexes, so we proposed another

algorithm to eliminate the redundancy. Each protein complex can be regarded as a set, the method of

handling sets is applied to compute the similarity between two different complexes as expressed in the

Equation (13) (Lakizadeh et al., 2015):

sim(ci‚ cj) =
ci \ cj

�� ��
max ( cij j‚ cj

�� ��) (13)

Algorithm 5: Candidate Protein Complexes

Input: core set, PNj (PPI network at j time point)

Output: protein complexes with redundancy

1. complexes = { }

2. for core i in the core set:

3. new-complex = i

4. for each protein j in PNj and j not in i:

5. if j is the adjacent of i:

6. Score = attachScore(j,core)

7. if Score>threshold:

8. j is chosen as an attachment

9. New-complex = i + j

10. end if

11. end if

12. complexes = complexes+New-complex

13. end for

14. end for

In Algorithm 6, there are three situations that need to be discussed. The first one is if there are two

different size complexes with high similarity, the complex with smaller size will be regarded as a

benchmark, and the protein in the set difference of the two complexes will be considered only if it can be

added into the benchmark by the attachment score function. The second situation is if there are two same

size complexes with high similarity in line 15, under this condition, the protein complex with high graph

density will be selected, and the complex with lower graph density will be abandoned. The third situation is

that if two complexes are not similar to each other, then both of the protein complexes will be chosen to

expand the set of complex. The threshold in Algorithm 6 is equal to 0.7.

Algorithm 6: Eliminating Redundancy

Input: complexes1 from Algorithm 4

Output: complexes2 without redundancy

1. complexes2 = { }

2. for i in complexes1 do

3. for j in complexes1 do

4. if sim(i,j)<threshold1 then

5. C1 = min(size(i),size(j))

6. C2 = max(size(i),size(j))

7. Red-protein = C2-C1

8. if size(C2)! = size(C1) then

9. for k in red-protein do

10. if attachScore(k,C1)>threshold then
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11. C1 = C1+k

12. complexes2 = complexes2+C1

13. end if

14. end for

15. else

16. density1 5 d(i)

17. density2 5 d(j)

18. den-pro = max(density1,density2)

19. complexes2 = complexes2+den-pro

20. end if

21. else

22. complexes2 = complexes2+i+j

23. end if

24. end for

25. end for

26. return complexes2

Some highly active proteins express in most of time points, which leads to the fact that there will be a

large part of repetition among the complexes predicted at different time points. So removing the redundant

parts from the protein complexes composed of the smaller complexes is necessary. In Algorithm 6,

eliminating redundancy algorithm will be applied again with all of the complexes predicted at each time

point as the input.

To sum up, our method employs several extraordinary ideas which have not seen in other publications:

1. The PPI networks are shifted from static to dynamic; as the expression value of different proteins

varies in different time points and various situations, not all of the protein interactions are active at all

times, an improved three-sigma method is introduced to estimate the time when the interaction will be

active. The improved three-sigma method with interval estimation shows better results in the sample’s

mean and variance.

2. Existing algorithms for predicting the protein complexes are inadequate for the PPI networks with

weight. A new method that derives from the ‘‘core-attachment’’ structure will decrease the

possibility of high overlap among the different protein complexes and improve the Acc of pre-

dicting results.

3. In the traditional approach, while calculating the weight of PPI network, only the topological structure

information is considered. The biological information is not taken into computation of network’s

weight. Our approach first applied the GO annotation, implicit biological information, into computing

the semantic similarity as the weight between two proteins. Besides, multiple methods integration has

been used to calculate semantic similarity from different aspects.

3. RESULT AND EVALUATION METRICS

In this section, we first introduced several evaluation metrics. Then, we described the database including

the protein interaction database, gene expression data, and the benchmark protein complex data used in our

experiments. Last, we discussed the detail of experimental result, presented the effect of the parameters on

the experiment. The result of our method proved that integrating expression data and GO semantic simi-

larity with protein interaction data is an effective approach for predicting protein complexes.

3.1. Evaluation metrics

To evaluate our method and compare it with the benchmark, several evaluation metrics such as precision,

recall, F-measure, and other respects are given in this section.

