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Abstract. We have studied the evolution of cosmological parameters by considering exponential harmonic
field with collisional matter. A comparison has been made with the behavior of these parameters in the presence
of ordinary matter and the model �C DM . We have also compared the evolution of these parameters with the
ones obtained in the modified gravity f (R) and f (R, T ) theory case. The results are in line with those of the
modified gravity so that the harmonic exponential field can be used to explain why the Universe has gone from
the deceleration phase to the acceleration phase.
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1. Introduction

The recent observations have shown that the Universe
is in a phase of accelerated expansion (Riess et al.
1998, 2004; Springel et al. 2006). This acceleration
of the Universe is due to two phenomena: dark matter
and dark energy, which represent 95% of the content
of the Universe, 28% for the dark matter and 67% for
the dark energy (Oikonomou et al. 2014; Bernal et al.
2017; Aubourg et al. 2015). It should be that this phase
of accelerated expansion is characterized by a nega-
tive state equation w � −1. The major challenge of
the scientific work is to show why the Universe has
gone from the deceleration phase to the recent accel-
eration phase. Hence several theories were developed
to explain this fact: the modified gravity f (R, T ) and
f (R). Let us mention that the Universe is accelerated
for low values of the redshift, and its values which sepa-
rate the acceleration and deceleration phases are called
redshift transition, noted zt , and is based on observa-
tions zt = 0.46 ± 0.13 (Riess et al. 2004, 2007).

Several authors used scalar fields to explain the
acceleration of the Universe. Nozari (2014), for exam-
ple, used the tachyon field to study the cosmological
evolution of late-time to obtain very interesting results.
Harko et al. (2016) studied the early-time and late-

time cosmology for one model of modified gravity with
extended non-minimal derivative couplings.

This work focusses on the behavior of cosmological
parameters for the exponential harmonic field.

Overwise, Eells and Lemaire (1978), based on the
harmonic maps, introduced exponential harmonic maps
which they defined as a regular extremum of the expo-
nential energy. The main interest of the use of exponen-
tially harmonic maps is the fact that Lagrangian of this
field is a generalization of bosonic string Lagrangian
(with only a dilatonic field) written in Einstein frame
(Lidsey et al. 1998). Indeed, if λ ≈ 0, this model tends
to bosonic string Lagrangian.

Kanfon et al. (2002) introduced exponentially
harmonic field in cosmology and showed that this field
can reproduce the phenomena of quintessence. Ten
years later, they showed that exponentially harmonic
field can play inflation (Kanfon & Lambert 2012).

Here, we focus on the era after recombination, where,
in addition to the ordinary matter in the Universe, there
are exponentially harmonic field and another matter in
self-interaction. The objective is to verify if the expo-
nentially harmonic field can be a good choice to explain
the late time cosmology. Let us note that the model of
collisional matter has been studied and showed interest-
ing results (Kleidis and Spyrou 2011; Freese & Lewis
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2002; Gondolo & Freese 2002; Xu & Huang 2012). Also
the evolution of cosmological parameters with self-
interacting matter has already been done by Oikonomou
& Karagiannakis (2014) by considering the modified
gravity f (R) and by Baffou et al. (2016) by consider-
ing the modified gravity f (R, T ).

This paper is organized as follows: In section 2, we
present the model. The collisional matter is recalled in
section 3. Section 4 is devoted to the study of time
evolution of the cosmological parameters where the
Universe is considered to be filled by the usual ordi-
nary matter and the collisional matter in the presence
of exponentially harmonic field. In section 5, we exam-
ine the evolution of the equation of state of dark energy
in the case of exponentially harmonic field, where the
matter content is assumed as a fluid which is com-
posed of collisional matter and radiation. Three types
of potentials have been used: quadratic potential, expo-
nential potential and Higgs potential. We conclude in
section 6.

2. Presentation of the model

Let us consider the following action of F-harmonic
scalar minimally coupled (Kanfon et al. 2002):

∫
M

d4x
√−g

(
− R

2k2 + F(φ, e(φ))

)
, (1)

where k2 = 8πG , e(φ) = (
φ̇2

2 ) and F is a F-harmonic
map. If we pose

F(φ, e(φ)) = exp

(
λφ̇2

2

)
− 1 − V (φ), (2)

we obtain the specific F-harmonic action, precisely the
exponential harmonic action

∫
λ

d4x
√−g

(
− R

2k2 + exp

(
λφ̇2

2

)
− 1 − V (φ)

)
.

