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Abstract. It is still a crucial issue to identify influential nodes effectively in the study of complex networks. As
for the existing efficiency centrality (EffC), it cannot be applied to a weighted network. In this paper, a modified
efficiency centrality (EffC™) is proposed by extending EffC into weighted networks. The proposed measure trades
off the node degree and global structure in a weighted network. The influence of both the sum of the average degree
of nodes in the whole network and the average distance of the network is taken into account. Numerical examples

are used to illustrate the efficiency of the proposed method.
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1. Introduction

Inrecent years, the complex network has attracted much
attention in numerous fields, such as economics, man-
agement, computer science, natural sciences, biological
sciences etc. [1-12]. It is a critical task to find an effec-
tive method to identify influential nodes in complex
networks because of their theoretical significance and
practical value, including controlling rumours, spread-
ing of diseases [13—15] and creating new marketing tools
[1-3,16]. Besides, the centrality methods are also rele-
vant to the text analysis and scientific science, because
they are closely related to the definition of efficient and
robust metrics [17-22].

Various centrality measures have been proposed over
the past years to capture the rank of a complex network
according to the degree and weight strength of nodes as
well as topological importance in the network structure
[23]. Three commonly used methods in analysing the
nodes centrality are: degree centrality (DC), between-
ness centrality (BC) [24] and closeness centrality (CC)
[25]. The DC method is very simple and straightforward

Complex network; influential nodes; weighted network; efficiency centrality.

but of little relevance, because it only takes into account
the degree of nodes but neglects the global structure
of the network. The BC and CC are celebrated global
metrics which can better identify the influential nodes
that make a difference in networks. However, they can-
not be applied in large-scale networks due to their
computational complexity [26]. Another limitation of
CC which is the lack of applicability to networks with
disconnected components: two nodes that belong to dif-
ferent components but do not have a finite distance
between them.

Except these three measures, several available cen-
trality measures are also proposed, such as semilocal
centrality [26], eigenvector centrality [27], Katz’s cen-
trality [28], PageRank [29] and LeaderRank [30]. These
methods do have great performances in an unweighted
network but do not work so well in a weighted net-
work, because they are just designed for unweighted
and undirected networks at the beginning [31]. How-
ever, there are lots of weighted networks in real world
[32,33]. Some centrality measures have been extended
to weighted networks [14,24,34,35]. In addition, due to
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the efficiency to combine different data [36-38], evi-
dence theory is applied to take the different measures
into consideration to obtain the final result [39-42]. It
is still an open issue to design an effective ranking mea-
surement to capture influential nodes.

The existing efficiency centrality (EffC) [43] based
on network efficiency is obtained by considering the
influence of each node’s contributions to the entire net-
work’s efficiency. This method performs well in many
unweighted networks. However, it cannot be applied in
weighted networks because the definition of network
efficiency was proposed for unweighted networks at the
beginning, and it neglects the weight strength of nodes
in the weighted networks. In this paper, we propose the
network efficiency in a weighted network [44]. Then
the EffC in a weighted network (EffC™) is proposed by
a combination of degree and weight strength of each
node. To evaluate the performance of the proposed cen-
trality measure, we adopt the susceptible and infected
(SI) model to examine the spreading influence of the
nodes ranked by different centrality measures. The sim-
ulations on real networks are used to show the efficiency
of the proposed method.

The paper is organised as follows. Section 2 begins
with a brief overview of the existing centrality measures.
Then, the proposed method for identifying the influen-
tial nodes is developed and illustrated by an example
network in §3. In §4, the SI model is used to evaluate
the performance in a real complex network. Finally, a
simple conclusion is presented in §5.

2. Preliminary
2.1 Centrality measures for influential nodes

An unweighted network can generally be represented
as aset G = (V,E). Here, V and E represent the
number of nodes and the number of edges, respectively.
As for a weighted network, it is described as a set
G = (V,E, W) [25]. W is the weight set of E, i.e.,
link E;; from nodes i to j has a weight w;; € W.

DEFINITION 1

The DC of node i, denoted as d;, is defined as

N
ki =Y xij. (1)
J

where N is the total number of nodes i and x;; represents
the connection between nodes i and j, i is the focal
node, j represents all other nodes. The value of x;; is
defined as 1 if node i is connected to node j, and O
otherwise.
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DEFINITION 2

The BC of node i, denoted as b;, is given as
gjk(@)
b=y =, )
ki 8jk

where g i denotes the number of shortest binary paths
between nodes j and k, and g j« (1) is the number of those
paths that go through node i [25].

