
Pramana – J. Phys. (2019) 92:94 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-019-1753-z

Solitary wave and modulational instability in a strongly coupled
semiclassical relativistic dusty pair plasma with density gradient

SHATADRU CHAUDHURI1, K ROY CHOWDHURY1 and A ROY CHOWDHURY2,∗

1Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata 700 032, India
2Department of Physics, High Energy Physics Division, Jadavpur University, 188, Raja S.C. Mallick Road,
Kolkata 700 032, India
∗Corresponding author. E-mail: arc.roy@gmail.com

MS received 24 January 2018; revised 26 October 2018; accepted 20 November 2018;
published online 8 April 2019

Abstract. Using a set of fluid equations to describe the inertial dust grain component in a dense collision-
less unmagnetised plasma under the influence of weakly relativistic semiclassical electrons and positrons, the
propagation of dust-acoustic wave is studied in the strong coupling regime when the dust density is non-uniform. Our
main aim is to analyse the role of semiclassical and relativistic environment (frequently encountered in astrophysical
context) on various features of strongly coupled dusty plasma. The semiclassical environment of the electrons and
positrons is assumed to be described by the Chandrasekhar equation of state. Our second aim is to see the effect
of spatial variation of the dust equilibrium density, which is known to occur due to the deformation of the Debye
sheath which in turn leads to polarisation force. A new type of nonlinear Schrödinger equation with spatially varying
coefficient is deduced and its modulational stability is studied in detail. In the last section, we have taken recourse to
Madelung picture to deduce a variable coefficient Korteweg–de Vries equation from this new nonlinear Schrödinger
equation.
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1. Introduction

A dusty plasma is characterised by the presence of
massive charged dust grains in addition to the electron–
ion and neutral particles. They are of various sizes,
from nanometres to millimetres. This has become a
very important domain of research due to its applica-
tion in astrophysics, semiconductors, fusion reactors
and so on. The dust-acoustic waves (DAWs) [1,2]
have been observed in many low-temperature labora-
tory experiments. This has made it an important area
of research in astrophysical environments such as the
interior of white dwarfs, which are composed of elec-
trons and positrons in coexistence with a small fraction
of ions. As energy is gradually lost, matter cools down,
and the particles may behave in a quasiclassical man-
ner although still in a quantum environment. Another
important aspect of the present day plasma research
is its strong coupling of dust particles, which has
been seen to give rise to many new features in DAW

propagation. One of the foremost formulation of
strongly coupled plasma was that of Gozadinos et al [3],
where the concept of electrostatic pressure was intro-
duced. It has been applied to the DAW mode [4] and
nonlinear solitary wave structure [5,6]. Many of these
analyses were about the properties of the DAW mode in
quantum plasma due to the importance of quantum effect
in space environments and dense astrophysical plasma
[7–9]. A very interesting event in plasma physics is
that dust grains may experience significant electrostatic
forces from their neighbours. It was Ikezi [10] who first
predicted that a dusty plasma can enter a strongly cou-
pled regime due to the high charge and low temperature,
which makes the coupling � = z2

de
2/4πε0kBTdad � 1.

At this point, it may be added that there is more than
one approach to the formulation of a strongly cou-
pled plasma. One is the viscoelastic theory followed
by Veeresha et al [11]. They actually started from the
generalised hydrodynamic equations that modify the
momentum equation using the integro-differential term,
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containing the viscoelastic function characterised by the
viscosity term and relaxation time. Collective oscilla-
tions in weakly coupled dusty plasmas, such as DA and
DIA modes, have been extensively studied theoretically
[12,13] and experimentally [14]. But a very significant
aspect that has been overlooked is the inhomogeneity or
density gradient. The effect of density gradient on the
role played by strongly coupled plasma is not yet fully
understood. Spatial inhomogeneous equilibrium density
may occur in a dusty plasma due to the distribution of
immobile dust grains [15,16]. For a strongly coupled
plasma that is still in a fluid state, coupling of shear
and compressional modes occurs that can also lead to
spatial variation. Such variation of equilibrium density
is responsible for many important events. For example,
dispersion properties in such inhomogeneous plasma is
known to enhance the low-frequency noise associated
with the Halley’s comet [15]. Actually, in space and
laboratory plasmas, the equilibrium state is often non-
uniform, where the equilibrium quantities vary spatially.
Dust density inhomogeneity is known to occur due to the
deformation of the Debye sheath [17]. This in turn gives
rise to the polarisation force [18], which can make the
situation inhomogeneous. Experimental studies of inho-
mogeneous plasma were done by Ohta and Hamaguchi
[19]. Due to these reasons, long back, such inhomo-
geneous plasma was studied by Nishikawa and Kaw
[20]. Very recently, measurement of the amplitude of the
dust density wave in inhomogeneous plasma has been
reported by Tadsen et al [21]. Due to the small fraction of
ions, we have considered the dynamics of dust particles
in an environment of electrons and positrons only, which
are treated to be semiclassical and relativistic. To start
with, we have considered the dust density to be homo-
geneous and applied the usual reductive perturbation
technique to deduce the Korteweg–de Vries equation.
The corresponding soliton solution properties (ampli-
tude and width) are studied in detail. In the next phase,
we have assumed the space variation of the dust den-
sity and applied the Krylov–Bogoliubov–Mitropolsky
(KBM) method to deduce the variable coefficient non-
linear Schrödinger equation. The modulational stability
of this equation is then analysed as a function of plasma
parameters and variable density.

