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Abstract. Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which
generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral
sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters.
Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the
errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown
parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of
the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex
systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations

related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.
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1. Introduction

Chaos control and synchronisation consist of designing
a proper control law such that the follower chaotic sys-
tem tracks the output of the leader chaotic system as
time tends to infinity. Many control and synchronisa-
tion methods have been investigated in recent years
to address it. Although the synchronisation methods
investigated can be dynamically classified into two
categories, integer-order methods and fractional-order
methods, technically these can be classified as active
break methods [1,2], adaptive methods [3-5], sliding
mode [6-9], projective synchronisation [10-12], back-
stepping control methods [13], lag synchronisation [14],
generalised method [15,16], modified function projec-
tive synchronisation (MFPS) [17-21] and many other
synchronisation methods [22,23].

Unfortunately, in spite of a wide range of studies
on synchronisation schemes, there are concerns regard-
ing real systems with real parameters. However, in
some real-world situations, for example, electromag-
netic fields and laser systems, the variables and/or
the parameters of the dynamical systems are com-
plex. Furthermore, in some applied fields such as

secure communications, where the quantity of variables
and parameters specifies the capacity of transmitted
information and the secure communication rate, syn-
chronisation of complex chaotic systems can be consid-
ered to increase the capacity of transmitted information
without fear of losing the quality.

Recently, Mahmoud er al [24] have investigated
identical synchronisation problem of the complex Chen
and Lu chaotic systems and have presented their chaotic
attractors for a wide range of values of the corre-
sponding system parameters; and in [25], they have
proposed non-identical synchronisation between two
non-identical chaotic Lu and Chen systems. After that,
a wide variety of synchronisation schemes were devel-
oped by researchers [26-30] to control the behaviour
of complex chaotic systems. It is worth mention-
ing that until now, no published paper is devoted
to synchronisation problem of complex chaotic sys-
tems via sliding mode control, especially with the
uncertainty in system parameters. Moreover, sliding
mode control methodology provides a fast and reli-
able synchronisation strategy, in comparison with other
methods such as projective method, lag method and
so on. Therefore, in this paper, the synchronisation
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problem of a class of complex chaotic systems with
unknown parameters are investigated by designing an
ISMC method. An adaptive control law and parameter
estimation law are developed based on the Lyapunov sta-
bility theory. In addition, the proposed ISMC method
is verified by chaos synchronisation of two complex
chaotic systems, the Chen complex system and the
Lorenz complex system. Finally, some numerical sim-
ulations are presented to illustrate the effectiveness of
theoretical discussions.

The rest of this paper is organised as follows:
Section 2 gives chaos synchronisation between a class
of complex chaotic systems via ISMC method. In §3, the
problem of synchronisation between the Chen complex
system and the Lorenz complex system is presented via
ISMC method. In addition, some numerical simulations
are presented to verify the theoretical analysis. Finally,
some concluding remarks are given in §4.

2. Mathematical modelling and ISMC
synchronisation

In this section, chaos synchronisation problem for a class
of chaotic systems is presented. An appropriate adap-
tive control law and a parameter estimation strategy are
derived based on Lyapunov stability function. Consider
a class of complex chaotic systems as follows:

X =Af(x)+ Fx), (D

where x = (xf—i—jxi, x£+jx£, coxi+jxiT e crxl
is a complex vector of the leader system state variables.
f(x)inn x n and F(x) in n X n are the complex
matrices of linear and nonlinear functions, respectively.
A € C"™! is the unknown parameter vector of the sys-
tem. The symbol j denotes the imaginary notation of a
complex number, j = /—1. The superscripts  and i
indicate the real and imaginary parts of a complex num-
ber, respectively.

Now, take the complex chaotic system presented in (1)
as the leader system with unknown system parameter
vector A € C"*!. Then the follower complex system
can be described as follows:

y=Bg(y)+G() +u, 2)

where y = (y + jy}. Y5+ jvh. ... yp+jy) € €
stands for the state variable vector of the follower system
and u declares control feedback vector, to be designed.
B € C"*! stands for the complex parameter vector of
the linear part of the system. g(y) inn x n and G(y) in
n x n are the complex matrices of linear and nonlinear
functions, respectively. The disparity between the leader
and the follower state variables defined in (1) and (2)

Pramana — J. Phys. (2018) 90:76
can be represented by ¢ = (eq, ez, .. ., en)T € €1 ag
follows:

e=e +je =y —x"+j0 —x). 3)

Then, the error dynamics between two chaotic systems
can be obtained as follows:

e=¢"+jel =y &+ - &), @)