DEFINITION 3

The CC of node i, denoted as c;, is defined as
. 1
= —

> dij
where d;; denotes the shortest distance from node i to
node j.

3)

Ci

The sum of the weights between two nodes represents
the distance between them in a weighted network. Here
are the above measures which are extended to weighted
networks [24].

DEFINITION 4 (DC in a weighted network)

The DC of node i, denoted as diw , 1s defined as

N
kIWZZw,'j, 4)
J

where w;; is the weight of the edges between nodes i
and j, which is greater than 0 when node i is connected
to node j.

DEFINITION 5 (BC in a weighted network)

The BC [24] of node i, denoted as b}", is defined as

=y D )

w
Gok#i 8 jk
where g}vk represents the number of binary shortest paths

between nodes j and k, and g}’.vk (i) is the number of those
paths that go through node i.

DEFINITION 6 (CC in a weighted network)

The CC [25] of node i, denoted as ¢ (i), is defined as

1
¢ = T 6)
> dij
where d;; is the shortest distance or connection strength
between nodes i and j.
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2.2 Efficiency centrality

EffC [43] takes into account both the influence of each
node itself and the global structure of the graph. The
network efficiency is a measurement of how efficiently
the information passes within the nodes. The kernel of
EffC is that removing a single node in an unweighted
network, then assessing the efficiency changes of the
network. Once a node is removed in a network, at the
same time, the edges that are related to it will disappear.
Therefore, if a pivotal node is removed, the structure
and efficiency of the network will change a lot (e.g. the
changing of the shortest path between two nodes, the
connectivity of a graph).

DEFINITION 7

The efficiency e;; is defined as [43]
1

Z‘j’

where d;; is the shortest distance between nodes i and

Jj.

(N

ejj =

DEFINITION 8

Denote E[G] as the efficiency of network G [43]

D itjeG €ij . 1 b
N(N —1) N(N —1) iLieG dij

E[G] = ()

where E[G] is the average of ¢;; and measures the mean
flow rate of information over G and the quantity of E[G]
varies in the range [0,1].

DEFINITION 9

The EffC of node £k is defined as

E  E[G] - E[G' (k)]

A
EffC(k)=7 E[G] , k=1,...,N.

©)

Here, if the node k has Q links to neighbours and the
sum of edges is P, the subgraph G’(k) indicates a graph
with N —1 nodes and P — Q edges obtained by removing
node k and its neighbour edges from G.

3. Modified efficiency centrality

In unweighted networks, the efficiency of a network
is defined as the average of the shortest distance of
the network as shown in eq. (8). It gains good results
in unweighted network. However, if we extend this
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definition to weighted networks, the results seem to be
inaccurate because it considers the degree of nodes only.
In weighted complex networks, the distance between
two nodes is represented by the sum of the weights
between the nodes. In this paper, we modify the def-
inition of efficiency in weighted networks. Both the
degree and the weight of a node are considered, and the
global structure is concerned about at the same time.
The modified EffC conforms to the ideas of the EffC in
unweighted networks [43]. Each node will be removed,
and the affecting degree of network efficiency and struc-
ture will be calculated after each removal. Obviously,
once a node disappears in a network, the edges related
to the node will disappear. The removal of a node in a
weighted network will have a different impact depend-
ing on the node itself. If an important node in the network
is removed, its removal will bring great change to the
network efficiency and global structure. Inspired by net-
work aggregation degree [44], we extend EffC to be
applied in weighted networks.

DEFINITION 10

Denoting s as the sum of the average degree of nodes
in a weighted network

N o

JEN;

1
; (10)
a),'j

where N; is the set of the neighbours of node i. It takes

into account the nodes and their neighbours and the
weight between them.

DEFINITION 11

Denoting L™ as the modified average distance of a net-
work [44],

1
Lm:—.E am.
N(N-1) &~Y
i#]

(1)

The number of nodes in the network is denoted by N
and dir}‘ denotes the average distance between nodes i
and j in the degraded network which is an unweighted
network keeping the routes of the weighted network.
By this modification, the distinct inaccuracy that a node
which has less number of neighbours than others will
show greater importance, can be avoided.