In the last section we have demonstrated how an
inhomogeneous Korteweg–de Vries equation can be
deduced from such a nonlinear Schrödinger equation
by Madelung prescription.

2. Formulation

The fluid equation of motion of the plasma can be written
as

∂nd

∂t
+ ∂

∂x
(ndud) = 0, (1)

where nd and ud are the dust density and velocity,
respectively,

∂ud

∂t
+ ud

∂ud

∂x
= ∂φ

∂x
− 1

nd

∂P∗
∂x

. (2)

The force arising due to strong coupling between the
dust particles is modelled by an effective electrostatic
pressure gradient, where the pressure P∗ = ndkBT∗ with
T∗ (the effective electrostatic temperature) as defined by
Cousens et al [6] whose expression is given as

T∗ = NnnZ2
de

2

12πε0kB

3
√
nd(1 + K) exp(−K).

Thus, T∗ = T∗(nd, φ) and it is a dynamic quantity with
T∗/T0 = d (T0 is mentioned later in this section). The
electrostatic potential is denoted by φ.

∂2φ

∂x2 = − e

ε0
(np − ne − ndzd), (3)

where electrons and positrons are assumed to obey the
density formula of Chandrasekhar [22], expressed as

ne = 8πm3
ec

3

3h3

[
e2φ2

m2
ec

4 + eφ

mec2

√
(1 + n2

e0) + n2
e0

]3/2

,

(4)

np = 8πm3
pc

3

3h3

[
e2

pφ
2

m2
pc

4 + epφ

mpc2

√
(1 + n2

p0) + n2
p0

]3/2

.

(5)

The standard binomial expansion leads to

ne = Ae[φ2 + α1φ + β1], (6)

np = Ap[φ2 + α2φ + β2], (7)

Ap = 8πmpe2
p

3h3c

α2 = 3mpe2

ep
(1 + n2

p0)
1/2

β2 = n2
p0
mpc2

e2

Ae = 8πmee2

3h3c

α1 = 3mee

1
(1 + n2

e0)
1/2

β1 = n2
e0
mec2

e2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (8)

To start with, we consider a homogeneous situation
without density gradient. The last two terms on the right-
hand side of the momentum equation arise from the



Pramana – J. Phys. (2019) 92:94 Page 3 of 12 94

strong coupling force. Final variables of the model are
written in terms of dimensionless variables. The num-
ber densities are rescaled by their equilibrium values
n = nd/nd0. We normalise the velocity and potential as
follows:

u = ud/
√
kBT0/md

φ = 
/(kBT0/eZd)

}
. (9)

The corresponding length is normalised by λD0, which
is

λD0 =
√

ε0kBT0

nd0e2Z2
d

and the time by ω−1
d , the inverse of dust frequency

ω−1
d =

√
ε0md

nd0e2Z2
d

.