(3)

Note that the general form of the last action can be
present in the following form:
∫

λ

d4x
√−g

×
(

− R

2k2 + exp

(
λ

2
∂αφ∂αφ

)
− 1 − V (φ)

)
.

(4)

Here, we used action of the field with the Lagrangian
of matter. Let us consider that∫

λ

d4x
√−g

×
(

− R

2k2 + exp

(
λ

2
∂αφ∂αφ

)
− 1 − V (φ)

)
+ Sm,

(5)

where g is the trace of the metric gμν , λ is the
normalization parameter and R is the Ricci curvature,
R = gμν Rμν .

If we vary equation (5) with respect to gμν , we deduce
the equation of Einstein as

Gμν = k2Tμν, (6)

where Gμν is the Einstein tensor and Tμν is the
energy-momentum tensor, and we identify as follows:

Rμν−1

2
gμν R = k2

[
λ

2
∂μφ∂νφ exp

(
λ

2
gμν∂αφ∂αφ

)
+

−1

2
gμν exp

(
λ

2
gμν∂αφ∂αφ

)

−1

2
− V (φ)

]

+k2 1√
g

δSm

δgμν
. (7)

Additionally, we vary (5) with respect to φ and this
provides the Klein–Golden equation:

φ̈(1 + λφ̇2) + 3H φ̇ + V
′
(φ)

λ
e(− λ

2 φ̇2) = 0 (8)

We are interested in investigating the cosmological
implications of the minimal coupling. Hence, we
focus on a spatially-flat Friedmann–Robertson–Walker
(FRW) background metric of the form

ds2 = dt2 + a2(t)δi j dxidx j, (9)

where t is the cosmic time, xi are the co-moving spatial
co-ordinates and a(t) is the scale factor.

We deduce from equation (7), the Friedman equations

3H2 = k2
[

1

2
e

(
λ
2 φ̇2

) (−1 + λφ̇2) + 1

2
+ V (φ) + T m

00

]

(10)

and

2Ḣ + 3H2 = k2
[
−1

2
e

(
λ
2 φ̇2

)
+ 1

2
+ V (φ) + T m

11

]
.

(11)
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3. Recall of the collisional matter model

Note that the model of collisional matter was introduced
for the first time by Fock (1959) and then by Kleidis and
Spyrou (2011). This model is also studied in f (R) grav-
ity (Oikonomou & Karagiannakis 2014) and in f (R, T )

gravity (Baffou et al. 2016). The term εm is the total
mass-energy density corresponding to matter and ρm is
the energy density of matter. This total energy density
εm is then given by the following expression:

εm = ρm + ρm�, (12)

where ρm refers to the part that does not change due to
the usual matter content (Kleidis and Spyrou 2011; Fock
1959). When matter is collisional, the energy momen-
tum tensor receives another contribution in terms of
potential energy, that is �, that includes all the extra
interactions between the collisional matter. Then ρm�

expresses the energy density part of the energy momen-
tum tensor associated with thermodynamical content of
the collisional matter (Baffou et al. 2016). This fluid
is obviously not dust, but has a positive pressure and
satisfies the following equation of state:

Pm = wρm (13)

with

0 < w < 1. (14)

w denotes the parameter of equation of state of the col-
lisional matter. w = 0 represents the non-collisional
matter case. In this case, εm = ρm .

The potential energy density, expressing collisional
matter can be written as

� = �0 + 3w ln

(
ρm

ρm0

)
(15)

with ρm0 and �0 being their current values. Then from
equation (12) to (15), the total-energy density of the
Universe can be written as

εm = ρm

(
1 + �0 + 3w ln

(
ρm

ρm0

))
. (16)

εm is the T00 component of the energy momentum
tensor.

Throughout, the continuity equation and the motions
of the volume elements in the interior of a continuous
medium can be read

∇μTμν = 0. (17)

Using the FRW line element (9), the conservation law
of the equation (17) is

ε̇m + 3H(εm + pm) = 0, (18)

where H = ȧ
a with a as the scalar factor. If one considers

the scalar factor, one can give the following definition:

ρm = ρm0

(a0

a

)3
(19)

with a0 as the present value of the scale factor. The
collisional matter is actually described by equations
(16) and (19) and used in the rest of the paper. The
value of �0 is equal to

�0 =
(

1


M
− 1

)
. (20)