DEFINITION 12

Denoting E™[G] as the efficiency of the weighted net-
work G,
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EM[G] = 1 8 1
g, Lm Z Z — =17.0119,
B 1 1 Ni EN; wij
~ ©N 1 1 1
Zl N; ZjeNi w; NWN-D)° Zz;éj dzr}]
(12)

dm = 1.5536,
8(8 -1 Z

When N = 1, let E™[G] = 1, and so the efficiency of i#]
the weighted network G varies in the range [0,1].

EY[G] = ——
DEFINITION 13 s- L X
The modified EffC in a weighted network, EffC™, is PN L jens o s iy 4
defined as = 0.0918. (14)
m
EffC™ (k) = AET . . .
Em When node 4 is removed, the subgraph is as shown in
E™[G] — EM[G' (k)] figure 2, where the dashes represent the removed part.
= EM[G] , k=1,...,N. Then calculate each value as follows:
(13) Firstly, calculate the sum of the average degree and

the modified average distance of the whole network

Here, if the node k has Q links to neighbours and the after removing node 4, respectively, with eqs (10)
sum of edges is E, G/(k) means a graph with N — 1 and (11):
nodes and £ — Q edges obtained by removing node k
and its neighbour edges from G. 71 1
s = 21: N Z v 6.000,
JEN;

1
L™= ——— . df} =18333.

3.1 Explanation of the example 711 iz

The network analysis is widely used to model complex
systems [45-47]. In this section, a numerical example
is given to illustrate the proposed method EffC™. We
consider a network with 8 nodes and 13 weighted edges

Secondly, obtain the efficiency of the network after
the removal by eq. (12):

which are shown in figure 1, where the thickness of the EY[G(4)] = !

edge indicates the size of the weight and the weight of s - Lm

the unlabelled edges is 1. From eqs (10) to (13), the _ 1

initial attributes of the example network are calculated N S I S S am
as follows: (2;9(1)\/; ZJENi @i 70=D Zl#l Y

Figure 1. A weighted network with 8 nodes and 13 edges
(the weight of the unlabelled edges is 1). Figure 2. A weighted network after removing node 4.
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Table 1. EffC™ of each node in figure 1. The first row shows
the initial attributes of the whole network without removing
any node. s is the sum of the average degree of nodes of graph
1. L™ is the modified average distance of the network.

Removed s L™ E™M[G] EffC™ (k)
node i

- 7.0119 1.5536  0.0918 -

Node 1 6.3333 1.5476  0.1020 —0.1114
Node 2 6.2500 1.5476  0.1034 —0.1262
Node 3 6.2500 1.5476  0.1034 —0.1262
Node 4 6.0000 1.8333 0.0909 0.0097
Node 5 5.9167 1.5000  0.1127 —0.2274
Node 6 6.3333 1.5238  0.1036 —0.1288
Node 7 6.2500 1.5238  0.1050 —0.1438
Node 8 5.7500 1.5000  0.1159 —0.2630

Finally, EffC™ of node 4 is calculated by eq. (13):
AEY _ EY[G] - EV[G4)]

EffC%(4) =
EV EV[G]

= 0.0097.

The EffC™ values of the other nodes are similarly
obtained and they are shown in the fifth column of
table 1.

As can be seen in table 1, the value of EffC™ of node
4 is the maximum of all nodes in the example network.
In fact, it is intuitional that node 4 is a pivotal node in
the network because it connects to most nodes. Without
node 4, the network efficiency will decline obviously.
To better analyse the effect of this proposed method on
identifying influential nodes in networks, it is applied in
the real complex networks.

4. Applications and analysis
4.1 The EffC™ applied to real networks

In this section, some real complex networks are used
to evaluate the performance of the proposed measure.
The following is the detailed description of the chosen
networks:

(i) Freeman’s electronic information exchange system
(EIES) network data [24,25]
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The dataset was collected from three different net-
work relations among researchers by Freeman in 1978.
It is a weighted and directed network which contains
three networks of researchers who is working on social
network analysis. We adopt the third network. The nodes
in the third network denote the number of messages sent
among 32 researchers on an electronic communication
tool, and the node’s strength in this network is based
on a ratio scale [24]. For instance, the degree of node
Lin Freeman is 31 and the weight is 3171. It means that
he had contact with 31 other researchers, and the total
number of messages sent in electronic communication
tools is 3171.

(i1) USAir97 network data

This is an undirected and weighted network, whichis a
US air flight network in 1997. In the network, each node
represents a US airport, and each line contains the name
of two US airports. The weights between two nodes
denote the distances between two connected airports in
the coordinate axis. It can be downloaded on ‘http://
vlado.fmf.uni-lj.si/pub/networks/data/’.