First, the neighborhood affinity score that is used to measure the match degree among the predicted

complexes and the actual complexes is defined as follows:
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NA(P‚ B) =
VP \ VBj j2

VPj j · VBj j
‚

where P is a predicted complex, B is the benchmark complex, and Vi is the vertex set of i. Based on the

experience from the previous article (Kouhsar et al., 2016), when NA(p‚ b) � w and parameter w is usually

0.2, it is said the predicted complexes P match well with the benchmark B. If the predicted complex

matches at least one complex in the benchmark, then the predicted complex will be appended to the set Ncp

expressed as follows:

Ncp = fpjp 2 P‚ 9b 2 B‚ NA(p‚ b) � 0:2g:

The same argument applies to the set Ncb:

Ncb = fbjb 2 B‚ 9p 2 P‚ NA(p‚ b) � 0:2g‚

in which the benchmark complex must match at least one complex predicted by out method. Based on the

definition of neighborhood affinity score, the metrics including precision, recall, and F-measure can be

expressed as follows:

precision =
Ncp

�� ��
Pj j :

recall =
Ncbj j
bj j :

F =
2 · precision · recall

precision + recall
:

The precision value describes how many protein complexes predicted by a method are correct. In

contrast, what the recall expresses is that how many benchmark complexes or known complexes have been

indexed by the method. Sometimes the precision and the recall have an impact on each other, so F-measure

is introduced to balance precision and recall. In addition to that, sensitivity (Sn), positive predictive value

(PPV), and Acc are another group of evaluation metrics introduced in this article. If we denote m = Vp

�� �� and

n = Vbj j as the number of proteins in predicted complex and benchmark complex, respectively, Tij is the

number of common proteins between the benchmark complex i and the predicted complex j. So the

definition of Sn and PPV can be written as follows:

Sn =

Pn
i = 1

max
j
fTijg

Pn
i = 1

Ni

‚

PPV =

Pm
j = 1

max
i
fTijg

Pm
j = 1

T:j

‚

where Ni is the number of proteins in the benchmark complex. There is another metric called Acc that is a

combination of Sn and PPV.

Acc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn · PPV
p

:

Second, as another evaluation metric, Jaccard score is also introduced in this article to describe the

matching degree, the range of Jaccard score is from 0 to 1. When the score is equal to 1, it means the

predicted complexes match with the benchmark complexes exactly. Otherwise, if the score is equal to 0, it

indicates that there is no intersection between the predicted complex and the benchmark complex.

3.2. Experiment database

In this article, the STRING data (Franceschini et al., 2013) are chosen as the PPI network data. In

addition to the biological experimental data, data mining from the context abstract and other databases,
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there is also some PPI data predicted by bioinformatics method. GSE3431 (Tu and Mcknight, 2005) is

introduced as the gene expression data. GO annotation file is downloaded from Saccharomyces Genome

Database (Issel-Tarver et al., 2002). For the benchmark, we choose CYC2008 (Pu et al., 2009), which is

composed of 408 protein complexes.

3.3. Experiment result analysis

In this part, we try to illustrate how our method is compared with other predictors through several

comparative experiments.

3.3.1. The discussion of parameters in our method. From Table 1, first, we can seen that as the

step increases, the number of active proteins drops slowly; second, although under the same step, there is

also a large difference among the number of proteins at different time points, and the expression ability of a

protein is the weakest at time point 12. Third, through the analysis of the table, it can be concluded that not

all of the proteins are active all the time, their expression values change with time.

Table 2 is to find the most appropriate parameter d in the improved three-sigma method; it illustrates the

impact of different steps on the experimental results under the same threshold conditions. It is evident that

the highest value of precision and PPV are 0.536 and 0.347, respectively, when the step parameter is 9; in

addition, the comprehensive indicators F-measure and Acc that arrive at the peak point are 0.438 and 0.374,

respectively, when the step parameter is 10, which means that both of the mean and variance adopted in the

three-sigma method are better than sample mean and variance. From Table 2, it can be concluded that our

method can perform better at the condition that the step parameter is equal to 10.

In Algorithm 2—seed-Generate, the cluster-threshold representing the density of a seed set is set to

control the seed size, if the lower the cluster-threshold is, the larger the size of seed will be. So the result of

predicted protein complexes is closely related to the cluster-threshold value. To determine the optimal

cluster-threshold parameter, as shown in Table 3, we compare the experiment results produced under

different parameters. As illustrated in Table 3, when cluster-threshold is 0.2, our method performs best on

predicting protein complexes. In contrast, it also reflects another drawback of our method that the ex-

perimental results depend on the number and value of parameters.

If we check the time point wherein all of the three evaluation metrics, precision, recall, and F-measure,

reach their maximum point, we have found that they achieve the highest value of 0.382, 0.665, and 0.486,

respectively. However, Sn arrives at the highest value with 0.795 when cluster-threshold is 0.8, and PPV

and Acc come to the best value with 0.197 and 0.374 when cluster-threshold is 0.7. From Table 3, it can be

found that when the cluster-threshold is >0.7, the values of precision and recall decrease. It is related to the

PPI data used in the experiment, because the weighted density of most subnetworks constructed in this

article is <0.8, resulting in few seeds chosen.