4. Late-time cosmology

4.1 Deceleration parameter

Here we investigate several cosmological models in the
framework of gravitational theories of the exponential
scalar field focusing on the late-time evolution. For this,
we use the Friedmann equations from the field equations
(10) and (11):

3H2 = k2
[

1

2
e

(
λ
2 φ̇2

) (−1+λφ̇2) + 1

2
+ V (φ) + εm

]
,

(21)

2Ḣ + 3H2 = −k2(Pφ + Pm), (22)

where

ρφ = 1

2
e

(
λ
2 φ̇2

) (−1 + λφ̇2) + 1

2
+ V (φ), (23)

Pφ = 1

2
e

(
λ
2 φ̇2

)
− 1

2
− V (φ). (24)

ρφ and Pφ denote the energy density and pressure of the
dark energy.

We introduce the deceleration parameter q, which is
an indicator of the accelerated expansion, and is defined
as follows (Harko et al. 2016):

q = d

dt

1

H
− 1. (25)

The negatives values of q correspond to accelerating
evolution. We can use the redshift z, defined as

1 + z = a0

a
. (26)

In the following, we have posed a0 = 1. The equations
(19) and (16) lead to

εm = ρmoa−3 [1 + �o + 3wln(a)] . (27)

Thus, time derivatives can be expressed as

d

dt
= −H(z)(1 + z)

d

dz
. (28)
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If we combine equations (21) and (22), and use (8), we
obtain the following system:

⎧⎪⎨
⎪⎩

4Ḣ + 12H2 = e(− λ
2 φ̇2)

(−2 + λφ̇2
) + 2 + 4V (φ)

+ 2εm + 2pm,

φ̈
(
1 + λφ̇2

) + 3H φ̇ + V
′
(φ)
λ

e(− λ
2 φ̇2). (29)

Now, let us introduce some dimensionless paramaters:

τ = H0t, H = H0h, φ = H0�,

λ = μ

H2
0

, V (φ) = 3H0V (�), (30)

with H0 a constant. From (30), we have

φ̇ = H0
d�

dτ
,

φ̈ = H2
0

d2�

dτ 2 ,

Ḣ = H2
0

dh

dτ
. (31)

Using the new variables (30) and (31), system (29)
becomes
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d�
dτ

= �,
dh
dτ

= −3h2 + e(
μ
2 �2)(−2 + μ�2) + 2 + 4V (�)

+ 2εm + 2pm,

d�
dτ

= − 3h�
1+μ�2 − V

′
(�)

μ(1+μ�2)
e−(

μ
2 �2).

In terms of the dimensionless variables, the deceleration
parameter (25) becomes

q = d

dτ

(
1

h

)
− 1, (32)

q = 1

2
(1 + 3weff) . (33)

The dimensionless time-redshift relation (28) be-
comes

d

dτ
= −h(z)(1 + z)

d

dz
. (34)

System (32) is the main tool to be used for analysing the
cosmological evolution taking into account the expo-
nential harmonic field. In the following, we determine
system (32) in the context of the redshift and we plot the
decceleration parameters and state equations according
to the different expressions of potential. Three poten-
tials have been made: pawer-low potential, exponential
potential and Higgs potential (Harko et al. 2016).

4.2 Parameters behaviors

4.2.1 Power-law potential: V = b�m . Using
equations (16), (19) and (26), system (32) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d�
dz = − �

(1+h)h ,

dh
dz = 3h

1+z − e(
μ
2 �2)(−2+μ�2

)
(1+z)h

−2+4b�m+2(1+w)ρm0(1+z)3(1+�0+3wln(1+z))
(1+z)h ,

d�
dz = 3�

1+μ�2 + mb�m−1

μ(1+μ�2)
e−(μ

2 �2
)
.

4.2.2 Exponential potential: V = v0 exp(−μo�).
Equation (32) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d�
dz = − �

(1+h)h ,

dh
dz = 3h

1+z − e(
μ
2 �2)

(−2+μ�2)
(1+z)h

−2+4voe(−μo�)+2(1+w)ρm0(1+z)3(1+�0+3wln(1+z))
(1+z)h ,

d�
dz = 3�

1+μ�2 − μovoe−μo�

μ(1+μ�2)
e−(

μ
2 �2). (35)

4.2.3 Higg’s potential: V = vo−1
2 m2�2+1

4��4. We
assume that vo, m and � are constants. According to
Bezares-Roder Nils et al. (2007, 2010) where the Higgs

potential is considered, we notice that vo = 3
4

μ4

α
with

μ2 > 0 and α > 0 as real-valued constants. Equation
(32) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d�
dz = − �

(1+h)h ,

dh
dz = 3h

1+z − e(
μ
2 �2)

(−2+μ�2)+2+4(vo− 1
2 m2�2+ 1

4 ��4)

(1+z)h

−+2(1+w)ρm0(1+z)3(1+�0+3wln(1+z))
(1+z)h ,

d�
dz = 3�

1+μ�2 + (−m�+��3)

μ(1+μ�2)
e−(

μ
2 �2). (36)

In Figures 1, 2 and 3, we plot deceleration parameters
and equation of state for the power-law potential, expo-
nential potential and Higgs potential.

In Fig. 1, the curve showing the evolution of the
deceleration parameter in the presence of collisional
matter is closer to the model �C DM than the non-
collisional model. We also note that the transition from
the deceleration phase to the acceleration phase is also
carried out from high redshift to the low redshift val-
ues for collisional matter, �C DM and non-collisional
matter. Futhermore, we see that this transition is real-
ized for equation of state. These results are similar to
that obtained by Oikonomou & Karagiannakis (2014)
and Baffou et al. (2016).
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Figure 1. The graphs show evolution of the deceleration parameter (left), and effective equation of state parameter (right),
as a function of the redshift, for exponential harmonic field in the case of the power-law potential. The dot, dashed and magenta
refer to non-collisional matter, collisional matter and �C DM model, respectively, with λ = 0.1 and m = 5.
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Figure 2. The graphs show evolution of the deceleration
parameter (left), and effective equation of state parameter
(right) as a function of the redshift, for exponential harmonic
field in the case of the exponential potential. The dot, dashed
and the magenta refer to non-collisional matter, collisional
matter and �C DM model, respectively, with λ = −0.01,
m = −5 and v = −0.1.

As seen in Fig. 2, for the curve representing the
deceleration parameter evolution from the high redshift
to the low redshift, we note that the transition from the
deceleration phase to the acceleration phase is carried
out in the presence of the collisional matter, �C DM
model and non-collisional matter. Moreover, in the pres-
ence of the collisional matter, the curve is closer to the
�C DM model than that of the non-collisional mat-
ter in the acceleration phase. But the curves showing

the evolution of the deceleration parameter in the
presence of the collisional matter and the non-collisional
matter, coincides at high values of the redshift in the
deceleration phase. This effect leads to the assertion
that collisional matter does not exist at early times but
it arises from ordinary matter at the low redshift and
increases to �C DM , the low redshift as they see in
modified gravity (Baffou et al. 2016).

Figure 3 shows the evolution of the deceleration
parameter and the equation of state for an ordinary mat-
ter, a matter in self-interaction and the �C DM model
for the Higgs potential of the exponential harmonic
field. As for the previous potentials, the parameter
behaviours (deceleration parameter and equation of
state parameter) observed in Fig. 3 are similar to the
existing results.

4.3 Cardassian matter and exponential harmonic field

We use the exponential harmonic field model and the
Cardassian model. Note that Freese & Lewis (2002),
Gondolo & Freese (2002) and Xu & Huang (2012) were
the first who developped the Cardassian model. Other
authors too have shown interest in this model (Baf-
fou et al. 2016; Oikonomou & Karagiannakis 2014),
in f (R, T ) and f (R) modified gravity for study of the
late-time cosmology. The Cardassian model of matter
is characterized by negative pressure and there is no
vacuum energy whatsoever. According to the so-called
Cardassian model of matter, the total energy density εm
of matter is given by
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Figure 3. The graphs show evolution of the deceleration parameter (left), and effective equation of state parameter (right)
as a function of the redshift, for exponential harmonic field in the case of the Higgs potential. The dot, dashed and magenta
refer to non-collisional matter, collisional matter and �C DM model, respectively, with v = 0.1, m = 5 and � = 2.

εm = ρ + ρK (ρ), (37)

where ρ stands for the ordinary matter-energy density
and K (ρ) is the term describing the new interacting
matter and is, in general, a function of the ordinary mass-
energy density.