(ii1) Groad network data

This is a network describing the link information of
German highway network. It includes the adjacency
matrix and the labels of all 1168 nodes [48]. The data can
be obtained on ‘http://vlado.fmf.uni-1j.si/pub/networks/
data/’.

(iv) Newman’s scientific collaboration network

It is the co-authorship network based on preprints
posted to Condensed Matter section of arXiv E-Print
Archive between 1995 and 1999 [49]. It contains four
networks of authors and papers. The third network is
adopted, which is a weighted static one-mode network.
The nodes in the third network denote the authors and
the strength of the node in the network represents the
sum of joint papers between different authors. The data
can be obtained on ‘https://toreopsahl.com/datasets/#
newman2001/°. Table 2 shows the basic topological
properties of the four networks.

4.2 SI model for evaluation

To evaluate the performance of our ranking method, the
SI model [52,53] is adopted to examine the spreading

Table 2. The basic topological features of the four real networks. n and m are the total number of nodes and links, respectively.
kmax and (k) denote the maximum and average degree. C and r are the clustering coefficient [50] and assortative coefficient

[51], respectively.

Network n m (k) kmax C r

Freeman’s 32 230 14.375 31 0.7332 —0.0320
USAir97 332 2126 12.810 139 0.3126 —0.2079
Groad 1168 1243 1.060 12 0.0012 0.0251
Newman’s 16726 47594 5.691 107 0.0004 —0.1760
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Figure 3. In Freeman’s network, the cumulative number of infected nodes as a function of time with 30 steps. Results are
obtained by averaging over 1000 implementations when o = 0.2.
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Figure 4. In Freeman’s network, the cumulative number of infected nodes as a function of time with 30 steps. Results are
obtained by averaging over 1000 implementations when o = 0.5.

influence of top-L nodes ranked by these different
measures.

In the SI model, there are two compartments, namely,
susceptible S(#) and infected I(¢). S(z) is used to
represent the number of individuals susceptible to the
disease (not yet infected), while /(r) means the number
of individuals who have been confirmed to be infected
and are capable of spreading the disease to other suscep-
tible individuals. At the beginning, a node that is tested
is set to be an infected one, and the infected individual
will randomly infect susceptible neighbours with prob-
ability P at each step. Node j is infected by node i with
probability P [54-56]:

o
:[—} w0,
oy + 1

where w;; is the weight of edge E;; and « is a
positive constant in the network. The smaller the «
is, the more quickly the infection spreads because
[wij/(wp + 1)] < 1. How to evaluate the efficiency of
identifying influential nodes is an open issue [57]. This
model is slightly different from the standard SI model
where all the neighbours of an infected node have the
chance to be infected and it is used to mimic the lim-
ited spreading capability of an individual [26,58,59].
The trial proceeds until all nodes are infected. Denoting
N; as the sum of total infected nodes at time ¢, clearly
N; increases with ¢ and remains stable when there is no

15)

node to be infected. A total of 1000 implementations are
considered, and the mean value of N; is denoted (N;).

4.3 The value of o

In this section, we discuss the impact of the value of «
on the assessment based on the SI model. According to
eq. (15), the propagation probability P is determined
by the parameter «. The change of the parameter o
will cause the changes of the infection efficiency of
infected nodes at each time. As [w;;/(wy + 1] < 1,
the smaller the o is, the more quickly the infection
spreads.

We focus on whether the values of & will have an effect
on the comparison of the two methods. The Freeman’s
EIES network data is adopted to evaluate the effect of
the value of parameter «. As shown in figures 3-6, the
change of parameter « will mainly affect the propa-
gation time (steps) when all the nodes in the network
are infected. The smaller the « is, the more quickly the
infection spreads, i.e., the shorter the time needed for
all nodes to be infected. Such changes are global and it
will affect the infection efficiency of all infected nodes.
The difference in the infection capacity of nodes still
depends on their own information (degree and weights)
and their location in the network. If the value of « is too
small, it will not result in any significant difference in
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Figure 5. In Freeman’s network, the cumulative number of infected nodes as a function of time with 30 steps. Results are

obtained by averaging over 1000 implementations when o = 1.

10 10 10
9 9 9
8 8 8
7 7 7
6 6 6
A A A
Z5 Z5 Z5
\ \" \"
4 4 4
3 3 3
2 —0—pc* 2 2
1 —0—Erc™ 110 1le
0 0 0
o 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 o 5 10 15 30 35
t
(@) (b) (©)

Figure 6. In Freeman’s network, the cumulative number of infected nodes as a function of time with 30 steps. Results are

obtained by averaging over 1000 implementations when o = 2.