Similarly, the electrostatic temperature T∗ is normalised
by the temperature T0, where

T0 = Z2
dnd0TpTe

np0Te + ne0Tp

and is written in the dimensionless form in the following
equations as d (= T∗/T0). Next, using eqs (6) and (7)
into eq. (3) we get

∂2φ

∂x2 = (n − 1) + c1φ + c2φ
2 + · · · . (10)

Thus, our set of model equations are as follows:

∂nd

∂t
+ ∂

∂x
(ndud) = 0, (11)

∂ud

∂t
+ ud

∂ud

∂x
= ∂φ

∂x
− ∂d

∂x
− n−1

d d
∂nd

∂x
, (12)

∂2φ

∂x2 = (n − 1) + c1φ + c2φ
2 + · · · , (13)

where c1 = (Ae − Ap)/(nd0Zd) and c2 = (Aeα1
− Apα2)/(nd0Zd).

Linearising eqs (11)–(13) by substituting

n = 1 + εn1

u = εu1

φ = εφ1

d = d0 + εd1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)

and assuming all perturbations to be of the type
exp[i(kx − ωt)], we get the basic dispersion relation

k2 + (d12 − 1)(
(ω2/k2) − d0 − d11

) + c1 = 0, (15)
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Figure 1. The plot of dispersion relation for various values of
dust density. It shows that the slope of ω vs. k curve increases
as the dust density (nd0) is increased.

where the constants d0, d11 and d12 are coefficients
obtained due to the perturbative expansion of dimen-
sionless temperature d explained by Cousens et al [6]
and also given in detail in the appendix of this paper.

A graphical representation of the dispersion relation
is given in figure 1, where we have shown variation of
ω with k (wave vector), for a specific equilibrium den-
sity n0 = 1. Even in figure 1 we can see that there is
an influence of the equilibrium dust density (nd0) in the
dispersion phenomenon. Adapting the usual stretched
variables

ξ = ε1/2(x − vt)

τ = ε3/2t

}
(16)

and expanding the physical quantities as

u = εu1 + ε2u2 + ε3u3 + · · ·
n = 1 + εn1 + ε2n2 + ε3n3 + · · ·
φ = εφ1 + ε2φ2 + ε3φ3 + · · ·
d = d0 + εd1 + ε2d2 + ε3d3 + · · ·

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (17)

Equating similar powers of ε, we get

u1 − vn1 = 0

− vu1 = φ1 − d1 − d0n1

n1 + φ1 = 0

⎫⎬
⎭. (18)

Hence, from these lowest-order terms we get the phase
velocity as

v2 = c1 + d0 + d11 − d12. (19)
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Figure 2. The variation of soliton amplitude (
0) with the
electron–position equilibrium density ratio (μ = ne0/np0).
The variations of the amplitude 
0 is also observed with the
soliton velocity U (in m s−1).

Carrying out the computation to higher-order terms,
we get Korteweg–de Vries equations:

∂φ1

∂τ
+ A

∂3φ1

∂ξ3 + Bφ1
∂φ1

∂ξ
, (20)

where

A = v2 − d11 − d0

v
, (21)

B = 1

v
{−(3v2 − 2d23 + d24 − 2d25

+d11 − d12 − d0 + 2(v2 − d11 − d0)c2)}. (22)

We have omitted the detailed computation, which is
very much standardised nowadays. The usual solitary
wave solution is

φ1 = 
0 sech2
(

ξ −Uτ

W

)
(23)

with


0 = 3U

B

W = 2

√
A

U

⎫⎪⎪⎬
⎪⎪⎭

(24)

and U being the velocity of the solitary wave.
A graphical representation of the left-hand side of

eq. (15) is given in figure 1, which we refer to as a homo-
geneous case. The variation of amplitude φ0 for different
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Figure 3. The variation of soliton width (W ) with the
electron–position equilibrium density ratio (μ = ne0/np0).
The variations of the amplitude 
0 is also observed with the
soliton velocity U (in m s−1).
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Figure 4. The solution of eq. (23) which shows the shape of
the solitary wave profile. We see an amplitude shifting with
various values of U (soliton velocity).

values of soliton velocity is shown in figure 2. Here, the
independent variable is chosen to be μ (= ne0/np0), the
electron–positron density ratio. It is interesting to note
that not only μ but also the soliton amplitude varies with
the electron–positron temperature. On the other hand,
figure 3 shows how the width of the soliton changes with
μ. It shows that the width changes significantly with
the soliton velocity also.The temperature mentioned in
this case is of the order of 106 K which is the temper-
ature of plasmas existing in solar corona (as per NRL
Plasma Formulary). Figure 4 represents the solution of
the Korteweg–de Vries equation (23). It shows the vari-
ation of electrostatic potential (φ1) with space. Here we
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see that the amplitude of the soliton pulse shifts with the
change of soliton velocity U.