The ultimate goal of synchronisation is to design an
appropriate feedback controller to force the motion tra-
jectories of the follower chaotic system to track the
leader one. To this end, an active ISMC is designed
in this section that is capable of synchronising the
leader and the follower attractors and forcing syn-
chronisation error in (3) to converge to zero. Given
the dynamic synchronisation errors in (4), then, s =
(sf,...,sz;si,...,sfl)T, the sliding surface of the
ISMC method can be defined as follows:

sp= D! + 20 (0D; e,
st =D} + D '), k=1.2,....n, (5

where thl and 0D, ! represent the time derivative and
the integral of the sliding surface, respectively. A =
(M, A2y ..oy Ap) € CV where A = Api + JAix is the
arbitrary constant coefficient vector. Then, time deriva-
tive of the sliding surface can be given in vector form as
follows:

§=¢é+ e (6)

In addition, according to the exponential reaching law
described in [31], the derivative of the sliding surface
can be given as follows:

s = —gsgn(s) — ks, (7

where 8 = (§1, &, ...,&) andk = (k1, ka, ..., k,) are
the positive real constant vectors and sgn is the signum
function. Then, considering the time derivative of the
sliding surface in (6) and the exponential reaching law
presented by eq. (7), one can obtain

¢ + e = —&sgn(s) — ks. ()

This equation can be simplified by substituting the
synchronisation error e and its dynamical representative
¢ from eqs (3) and (4) as follows:

y— X+ Ay — ax = —Esgn(s) — ks. ©)

Then substituting the state variable vectors x and y
and their dynamic representatives X and y from eqs (1)
and (2) gives

Bg(y) + F(y) +u— Af(x) — F(x) + Xe

= —& sgn(s) — ks. (10)
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Then the following feedback controller can be
obtained:

u=Af(x)—Bg(y) — F(y) + F(x)

— he — Esgn(s) — ks, (11

where A and B declare the estimation of A and B vectors,
respectively; which can be estimated as

A=sf),
B =—sf(y).

In the following theorem, synchronisation between
two classes of complex chaotic systems using ISMC
method is proved to achieve synchronisation between a
class of complex chaotic systems presented in (1) and

Q).

(12)

Theorem 1. The motion trajectories of the follower
chaotic system state variables in eq. (2) with the initial
state values y(0) € R3, using the feedback controller
presented in (11) with coefficient vectors L, &,k > 0
and system parameter estimation in (12), will track
the trajectories of the leader attractors in eq. (1). Fur-
thermore, the synchronisation error vector e in eq. (5)
asymptotically converges to zero.

Proof. Let the Lyapunov candidate function be as
follows:

1 _ _
V= §(s2+AAT+BBT), (13)
where A = A—Aand A = B—B. Clearly, V is positive
definite. The derivative of the Lyapunov function V with
respect to time is:

V =si+AA+ BB
=s[Bg(y) + F(y) + u — Af (x)F(x) + Le]
+AA+ BB (14)
By substituting the designed feedback controller u in

(11) and the parameter estimation in (12), the derivative
of the Lyapanov function in (14) can be simplified as

V = —&ssgn(s) — ks> (15)

Hence V is negative definite when the coefficient
vectors £ and k are positive. Consequently, according
to the Lyapunov stability theorem, the leader complex
chaotic system in (1) and the follower complex chaotic
system in (2) will be asymptotically synchronised with
the control input vector in eq. (11) and parameter esti-
mation in eq. (12). So the proof is complete. O
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3. Simulation results

In this section, chaos synchronisation between two
non-identical complex chaotic systems, the Chen com-
plex system and the Lorenz complex system, is
addressed. Take the Chen complex chaotic system first
introduced in [32] as follows:

X1 = —o1x] + o1x2,

Xy = —aX] + apx) + apxy — x1x3,

) | _

X3 = 5(?61)62 + x1X2) — a3x3, (16)
_ r . 0 _ r s 0

where x; = x| + jx] and x = Xx; + jx, are

complex state vectors and x3 = x3 is areal state variable.
a = (a] + joi, a5 + jai, a3) is the complex parameter
vector of the system. Hence, the Chen complex chaotic
system can be represented with a five-dimensional (5D)
dynamical real system as follows:

X = —ojx] +ojx] +ajxy —ojx;
X = —ajx] —oyx] +ajxy +o)x;
Xy = —ayx] +ajx; +arx]

— ahx| + ahxy — a5X, — X|X3
Xy = —ajx] — a|X] + x| +opx] +apx)
+ ahx; — x1x3

x _l r.r iy 17
3—2(x1x2+x1x2) 3X3. 17

The chaotic behaviour of the Chen complex system
is shown in figure 1, with system parameters, o] = 2 +
20,00 =3+ 1i,a3 = 4.