Table 3. The rank of nodes obtained by different measures.

Rank DC BC CC Effc™ DC BC CcC Effc™
Freeman USAir97
1 1 8 5 1 118 8 172 118
2 29 11 24 29 261 118 182 47
3 8 24 8 31 248 261 198 65
4 2 32 30 2 67 47 216 144
5 31 31 32 8 255 313 166 33
6 32 29 4 11 47 201 206 147
7 11 2 6 24 166 13 225 162
8 24 18 18 32 201 67 133 311
9 10 25 17 27 182 182 140 219
10 27 10 9 10 147 255 181 177
Groad Newman
1 693 219 698 543 755 36 - 755
2 403 543 219 393 1846 1267 - 4474
3 300 698 450 850 80 213 - 1846
4 217 693 565 853 1842 1295 - 7315
5 373 758 331 219 1530 755 - 4034
6 410 403 763 861 1529 4474 - 5489
7 758 763 267 531 208 4034 - 311
8 207 565 663 889 311 2084 - 80
9 219 886 729 909 1714 52 - 1842
10 331 373 347 511 1713 406 - 7314

the propagation effect. With the increase of «, the dif-
ference in infection efficiency is more significant. But
the value of @ may be too large to lead to more infection
within the specified time. Therefore, the value of o does

not affect the final comparison of different measurement
methods. It can be seen that under the same «, the top-10
nodes evaluated by effective centrality can always infect

all nodes faster and effectively.
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4.4 Experimental results and analysis

In this section, different real networks are used to
illustrate the difference between the proposed
measures EffC™ and DC, BC, CC. The DC, BC and
CC methods are extended to be applied in weighted net-
works, denoted as DCY, BC¥ and CCV¥, and given by
eqs (4)—(6). The top-10 list obtained by different cen-
trality measures is shown in table 3. As shown in
table 3, both DC and EffC™ rank node 1 as the top-1
node in Freeman’s EIES network, while BC identifies
node 8 as the influential spreaders. However, CC ranks
node 5 as the top-1 node. In USAir97 network, node
118 is selected as the most influential node by DC and
EffC™, and BC ranks it as the top-2 node. CC assigns
the highest score to node 172. As the size of the net-
work grows, the list of top-10 nodes found by different
methods is quite different. In the Groad network, nodes
543 and 698 seem to perform better than other nodes by
most centrality measures. Because the Newman network
is directed, CC does not apply to this network. Thus,
the column of CC in Newman is empty. DC and EffC™
assign the highest score to node 755. However, there is
still a big difference between the elements and the order
of the top-10 nodes evaluated by different methods. In
order to evaluate the difference between our ranking
method and others, we calculate the cumulative number
of infected nodes with the initially infected nodes being
those that appears in the top-10 list by the different cen-
trality measures. The results are shown in figures 7-10.

From figures 7a-7c, one can observe that EffC™ is
seen to be the best among all four measures in Freeman’s
network. EffC™ performs better than BC¥ and CC%. In
figure 7a, it seems that the EffC™ measure behaves quite
similar or close to DC. However, it can be seen that the
number of errors in EffC™ is smallest compared to DCV,
BCY and CC¥. That is, the calculation of EffC™ is more
accurate.

In USAir97 network (figure 8), it can be seen that
the final number of our proposed EffC™ is larger than
the other three measures. In figures 8a and 8b, one can
observe that the effect of the proposed method is always
better than DC¥ and BCVY. In figure 8c, although the
node spreading speed after 1 = 30 is almost the same
with CCV, the propagation speed in the early stage is
better than that of CC%. In addition, it is shown in fig-
ure 8c that errors of EffC™ are smallest and so we can
infer that the final number of the infected nodes is more
effective and accurate. This inference indicates exactly
that our proposed EffC™ is better.

In Groad network, as shown in figure 9, it can be seen
that the contrast with BC and DC (figures 9a and 9b)
shows that more nodes are infected after 80 steps, which
are caused by EffC™’s top-10 nodes. In figure 9c, the
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Figure 7. In Freeman’s network, the cumulative number of
infected nodes as a function of time with 30 steps, with the
initially infected nodes being those that appear in the top-10
list by the proposed EffC™ and other centrality measures in
Freeman’s network. Results are obtained by averaging over
1000 implementations when o = 1.

process of infection is almost the same with CC% when
t > 50, and the errors of EffC™ are obviously smaller
than that of DC¥ and BCV.