3. System with density gradient

To consider a strongly coupled dusty plasma with a den-
sity gradient, we have adopted the perturbation method
of KBM, which is convenient in the sense that its leads
directly to the nonlinear Schrödinger situation, which
can always be reduced to the Korteweg–de Vries situa-
tion. To start with, we set

n = n0(x) + εn1 + ε2n2 + ε3n3 + · · ·
u = εu1 + ε2u2 + ε3u3 + · · ·
φ = εφ1 + ε2φ2 + ε3φ3 + · · ·
d = d0 + εd1 + ε2d2 + ε3d3 + · · ·

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (25)

where each of the dynamical variables n, u, φ, etc. are
assumed to depend on (x, t) through three variables a, ā
and ψ = kx − ωt (the phase factor). Here a and ā
denote the complex amplitude of the plane-wave solu-
tion of monochromatic emission at zero order. These
amplitudes vary slowly as

∂a

∂t
= εA1(a, ā) + ε2A2(a, ā) + · · ·

∂a

∂x
= εB1(a, ā) + ε2B2(a, ā) + · · ·

⎫⎪⎬
⎪⎭ (26)

together with the complex conjugate of the above
relations. Since we regard the medium to be inhomo-
geneous, we may assume that the undistributed local
density is of the zeroth order but its density gradient is
of second order, i.e.

∂n0

∂t
= 0,

∂n0

∂x
= ε2α. (27)

α is a constant, which is the measure of the density
gradient. Substituting in the above equations, we obtain
in the lowest order of ε:

u1 = a exp(iψ) + ā exp(−iψ)

n1 = n0
k

ω
u1 = n0

k

ω
(a exp(iψ) + ā exp(−iψ))

φ1 = β(a exp(iψ) + ā exp(−iψ))

⎫⎪⎪⎬
⎪⎪⎭

,

(28)

where

β = − k

ω

{(ω2/k2) − (d0 + n0d11)}
(d12 − 1)

(29)

along with

k2 ∂2φ1

∂ψ2 = n1 + c1φ1. (30)

On combining eqs (25)–(27) we get the dispersion rela-
tion in the inhomogeneous case as

n0 + (k2 + c1)

{{(ω2/k2) − (d0 + n0d11)}
(d12 − 1)

}
= 0.

(31)

Equation (31) is the modified form of (16) when there is a
density gradient. In our case, we have assumed n0(x) =
nd0(1+x/L), nd0 being the equilibrium density of dust,
x is the spatial distance and L is the characteristic length.
To study the linear mode of propagation, we have solved
(31) and get

ω2 =
(

(k4 + c1k2)(n0d11 + d0) − n0(d12 − 1)

(k2 + c1)

)
.

(32)

A graphical representation of ω is given in figure 5
where ω’s variation with respect to k and x is shown.

Proceeding to the next higher order of ε, we get

{
−k3

(
ω2

k2 − (n0d11 + d0)

)}[
∂3φ2

∂ψ3 + ∂φ2

∂ψ

]

= [A1 + vgB1] exp(iψ) + iAa2 exp(2iψ) + c.c.,
(33)

where

A =
[
−n02ki + in0k − ik + n0k2

ω
βi − 2in0k

×
{
d23

(
n0k

ω

)2

+ d24

(
n0k

ω

)
β + d25β

2

}

−c2

(
d0k + n0kd21 − ω2

k2 n0

)
β2

]
, (34)

vg = ∂ω

∂k
= (2k3 + kc1)(n0d11 + d0) − ω2k

(c1 + k2)
. (35)
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Figure 5. The dispersion relation for inhomogeneous case. The figure clearly shows the change of frequency (ω) with wave
vector (k) has a dependence of the space distance x (in m). Parts (a) and (b) show the variation of ω with the wave vector and
spatial distance, respectively while (c) and (d) give the contour plot and 3D plot of the frequency.
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Figure 6. The variation of the group velocity (vg) with the
wave number (k).