Consider the Chen complex system in (17) as the
leader system. Then, the corresponding follower com-
plex system can be given by the Lorenz chaotic system
[33]. The structure of the Lorenz chaotic system is

Vi =—ary1 +aiy
V2 =2yl — Y2 — Y1)3
V3 = Y1y2 — ®3)3 (18)

which can be presented as the follower system in the
complex manner as follows:

yi = —a1y1 +a1y2 +uj,

Y2 =Goy1 — y2 — y1y3 + ua,
) 1 _ _ .
3= §(y1yz + y1y2) — a3y3 + u3, (19)

where y = (y] —|—jyi, y3 —I—jyé, y4) is the complex state
variable vector. @ = (af + jo?i, a5 + ja,, @) indicates
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Figure 1. Some chaotic attractors of the Chen complex chaotic system (17).

(a)OOO (b) 600

500 400

é“ 200

y

-500 [

-1000
200

-200
1000

1000

(c) 150 T T T T T T (d) 600

100 -

400 [

50

200 [

-200

-400 [

600 L L L L L
200 -150 -100 -50 0 50 100 150

the estimation of the complex parameter vector a, of Vi = —aly; — &yl +alyh +alyh 4+ ul

the leader complex system (17). u; = ui + ju’] and o o o
. -r:_f\r r+&l 1 +&r r_&l 1 +&r r_&l 1

uy = u’+ ju’, are the complex feedback controllersand Y2 N 1N 201 21 2Y2 — %))

u3 = uj is the real feedback control, to be designed. So
the complex Lorenz follower system can be represented

by 5D real chaotic system as yé - _&ll'yf — &T)’i + &éyf + &Eyll' + 513)’5 + 6‘5)’5

— X1y3 +uh

. A P N SN i i
51 = —&y] + @iyt +aivg — &y + ] BELERE
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Figure 3. Synchronisation of the leader—follower complex chaotic systems (17) and (20) with complex parameters, using the

ISMC method.

1 .

3 = 5012+ y1y2) — @3ys +us. (20)

The chaotic behaviour of the Lorenz complex
system (20) is shown in figure 2, with system parameters
considered constant as: &y = 1.5 + i, ap = 2 + 3i and
o3 = —2.

Then, according to the dynamics system error in (4),
we have

ér=¢l+jé =3 — [+ — i)
éy =&+ jéb = yh — &5 + j (3 — xb)
&3 =& =y — i3, 1)

In the following, an adaptive controller is designed for
synchronisation of the considered complex chaotic sys-
tems, by considering the complex form of the leader

dynamic system in (17) and the follower dynamic
system in (20), which can be given as follows:

r AF T ) AV T ) AV T
up = —yp oy oy, — oy, —opx
AT AT AT r r r
+ ajxj+ajxy —ajxy —Are] — &1 sgn(sy) —kis
i AL T Ar i AL T Ar i AL T
Uy = —opyp — oy oy, oy, X

— ayxj+ayxy+ax;—Aze] — & sgn(sy) — kasj

uy = —G5y] +@5 Vi + s+ s — &l +&jx] +asa
— x| +a5x) —@hxh —x{x3—aeh — & sgn(sh)
— k3sh

uh = —@hy| —&4y] +yh+yiys—& x| —aix] +a5x]

+ &éx{ —I—&Qxé%—&;xg —x’ixg —Meé — & sgn(sé)

— k4s)
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Figure 4. Errors of system parameters obtained from synchronisation of the leader—follower complex systems (17) and (20),

using the ISMC method.

1 o | .
u3 = —E(y{yﬁ + y1y5) + Qzys + E(x{xﬁ + x| xb)

— &3x3 — Ase3 — &5 sgn(s3) — kss3. (22)

In addition, complex system parameters o], oz’i,
o, oo, and a3 can be dynamically estimated as follows:

&1 = 5[’{ + ]&ll = —s1(x2 — x1) 4+ $2x1
= —s7(x) — x7) 4 st (xh — x) + shal — shx!
= (5105 = x) = 57 (e — x}) + s3] + s3x])
& = & + jab = —s2(x1 + x2)

= —sy(x] +x5) + sé(xﬁ + xé)
— j(sé(xf + x5) — sh(xd +xé))

a3 = Q3 = $3X3. (23)
Lyapunov’s stability function can be utilised to prove
that the equilibrium point (e1, e2, €3) = (0, 0, 0) of the
leader system (17) is asymptotically stable. To verify
this, some numerical results of the leader system (17)
and the follower system (20) with the obtained feedback

controller in (22) and the estimated system parameters
in (23) are given in figures 3 and 4.

4. Conclusion

In this paper, ISMC method for the synchronisation of
a class of complex chaotic systems is presented. An
appropriate feedback controller and a system parameter
strategy were designed based on the Lyapunov stability
theorem. The performance evaluation of the proposed
scheme was done by synchronisation of the Chen com-
plex chaotic system and the Lorenz complex chaotic
system. Finally, numerical analyses were performed to
verify the effectiveness of the proposed ISMC method
for the synchronisation of the complex chaotic systems.
The results show that the synchronisation scheme pro-
vides the expected results from the point of view of both
accuracy and speed.
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