From figure 10, one can see that EffC™ can achieve
almost the same performance of infected nodes F(z)
compared to DC whent < 10 in the Newman’s network,
and EffC™ outperforms DC for the spreading ability
while ¢ is between 10 and 40. DC is slightly better than
EffC™ after + = 50. EffC™ has better infectious effect
and less error compared to BC as can be seen in figure
10b.



Pramana — J. Phys. (2019) 92:68

300

250F
2001

A
Z 1501
v

100

250F
2001
A
Z 150
v

100

10 20 30 40 50 60

0
© t

Figure 8. In USAir97 network, the cumulative number of
infected nodes as a function of time with 50 steps, with the
initially infected nodes being those that appear in the top-10
list by the proposed EffC™ and other centrality measures in
Freeman’s network. Results are obtained by averaging over
1000 implementations when o = 1.

4.5 The EffC™ compared with other centrality
measures

In this section, four real network data are used to show
the difference between the proposed method and DCY,
BCY and CCY. We mainly compare the influence of the
nodes that appear in the top-10 list either by EffC™ or
other centrality measures. From figures 7-9 it can be
seen that the initially infected nodes which appear in
the top-10 list by the proposed EffC™ can effectively
infect other nodes compared to other centralities. That
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Figure 9. In the Groad network, the cumulative number of
infected nodes as a function of time with 80 steps, with the
initially infected nodes being those that appear in the top-10
list by the proposed EffC™ and other centrality measures in
Freeman’s network. Results are obtained by averaging over
1000 implementations when o = 1.

is, EffC™ can give comparatively better performance
than others in identifying influential nodes.

Compared to other methods, EffC™ takes more
information into account to capture the influential nodes.
As can be seen in eqs (10)—(13), the definitions of
s and L™ are based on DC, BC and CC. Both the degree
of the node and the shortest paths between nodes are
considered when ranking the nodes and the definition
of E™ inherits the thought of EffC, removing a node
and edges related to it to calculate the difference. In
this way, the global structural information in a network
is taken into consideration as well. One can observe
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Figure 10. In the Newman network, the cumulative number
of infected nodes as a function of time with 100 steps, with the
initially infected nodes being those that appear in the top-10
list by the proposed EffC™ and other centrality measures in
Freeman’s network. Results are obtained by averaging over
1000 implementations when o = 1.

that EffC™ is an improved method based on traditional
measurements (DC, BC and CC) and EffC.

As the proposed EffC™ comprehensively considers
the comprehensive information of nodes and networks
based on DC, CC and EffC, the time complexity of the
algorithm will increase accordingly. This method needs
to calculate the shortest path of the network, which is
calculated atotal of N times. The calculation of CC takes
computational complexity O(n*) with Floyd’s algo-
rithm [60]. Itis a deficiency of this method. Although the
computational complexity has increased, it can be seen
from the evaluation results of the SI model that EffC™
can identify the influential nodes more efficiently and
accurately. Therefore, EffC™ can be effectively adapted
to capture influential nodes in small and medium net-
works, such as a traffic network.

5. Conclusion

In this paper, EffC™ measure is proposed based on
weighted network efficiency. We define the modified

Pramana — J. Phys. (2019) 92:68

efficiency of a network, and the comprehensive infor-
mation of the degree of the node, the shortest distance
between the nodes and the topology of the nodes in the
network are taken into account in the proposed mea-
sure. To evaluate the performance, we apply our measure
on four real networks and use SI model to evaluate
the spreading process. Further, the average number of
F(t) (t = 10) of the top-K nodes which are ranked
by the proposed EffC and different centrality is used
to compare and analyse the ranking ability of different
measures.

Four different real networks are adopted to evaluate
the effectiveness of the new approach. Through com-
parison of experiments with DC%, BCY and CC¥, our
proposed EffC™ can give a comparatively better perfor-
mance than the others. Node ranking results are based
on more valid information, and so one can observe that
EffC™ is more effective and accurate than the other
methods from the comparison results of the SI model.

The numerical examples show that the proposed cen-
trality can capture influential nodes well in networks as
it considers more information than other methods. But
the complexity of computing is one of its drawbacks.
It is more suitable for identifying influential nodes of
small- and medium-sized networks.
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