In the original Cardassian model, the function ρK (ρ)

takes the following form:

ρK (ρ) = Bρl, (38)

where B is a known real number, l < 2
3 in order to

guarantee the acceleration. From (38) in (37), we have
the total density-energy as

εm = ρ + Bρl . (39)

If we take into account (19) and cast it in the form
ρ = ρm0(1 + z)3, then a0 = 1 and 1

a = (1 + z).
The expression (39) may be expressed in terms of the
redshift (z) as

εm = ρm0(1 + z)3[1 + Bρ
(l−1)
m0 (1 + z)3(l−1)]. (40)

Following Oikonomou & Karagiannakis (2014) and
Baffou et al. (2016), we assume that the late-time evo-
lution is governed by the geometric dark fluid and
gravitating fluid with respect to negative pressure and
positive pressure, satisfying the equation of state

p = wkρ. (41)

Using (30) and (31), system (32) becomes⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d�
dτ

= �,

dh
dτ

= −3h2 + e(
μ
2 �2)(−2 + μ�2) + 2 + 4V (�)

+2ρmo(1 + z)3[w + 1 + Bρl−1(1 + z)3(l−1)],
d�
dτ

= − 3h�
1+μ�2 − V

′
(�)

μ(1+μ�2)
e−(

μ
2 �2). (42)

In the following, we will determine system (42) in the
context of the redshift and we will plot the decelera-
tion parameters and equation of state by exploring the
different expressions of the potential. Three potentials
have been considered: power-law potential, exponential
potential and Higgs potential.

4.3.1 Power-law potential: V = b�m . In Fig. 4, the
deceleration parameter and state of equation for the
power-law potential have been plotted.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d�
dz = − �

(1+h)h ,

dh
dz = 3h

1+z − e(
μ
2 �2)

(−2+μ�2)
(1+z)h

−2+4b�m+2ρm0(1+z)3
[
w+1+Bρl−1

mo (1+z)3(l−1)
]

(1+z)h ,

d�
dz = 3�

1+μ�2 + mb�m−1

μ(1+μ�2)
e−(

μ
2 �2). (43)

4.3.2 Exponential potential: V = v0 exp(−μo�). In
Fig. 5, the deceleration parameter and state of equation
for the exponential potential have been plotted.
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Figure 4. Evolution of deceleration parameter (left) and of effective equation of state parameter (right) as a function of
the redshift, for exponential harmonic field in the case of the power-law potential. The dot, dashed and the magenta refer to
non-collisional matter, collisional matter and �C DM model, respectively, with λ = −0.01 and m = 0.5.
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Figure 5. Evolution of deceleration parameter (left), and of effective equation of state parameter (right) as a function of
the redshift, for exponential harmonic field in the case of the exponential potential. The dot, dashed and the magenta refer to
non-collisional matter, collisional matter and �C DM model, respectively, with λ = −0.01, l = 0.5, B = 0.2 and v = −0.1.

4.3.3 Higg’s potential: V = vo − 1
2 m2�2 + 1

4��4. In
Fig. 6, the deceleration parameter and state of equation
for the Higgs potential have been plotted.

In Fig. 4, for the deceleration parameter, we found
that the phase of the deceleration to the accelera-
tion phase is carried out from high to low values of
the redshift for the Cardassian matter, ordinary matter
and the �C DM model. The curve of the deceleration

parameter representing the Cardassian matter and the
ordinary matter is confused in the deceleration phase.
While in the acceleration phase, the curve reflecting the
behavior of the deceleration parameter in the presence
of the Cardassian material moves away from that in
the presence of the ordinary matter and approaches the
curve of the �C DM model, which in the equation of
state, we note that the transition from the decelerated
phase to the accelerated phase is realized from high
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Figure 6. Evolution of deceleration parameter (left), and
of effective equation of state parameter (right), as a function
of the redshift, for exponential harmonic field in the case of
the Higgs potential. The dot, dashed and the magenta refer to
non-collisional matter, collisional matter and �C DM model,
respectively, with v = −0.1, l = 0.1 , B = 0.45 and � =
0.2.

to low values of the redshift in the same order of the
content of the Universe. These results obtained for the
harmonic exponential field are similar to those obtained
in modified gravitation f (R, T ) and f (R).

Figure 5 also shows the evolution of the deceleration
parameter and the state equation parameter in the pres-
ence of the Cardassian material, of the ordinary matter
and the �C DM model for the exponential potential.
It has been found that the transition of the decelera-
tion phase at the acceleration phase is performed for
the deceleration parameter and the equation of state
parameter. We found that in the deceleration phase, the
curve representing the deceleration parameter and the
equation of state parameter in the presence of the Car-
dassian matter and the ordinary matter are confounded.
The deceleration parameter in the presence of the car-
dassian matter approximates the curve of the �C DM
model. It should be noted that the curves of the expo-
nential potential curves are also those obtained in the
modified gravity f (R, T ) but are not the same for the
gravity f (R) for the exponential form of their respec-
tive models.