Vg is plotted in figure 6. The condition of non-
secularity leads to

φ2 = α1a
2 exp(2iψ) + b1(a, ā) exp(iψ) + γ2(a, ā)

n2 = α2a
2 exp(2iψ) + b2(a, ā) exp(iψ) + γ3(a, ā)

u2 = α3a
2 exp(2iψ) + b3(a, ā) exp(iψ) + γ4(a, ā)

⎫⎪⎬
⎪⎭

(36)

with

σ = −k3
(

ω2

k2 − (n0d11 + dd0)

)
,

α1 = A

10σ
,

α2 = −α1(1 + 4k2) − c2,

α3 = 2iα2

k
− n0ik2

ω
,

b2 = 2ikβ − b1(1 + k2),

which in turn leads to the following equation of φ3:

[
∂3φ3

∂ψ3 − ∂φ3

∂ψ

]
= [A2 + vgB2] exp(iψ)

+i[ω2 − k2(n0d11 − d0)]

×
(
B1

∂B1

∂ ā
+ B̄1

∂B1

∂a

)
β exp(iψ)

+i

{
S + k2n0T + k2U1 + n0k

ω
X + ik2α2V

}

× |a|2 a exp(iψ) + iYa exp(iψ), (37)
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where

S = 2k2n0 + 2k2α3 − 2
k3

ω
n0α1 − 2k2α2β

T = d34α3+2d35
n2

0

ω2 + n0k

ω
β+d37

n0k

ω
α1+d39βα2

U1 = α2d11+α1d12+d23
n2

0k
2

ω2 +d24
n0k

ω
β + d25β

2

V = d11
n0k

ω
+ d12β + 2k2

(
d11

n0k

ω
+ d12β

)

X = 2α2d11+2d12α1+2
n2

0k
2

ω
d23+2βd24+2β2d25

Y = (k2b2 + γ3k) + k2n0(d11b2 + d11γ3)

+ k2n0(d12b1 + d12γ2) + k2(d11b2d12γ3)

+ k2(d12b1 + d12γ2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(38)

If we now demand that all secular terms should vanish,
we get

[A2 + vgB2] + iP

(
B1

∂B1

∂a
+ B̄1

∂B1

∂ ā

)

+iQ |a|2 a + iRa = 0, (39)

where

P = ((12k2 + 2c1)(n0d11 + d0) − 2v2
gk

2

− 8ωkvg − 2ω2 − 2c1v
2
g) ÷ (2ωk2 + 2ωc1)

Q = 2n0k
2 + 2α3k

2 − 2k3n0

ω
α1 − 2k2α2β

+ k2n0

(
d34α3 + 2d35

n2
0k

2

ω2 + 2
n0k

ω
β2

+α1d37
n0k

ω
βα2d39

)

+ n0k

ω

(
2α2d11 + 2d12α1 + 2d23

n2
0k

2

ω2

+2βd24 + β2d25

)

+ α2k
2
(
d11

n0k

ω
+ βd12

)

+ 2k2
(
d11

n0k

ω
+ d12β

)

R = k2b2 + kγ3 + k2n0(d12b2 + d11γ3)

+ k2n0(d12b1 + d12γ2)

+ k2(d11b2d11γ3) + k2(d12b1 − d12γ2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(40)

Changing to new variables

τ = ε2t

ξ = ε(x − vgt)

}
(41)

and taking care of the relation

A2 = 1

ε2

∂a

∂t
− 1

ε
A1

B2 = 1

ε2

∂a

∂x
− 1

ε
B1

⎫⎪⎬
⎪⎭. (42)

We get from eq. ( 39)

i
∂a

∂τ
+ P

∂2a

∂ξ2 + Q |a|2 a + Ra = 0 (43)

which is the nonlinear Schrödinger equation with vari-
able coefficient describing the envelope soliton in the
variable density plasma.

4. Modulational instability

In this section we focus on the analysis of the modula-
tional instability of the DAWs in electron–positron–dust
plasma as described by the nonlinear Schrödinger equa-
tion (43). Modulational instability is a phenomenon
whereby deviations from a periodic waveform are rein-
forced by nonlinearity, leading to the generation of
spectral sidebands and the eventual breakup of the wave-
form into a train of pulses.

To study the modulational instability of eq. (43) we
set a = (a0 +δa(ζ, τ )) exp(i�τ), where ζ = K ξ −�τ ,
a0 being the carrier wave amplitude and K and � the
modulational wave number and frequency respectively.