The attachment score threshold is introduced in Algorithm 5 to detect protein complex. To find the

appropriate threshold, our method is run on the dynamic PPI network. As shown in Figure 8, the values of

Acc remain stable under various thresholds, but the values of F-measure fluctuate slightly. Among the

Table 1. The Effect of Different Steps on the Number of Active Proteins at Each Time Point

Time = 1 Time = 2 Time = 3 Time = 4 Time = 5 Time = 6 Time = 7 Time = 8 Time = 9 Time = 10 Time = 11 Time = 12

Step = 0 4071 4100 3706 3606 3676 3339 3399 3035 3836 3262 3409 2991

Step = 1 3464 3502 3123 3007 3086 2754 2757 2665 3426 2699 2840 2423

Step = 2 2982 3016 2708 2542 2636 2302 2308 2378 2947 2258 2398 1969

Step = 3 2571 2608 2344 2167 2285 1947 1964 2130 2544 1904 2030 1614

Step = 4 2213 2270 2024 1827 1971 1614 1671 1878 2229 1611 1729 1317

Step = 5 1910 1970 1746 1553 1693 1362 1394 1642 1971 1356 1456 1109

Step = 6 1637 1725 1528 1294 1446 1129 1180 1440 1727 1130 1217 930

Step = 7 1406 1500 1281 1094 1234 936 989 1260 1513 967 1015 754

Step = 8 1229 1302 1103 927 1049 774 833 1089 1323 804 854 603

Step = 9 1058 1134 952 788 892 633 693 940 1151 683 694 477

Step = 10 927 991 798 629 734 531 579 812 1018 554 574 391

Step = 11 787 859 664 517 606 424 483 709 892 462 463 312

Step = 12 681 736 561 401 510 345 394 622 762 374 386 241

Bold/italic values are the maximum or minimum in each row.
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range from 0.15 to 0.7, it keeps stable and averages at 0.43; however, when the threshold is >0.75, the

values of F-measure decrease to around 0.4. According to this experiment, attachment score threshold is set

to 0.6 as default.

3.3.2. Semantic similarity score analysis. To analyze the semantic similarity computed by dif-

ferent methods, frequency statistical graphs in these three aspects including BP, CC, and MF are intro-

duced. As shown in Figures 9–11, even though in the same aspects, the semantic similarity scores vary

greatly according to the computational methods. For example, Figure 9 describes that when computing the

semantic similarity in BP, the scores of Jiang’s method are mainly distributed from 0.1 to 0.2; the range of

Lin’s method covers from 0 to 0.8, which is much wider than Jiang’s and SimIC’s; also, the score

frequency of SimIC’s method decreases gradually, most of the scores distribute between 0 and 0.3.

However, most of scores measured by PCA are still between 0 and 0.2, and the range of similarity is also as

wide as the Lin’s method, so PCA integrates the advantages of the other three measures.

In addition, Figure 12 shows the effect of different semantic similarity methods on the experimental

results. It is clear that the precision, recall, and F-measure of the weighted networks that have been

processed by PCA perform better than the other three methods. Furthermore, the icon also confirms that the

PCA plays a positive role in removing data noise and improving the Acc of prediction results.

3.3.3. Comparison with the known complex. Figure 13 shows the change of Jaccard score from our

method at each time point, it reaches a peak of 0.38 with the bottom around 0.27, and from the figure it can

also be concluded that the Jaccard scores fluctuate significantly, so the average value is chosen as the

evaluating indicator finally to compare with other methods. Besides, the unstable Jaccard values also reveal

the dynamics of the PPI network built in this article.

Table 2. The Effect of Steps on the Evaluation Metrics (Complex-Threshold = 0.2)

Precision Recall F-measure Sn PPV Acc

Step = 1 0.352 0.380 0.366 0.350 0.204 0.267

Step = 2 0.298 0.222 0.255 0.211 0.245 0.227

Step = 3 0.329 0.178 0.231 0.162 0.246 0.200

Step = 4 0.360 0.172 0.232 0.201 0.252 0.225

Step = 5 0.388 0.134 0.199 0.170 0.258 0.209

Step = 6 0.442 0.061 0.108 0.058 0.277 0.127

Step = 7 0.405 0.045 0.081 0.037 0.301 0.105

Step = 8 0.405 0.031 0.058 0.027 0.320 0.093

Step = 9 0.536 0.018 0.034 0.012 0.347 0.065

Step = 10 0.328 0.665 0.438 0.711 0.197 0.374

Step = 11 0.328 0.654 0.437 0.709 0.197 0.373

Step = 12 0.328 0.655 0.437 0.709 0.191 0.368

Acc, accuracy; PPV, positive predictive value; Sn, sensitivity.