In Fig. 6, we can see the transition from the
deceleration phase to the acceleration phase is carried
out from high to low values of the redschift for the
Cardassian matter, ordinary matter and for the �C DM
model.

In the presence of Cardassian matter, we can see the
same behaviour for deceleration parameter q(z) and
equation of state parameter in the case of quadratic
potential as some authors have found in modified gravity
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Figure 7. The graphs show wDE as a function of the redshift
z of the quadratic potential of collisional matter for w = 0.6
(dashed) and the non-collisional matter (dot) with m = 0.25
and λ = 0.009.

f (R, T ) = λo(λ+ R)n + T α and f (R) = λo(λ+ R)n .
At low redshifts, in the exponential potential case, the
cosmological parameters show the same behaviour as
modified gravity f (R, T ) = Roeβ R + T α . When the
redshift z increases, the trajectories of the previous mod-
els with cardassian matter show similar behaviors with
exponential potential for harmonic exponential field.

5. Equation of state oscillations for exponential
harmonic field with collisional matter

In section 4, we investigated the effect of collisional
matter in the presence of harmonic exponential field on
the late-time evolution of the Universe. In the present
work, we shall consider the matter domination eras and
also study the oscillatory behavior of exponential har-
monic field as dark energy. We performed cosmology
evolution in the context of exponential harmonic field
with the matter composed by collisional matter and radi-
ation (Baffou et al. 2016; Oikonomou et al. 2014).

From equations (10) and (11), we have

3H2 = k2
[

1

2
e( λ

2 φ̇2)(−1+λφ̇2) + 1

2
+ V (φ)+ρmatt

]
,

(44)

2Ḣ + 3H2 = k2
[
−1

2
e( λ

2 φ̇2) + 1

2
+ V (φ)+Pmatt

]
,

(45)

where ρmatt and Pmatt denote the energy density and
pressure of all perfect fluids of generic matter, respec-
tively. We assume that the Universe is filled with
collisional matter (self-interacting matter), the relativis-
tic matter (radiation) and exponential harmonic field as
dark energy. The matter energy density ρmatt is given by

ρmatt = εm + ρroa−4, (46)
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Figure 8. The graphs show weff as a function of the redshift z of the quadratic potential of collisional matter for w = 0.6
(dashed) and the non-collisional matter (dot) with m = 0.5 and λ = −0.1

where ρro is the current energy density of radiation. The
pressure of all perfect fluids of matter is given by

Pmatt = pm + pr . (47)

From (27), we have

ρmatt = ρmoa−3 [1 + �o + 3wln(a)] + ρroa−4. (48)

If g(a) = a−3 [1 + �o + 3wln(a)] and χ = ρro
ρmo

, we
have

ρmatt = ρmo(g(a) + χa−4), (49)

whereχ = (3.1).10−4 and the parameter g(a)describes
the nature of the collisional matter (viewed as perfect
fluid). Combining (44) and (45) and using (8), we have⎧⎪⎨
⎪⎩

4Ḣ + 12H2 = e(− λ
2 φ̇2)(−2 + λ) + 2 + 4V (φ)

+ 2ρmatt + 2Pmatt

φ̈(1 + λφ̇2) + 3H φ̇ + V
′
(φ)
λ

e(− λ
2 φ̇2).

(50)

Using the new variables (30) and (31), the system (50)
becomes⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d�
dτ

= �,

dh
dτ

= −3h2 + e(
μ
2 �2)(−2 + μ�2) + 2 + 4V (�)

+2(1 + w)ρmatt,

d�
dτ

= − 3h�
1+μ�2 − V

′
(�)

μ(1+μ�2)
e−(

μ
2 �2).

(51)

The energy density can take the following expression:

ρmatt = ρmoa−3[1 + �o − 3wln(a−1) + χ(a−1)].
(52)

In the context of the redshift, and (52), system (51)
becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d�
dz = − �

(1+h)h ,

dh
dz = 3h

1+z − e(
μ
2 �2)

(−2+μ�2)
(1+z)h

−2+4V (�)+2ρm0(1+w)(1+z)3[1+�o−3wln(1+z)+χ(1+z)]
(1+z)h ,

d�
dz = 3�

1+μ�2 + V
′
(�)

μ(1+μ�2)
e−(

μ
2 �2).