Using this expression of a in eq. (43), from the zeroth-
order term of δa we get

� = −Q|a0|2 − R.

From the first-order term of δa we get

i
∂

∂τ
(δa) + �(δa) + P

∂2

∂ξ2 (δa) + Q|a0|2(δa + δa∗)

+ Q|a0|2(δa) + R(δa) = 0, (44)

where δa∗ is the complex conjugate of δa. Setting δa =
U+ iV and using the expression of � obtained from the
zeroth-order term of δa, one gets by separating the real
and imaginary parts:

∂U
∂τ

+ P
∂2V
∂ξ2 = 0

− ∂V
∂τ

+ P
∂2U
∂ξ2 + 2QU|a0|2 = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (45)
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Next, assuming plane-wave solutions of U and V, i.e.

U = S exp(i[K ξ − �τ ])
V = J exp(i[K ξ − �τ ])

}
(46)

we arrive at the equation for � as

�2 = P2K 4 − 2PQ|a0|2K 2. (47)

Equation (47) is referred to as the nonlinear disper-
sion relation. The stability analysis of Nishikawa and
Liu [23] and eq. (47) show that the wave is modu-
lationally stable for PQ < 0 and the wave becomes
modulationally unstable for PQ > 0 provided the mod-
ulation wave number K is in the region 0 < K < KC,
where KC = √

2|Q/P||a0| is called the critical wave
number. It is also seen that maximum growth rate is
obtained for a particular value of modulational wave
number K = Km = √|Q/P||a0|. Both KC and Km are
assumed to be less than k.

It is well-known that the modulational instability
depends upon the sign of the product of dispersive
and nonlinear coefficient, i.e. PQ. Now, as the coef-
ficients P and Q depend on various parameters such
as electron–positron density, electron–positron temper-
ature, equilibrium dust density and quite interestingly in
this case the spatial distance also, due to which the sta-
bility of DAW varies over a wide range of wave number
(k). The variation of P and Q is shown in figures 7 and 8,
respectively. Figure 7 clearly shows that the dispersive
coefficient P eventually changes the sign from positive
to negative with the increasing value of wave number
(k). Moreover, the figure clearly shows the variation of
P with the spatial distance also. Similarly, when the
nonlinear coefficient Q is plotted against the wave vec-
tor (k), it increases with an increase of the wave vector
(k) and always remains positive. But, in this case also,
we see that Q also has a prominent dependence on the
spatial distance (x). Next, to study the stability condition
of the envelope soliton, we have plotted the product of
the dispersive and nonlinear coefficient, i.e. PQ against
the wave vector (k) represented by figure 9. The figure
clearly shows that at first the value of PQ increases with
k, remains positive up to a certain value of k and then
with further increment of the wave number it becomes
negative. Thus, PQ changes sign from positive to neg-
ative for a certain range of k. This implies that the PQ
also becomes 0 for some value of the wave number (k),
which we define as the cut-off value of the wave number.
It has been shown earlier also that for cold plasma, in
the absence of positron, modulational instability sets in
when the modulational wave number K < KC = 1.47
and PQ > 0 [24]. But in this case, it is interesting to see
that this critical wave number also changes with the spa-
tial distance (x), as shown in figure 10, and its value gets
lowered due to the presence of strong coupling. Figure 9
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Figure 7. The plot of dispersive coefficient P with wave
number (k) which even has a clear variation with the spatial
distance (x).
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Figure 8. The plot of nonlinear coefficient Q with wave vec-
tor (k) which also shows a considerable dependence on the
spatial distance (x).

indicates that for x = 0.1 the cut-off value is k ≈ 2.35
while for x = 0.5 the cut-off value is k ≈ 2.1 and for
x = 1.0 the cut-off value is k ≈ 2.4.

Lastly, we have plotted the instability growth rate,
�(Im(�)) in figure 11. We can see that the instability
growth rate also varies with the spatial distance (x).

In this connection, one may note that if we make a
change of variable a = b exp(iRτ) in eq. (43), we get
the standard form of nonlinear Schrödinger equation:

i
∂b

∂τ
+ P

∂2b

∂ξ2 + Q |b|2 b = 0. (48)
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Figure 9. The plot of the product of nonlinear and dispersive
coefficientPQ for various values of spatial distance with wave
vector (k).
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Figure 10. The variation of the critical wave number (KC),
which is the maximum value of the modulational wave num-
ber up to which the wave is unstable for PQ > 0.