Bold/italic values are the maximum in each column.

Table 3. The Effect of Cluster-Threshold on the Evaluation Metrics (Step = 10)

Threshold Precision Recall F-measure Sn PPV Acc

0.1 0.257 0.504 0.341 0.695 0.179 0.352

0.2 0.382 0.665 0.486 0.640 0.156 0.356

0.3 0.295 0.617 0.399 0.698 0.182 0.357

0.4 0.302 0.631 0.409 0.708 0.195 0.372

0.5 0.324 0.650 0.433 0.708 0.196 0.373

0.6 0.330 0.653 0.438 0.701 0.187 0.362

0.7 0.313 0.634 0.419 0.711 0.197 0.374

0.8 0.140 0.110 0.123 0.795 0.098 0.279

0.9 0.245 0.020 0.038 0.276 0.079 0.148

Bold/italic values are the maximum in each column.
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FIG. 8. The F-measure and Acc values of our method for various values of attachment score threshold. Acc, accuracy.

FIG. 9. Semantic similarity frequency statistical graph of different methods on biological process. PCA, principal

component analysis.
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We compared our method with other classical algorithms, such as the coach (Lakizadeh et al., 2015),

WCOACH (Price et al., 2013), MCODE (Bader and Hogue, 2003), MCODE-weight (Price et al., 2013), and

Ipca (Min et al., 2008) to assess the predictor carefully. And as shown in Table 4, all of the Jaccard scores are

around 0.3, the score predicted by the MCODE method is the lowest with 0.2913. In contrast, our method

performs slightly better than WCOACH and MCODE-weight method, 0.31975, 0.30572, and 0.30285, re-

spectively. So the table confirms that our method may perform well in predicting protein complexes.

FIG. 10. Semantic similarity frequency statistical graph of different methods on cellular component.

FIG. 11. Semantic similarity frequency statistical graph of different methods on molecular function.
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To be objective, all algorithms are run in the same PPI data and the same benchmark is selected.

Figure 14 shows the corresponding precision–recall graphs comparing different traditional cluster algo-

rithms with our method proposed in this article. In most of the recall range, our method still maintains

greater precision, in addition, our method outperforms with significantly higher recall, as well as greater

precision among the initial top predictions (at recall <0.4).

It is clearly observed from Figure 15 that our method proposed in this article reaches the highest precision,

recall, and F-measure. The Sn value of coach algorithm is higher, but its PPV reduces to 0.14, which leads to a

worse Acc value. Both our method and coach algorithm are in light of ‘‘core-attachment,’’ but some details

FIG. 12. Results compared with different semantic similarity.

FIG. 13. Jaccard scores of our method at different time points.
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such as density formula, eliminating redundancy, are different. Nevertheless, precision, recall, and F-measure

of our method perform better, which illustrates that our method improves the Acc of predicting protein

complexes. Moreover, our method introduced semantic similarity dealt with PCA as the weight between PPIs.

Although the other two classical algorithms, WCOACH and MCODE-weight, are introduced to predict

protein complexes from weighted PPI networks, unfortunately, these two algorithms’ effect is not as good as

our method, their precision, recall, and F-measure are less than our method. It indicates that semantic

similarity dealt with PCA works better than other approaches. In summary, it is assumed that our method

effectively improves the prediction Acc of protein complexes.

4. CONCLUSIONS

This article proposed an approach to integrate multiple techniques to improve the predicting Acc of the

protein complexes. First, we integrate static PPI networks with gene expression data to construct a dynamic

network through combining interval estimation with the three-sigma method. The improved method per-

forms better on the data set with low expression values than the original method. Secondly, GO semantic

similarity that contains biological information is applied to filter redundant information and process the

weight of network. It proves that GO semantic similarity reflects the degree of intimacy between the two

proteins better than the topological information. Third, after building a weighted PPI dynamic network,

DWCOACH is introduced to predict protein complexes. And, it decreases the overlap among different

Table 4. The Comparison of the Jaccard Score of Six Methods

Method WCOACH Coach MCODE-weight MCODE Ipca Our method

Jaccard score 0.30572 0.29677 0.30285 0.29130 0.29522 0.31975

FIG. 14. Precision–recall graph of four cluster algorithms.
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protein complexes and improves the prediction Acc. Several experiments are conducted and the results

prove that our algorithm performs better than other algorithms on selected evaluation metrics. We also

observed that there are some drawbacks in our method, for example, the test result is sensitive to the

number and value of parameters, which indicates that more experiments should be carried out to find out

the best parameter values.
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