(53)

Equation (44) can then take the following form:

3H2 = ρDE + ρmatt. (54)

We know that

WDE = PDE

ρDE
�⇒ ρDE = PDE

WDE
. (55)

Equation (55) in (54) give

3H2 = PDE

WDE
+ ρmatt. (56)

From (56), we have

PDE

WDE
= 3H2 − ρmatt. (57)

Finally, by using ρmatt of (48), we have
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Figure 9. The graphs show the evolution cosmological of
wDE as a function of the redshift z of the exponential potential
of collisional matter for w = 0.6 (blue) and non-collisional
matter (red), with μo = 0.1, v = −0.1 and ν = 0.1.
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Figure 10. The graphs show weff as a function of the red-
shift z of the exponential potential of collisional matter for
w = 0.6 (dashed) and the non-collisional matter (dot), with
μo = 0.1 , v = −2.9 and ν = 0.1

WDE

= PDE

3H2 − ρmoa−3[1 + �o + 3wln(a)] + ρroa−4 ,

(58)

and using new variables (30) and (31) in the context of
the redshift, gives

WDE = e(
μo
2 �2) − 1 − 2V (φ)

6h2 − 2ρmo(1 + z)3[1 + �o − 3wln(1 + z) + χ(1 + z)] , (59)

where χ = ρro
ρmo

.

Equation (59) characterizes the equation to be used
for describing the cosmological evolution of the dark
energy in the Universe filled with collisional matter and
radiation of the exponential harmonic field.
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Figure 11. The graphs show wDE as a function of the red-
shift z of the Higgs potential of collisional matter for w = 0.6
(dashed) and non-collisional matter (dot), with m = 0.25,
v = −0.1 and � = 1.
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Figure 12. The graphs show weff as a function of the red-
shift z of the Higgs potential of collisional matter for w = 0.6
(dashed) the non-collisional matter (dot), with m = 0.5,
v = −0.1 and � = −0.5

Now, we use three potentials to find the behavior of
the two equations of state.

5.1 Power-law potential: V = b�m

Figures 7 and 8 show wDE and weff as functions of the
redshift z for power-law potential in collisional matter
and non-collisional matter cases.

5.2 Exponential potential: V = v0 exp(−μo�)

Figures 9 and 10 show the cosmological behaviours of
wDE and weff , respectively as functions of the redshift z
for exponential potential in collisional matter and non-
collisional matter cases.
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5.3 Higg’s potential: V = vo − 1
2 m2�2 + 1

4��4

Figures 11 and 12 show for wDE and weff as functions
for the redshift z for Higgs potential in collisional matter
and non-collisional matter cases.

Figures 7, 8, 9, 10, 11 and 12 present the behavior
of dark energy equation and the effective equation of
state in the presence of collisional matter and radiation.
We found that the effective equation of state parame-
ter remains negative. Dark energy parameter have an
oscillatory movement and goes to zero. These features
prove that the co-existence of the collisional matter and
radiation in the presence of exponential harmonic field
do not change the well-known behaviors of the different
parameters.

6. Conclusion

The purpose of this article is to investigate the effect of
collisional matter on the late-time cosmological evolu-
tion in the case of the exponential harmonic field. Three
potentials have been used: power-law potential, expo-
nential potential and the Higgs potential.

We have assumed that in addition to the ordinary
matter, there exists another matter in self-interaction
with a positive pressure and exponential harmonic
field in the Universe. We determined the behavior of
the deceleration parameter and the equation of state
parameter. We have found that the transition from
the deceleration phase to the aceleration phase is per-
formed. Basically we have noted that the curves that
induce different parameters in the presence of the
matter in self-interaction and exponential harmonic
field are closer to those of the model �C DM than
those in the presence of the ordinary matter, which
confirms the necessity of the contribution of another
matter in the Universe. We also studied the oxil-
latory behavior of the dark energy state parameter
in the presence of the collision matter and radi-
ation. The curves of the parameters in the pres-
ence of matter in self-interaction with the exponential
harmonic field confirm those obtained in the mod-
ified gravities f (R) and f (R, T ). Consequently, it
can be affirmed that the exponential harmonic field
is a serious candidate for explaining the transition

from the aceleration phase to the deceleration phase
of the Universe in the presence of the collisional
matter.
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