5. Madelung connection

In the first part of our analysis, we have shown how
Korteweg–de Vries equation describes the excitation of
the nonlinear wave in the uniform density case. On the
other hand, in the second part with density gradient,
we have adopted the KBM approach and obtained the
variable coefficient nonlinear Schrödinger equation, sta-
bility of which is analysed. The connection between
Korteweg–de Vries and nonlinear Schrödinger equa-
tions was explored long ago in an elegant way by
Madelung using the fluid dynamic formulation [25].
Here we show how this variable coefficient nonlinear
Schrödinger equation can also be connected in a similar
manner.
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Figure 11. The plot of growth rate of instability (�) of the
wave.

To illustrate the equation, we consider the nonlin-
ear Schrödinger equation (44). We substitute b =√

ρ exp(iθ) in eq. (44) and separating the real and imag-
inary parts, we get the generalised Madelung equation
as

P ′ρ
(

∂

∂τ
+ W ∂

∂ξ

)
W = −W ∂ρ

∂τ
− W2P ′ ∂ρ

∂ξ

+P ′ρ ∂W
∂ρ

, (49)

where W = θξ .
The other one is

ρ
∂W
∂τ

+ P
∂

∂ξ
[P ′W2] = 2ρ

∂

∂x
[QW]

+ ρ
∂

∂ξ

{
P ′

(
ρ−1

2
ρxx − ρ−2

4
ρ2
x

)}
. (50)

At this point, one should note that

∂

∂x

(
1

ρ1/2

∂2ρ1/2

∂x2

)
= ∂

∂x

(
ρ−1

2
ρxx − ρ−2

4
ρ2
x

)

= 1

ρ

(
1

2

∂3ρ

∂x3 − 4
∂ρ1/2

∂x

∂2ρ1/2

∂x2

)
. (51)

Equations (45) and (46) are the two generalised
Madelung forms derived from the variable coefficient
nonlinear Schrödinger equation, which can be simply
solved if P and Q are constants and some assumptions
are made about W = ∂θ/∂ξ depending upon the bound-
ary condition.
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6. Conclusion and discussion

In our analysis, we have considered a semiclassical rel-
ativistic dusty plasma with a density gradient due to its
importance in astrophysical situations in the strong cou-
pling regime. The ions and the electrons are assumed
to behave as per Chandrasekhar’s equations [26]. In
the first part of our computation, we have assumed a
uniform density situation and have used the reductive
perturbation technique to deduce the Korteweg–de Vries
equation. The amplitude and width of the corresponding
solitary wave are computed and its variations are stud-
ied with respect to μ (= ne0/np0). The parameter values
considered for the computations carried out in this paper
are ne0 = 7 × 1023 m−3, np0 = 3 × 1023 m−3 and
nd0 ∼ 1018 m−3 and the temperatures of electrons and
positrons are taken to be Te = 5 × 106 K and Tp = 106

K, which are found in different astrophysical environ-
ments and in laboratory laser plasmas [27].

In the second half, we have considered the situation
with density gradient and used the KBM method to
deduce a nonlinear Schrödinger equation with variable
coefficient. In fact, in the homogeneous situation, we see
that the wave frequency ω is monotonically increasing
with wave vector (k), but when the situation is inho-
mogeneous, the variation of ω is seen to have a spatial
dependence. Moreover, at first, with the increase of k,
the wave frequency shows a decreasing trend, but after
a certain value of k, it goes on increasing. A detailed
study has been performed on the modulational stabil-
ity of eq. (43), which reveals a new type of behaviour
due to the spatial dependence of the dispersive and non-
linear coefficients (i.e. P and Q, respectively) coming
from the spatial variation of the equilibrium dust den-
sity. This leads to a change in the behaviour of P with
respect to the spatial distance, as seen in figure 7 and by
Q, as shown in figure 8. Next, in the modulational sta-
bility section, we analysed the stability condition of the
envelope soliton, which implies the formation of dark or
bright envelopes through the sign of the product of dis-
persive and nonlinear coefficient, i.e.PQwhich is shown
in figure 9. Moreover, as PQ changes from positive to

negative, we get a cut-off value of k, i.e. the value of
k for which PQ becomes 0. If we take a close look at
figure 9, it can be seen that this cut-off value of k also
varies with spatial distance. Further, as we have seen
in §4, the critical wave number (KC) depends upon the
coefficients P and Q and evidently varies with spatial
distance (x), which is shown in figure 10.

Lastly, in an attempt to connect this new nonlinear
Schrödinger equation with the previous Korteweg–de
Vries problem, we have taken recourse to the Madelung-
type transformation. This mapping actually leads to a
new form of Korteweg–de Vries equation with variable
coefficients.

Appendix A.

To deduce the expression for the expansion coefficients
of d (we have used up to d3), we start with the definition
of the Debye length:

λD

λD0
=

√(
ni0Te + ne0Ti

niTe + neTi

)

=
{

1 + μθ

exp(−(1 − μ)/(1 + μθ)φ) + μθ exp ((1 − μ)θ/(1 + μθ)φ)

}1/2

= 1[∑n
j=0( j + 1)c j+1φ j

]1/2 . (A1)

On the other hand,

K = 1

λDn
1/3
d

= 1

λD0n
1/3
d

⎡
⎣ ∞∑

j=0

( j + 1)c j+1φ
j

⎤
⎦

1/2

= 1

λD0

[
1 + 2c2φ + 3c3φ

2 + 4c4φ
3 + · · · ]1/2

×nd0
{
1 + εn1 + ε2n2 + ε3n3 + · · · }1/3

. (A2)

Hence, if we set

K = K0 + εK1 + ε2K2 + ε3K3 + · · · ,

then

K1 = −1

3
n1 + c2φ1,

K2 = −1

3
n2 − 1

3
c2n1φ1 + 3c3

2
φ2

+c2
2φ

2
1

2
+ c2φ2 + 2

9
n2

1,
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K3 = −n3

3
+ c2φ3 − c2

3
(n2φ1 + n1φ2)

+2

9
c2φ1n

2
1 −

(
3c3 − c2

2

6

)
n1φ

2
1 . (A3)

Let us recapitulate T∗,

T∗ = Nnn Z2
de

2

12πε0kB

3
√
nd(1 + K) exp(−K),

so that

d = Nnn Z2
de

2

12πε0kB

3
√
nd0(1 + K0) exp(−K0)

× (
1 + εn1 + ε2n2 + ε3n3 + · · · )1/3

×
(

1 + ε
K1

1 + K0
+ ε2 K2

1 + K0

+ ε3 K3

1 + K0
+ . . .

)

×
{

1 − (
εK1 + ε2K2 + ε3K3

)

−1

2

(
εK1 + ε2K2 + ε3K3

)2 + . . .

}
. (A4)

On comparing the coefficients of ε we can get

d1 = d11n1 + d12n2

d2 = d21n2 + d22φ2 + d23n
2
1 + d24n1φ1d25φ

2
1

}

(A5)

d11 = d21 = d0

3

K0

1 + K0

d12 = d22 = −c2d0
1

1 + K0

d23 = d0

18

K0 − 1

K0 + 1

d24 = −d0

3
c2

2K0 + 3

1 + K0

d25 = d0

3

(
3c3 − c2

2K0

1 + K0

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A6)

d3 = d31n3 + d32φ3 + d33n
3
1 + d34n1n2 + d35n

2
1φ1

+d36n1φ
2
1 + d37n1φ2 + d38n1φ

2
2 + d39n2φ1

+d310φ
3
1 + d311φ

2
1 + d312φ1φ

2
2, (A7)

where

d31 = d0

3

K0

1 + K0

d32 = −c2d0
1

1 + K0

d33 = 25K0 + 31

81(1 + K0)
d0

d34 = − K0 + 2

9(1 + K0)
d0,

d35 =
[
c2

9
− c2

9

1

K0 + 1

]
d0

d36 =
[
−c3 − c2

2

3(1 + K0)

]
d0

d37 = −c2

3
d0, d38 = c2

3

1

K0 + 1
d0

d39 =
[
−c2

3
+ c2

3(1 + K0)

]
d0

d310 =
[
−c2

3
− (3c3 − c2

2)c2

(1 + K0)2

]
d0

d311 = c2d0

d312 = c2
2

1

1 + K0
d0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A8)
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