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Abstract
This article presents a novel market-based mechanism for a dynamic coalition formation problem backgrounded under
real-time task allocation. Specifically, we first analyze the main factors of the real-time task allocation problem, and
formulate the problem based on the coalition game theory. Then, we employ a social network for communication among
distributed agents in this problem, and propose a negotiation mechanism for agents forming coalitions on timely emerging
tasks. In this mechanism, we utilize an auction algorithm for real-time agent assignment on coalitions, and then design a
mutual-selecting method to acquire better performance on agent utilization rate and task completion rate. And finally, our
experimental results demonstrate that our market-based mechanism has a comparable performance in task completion
rate to a decentralized approach (within 25% better on average) and a centralized dynamic coalition formation method
(within 10% less on average performance).
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Introduction

Since distributed multi-agent systems (DMASs) have been

increasingly employed in real-world problems, such as

disaster rescue,1 sensor surveillance,2 military opera-

tions,1,3,4 and wireless sensor networks,5,6,7 tasks with het-

erogeneous requirements usually emerge dynamically in

those applications and need agents to cooperate to meet

those requirements for successful execution. However, due

to complex constraints both of task requirements and agent-

employed environment, how to allocate agents to form real-

time coalitions for complex task completion becomes a

new challenge in research. For example, in a disaster rescue

scenario, a rescue task requires first aid and transportation,

where first aid helps to swiftly handle the wounded and

ambulances help to transport the wounded to target areas.

Some wounded need aid first and then being transported to

hospitals, which means such tasks demand a compounded

coalition with heterogeneous resources for execution.

Obviously, centralized approaches are not feasible or reli-

able in those systems because in such a DMAS each agent

needs to move to the task location when assigned a task,

which means the network between the central distributor

and other agents is not guaranteed to always work well.8,9

To deal with this issue, we focus on the use of a distributed
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approach, in which individual agents negotiate directly

with each other to form dynamic coalitions.

Although lots of researchers have been working on

coalition formation problem, many of them focus on find-

ing an optimal coalition structure under an ideal commu-

nication,10,11,12 and agents are usually assumed to be

capable of transporting information to any other agents

freely. Moreover, structures of networks employed in those

applications are fixed though agents need to change their

locations for executing tasks, which is apparently infeasible

in reality. Generally, agents are with limited communica-

tion range that restraints their communication ability, and

they usually communicate with each other via neighbor-

hood networks, such as social networks3,4 which allow

agents communicate with their neighbors directly, as in

Figure 1. However, forming coalitions for timely emerging

tasks under such networks faces many new challenges. In

this article, we intend to design an approach on dynamic

coalition formation (DCF), in which autonomous agents

can cooperate with each other on their own decisions, with

a goal of forming a global optimal coalition structure or an

approximate global optimal coalition structure to execute

timely emerging tasks.

Against this background, the DCF problem that we

intend to address is about a set of agents assigning them-

selves to coalitions and executing dynamic tasks, without a

central allocator. Each task has a deadline and a specific

processing requirement over resources (e.g. injurers need

first aid before 3 pm and then to be transported to a hospital

in 30 min). Besides, tasks are dynamic, which means tasks

reveal gradually over time in the system. This, in turn,

means that we need a practical mechanism in response to

a real-time task flows in a timely manner. Moreover, as

agents change their locations dynamically, we need to

adopt a suitable network for information transportation.

And, as the full set of tasks is not known at the outset,

an agent needs to negotiate with other agents over a

sequence of tasks to execute, with the goal of complet-

ing as many real-time tasks as possible, and of improv-

ing agent utilization.

Hereafter, based on all the objectives, we tackle this

problem as follows. First, we define a global utility func-

tion which is constructed as if we were defining it for a

centralized coalition formation problem. And then, we pro-

pose an approximating global utility function for a feasible

calculation of DCF with a series of static coalition forma-

tion utility function. Then, we cast the approximating glo-

bal utility as a sum of agent individual utilities, which

enables agents to make their own decisions based on their

local information. Finally, we propose a distributed

mechanism to form dynamic coalitions for dynamic real-

time tasks.

Given this context, our main contributions are presented

in the following ways:

� We employ a practical social network model in a

distributed multi-agent system for communication.

As agents change their locations dynamically, we

design a novel mechanism that provides reliable

communication for agents forming task coalitions.

� We formulate the DCF problem based on coalition

game, and then define a global utility function of the

DCF. In addition, we utilize a series of static coali-

tion formations to approximate the DCF process,

based on which we propose an approximating global

utility function for the feasible calculation of DCF.

� We propose a market-based mutual-selecting

algorithm for agent DCF, which supports individ-

ual agents to make decisions based on local infor-

mation and provides resource optimization in

forming coalitions.

The remainder of the article is organized as follows: The

“Related work” section introduces some related work on

DCF, and the “Dynamic coalition formation” section

describes our model of DCF and give out relative utility

functions. In the “Distributed mechanism for DCF” section,

we present our communication mechanism and a distribu-

ted algorithm for DCF. Experimental results and analysis

are presented in the “Experiment analysis” section and the

article is concluded in the “Conclusion” section.

Related work

Coalition formation, widely studied in the game theory and

economics, has attracted much attention in the artificial

intelligence area as a method of forming sophisticated

agent teams to perform certain complex tasks.13 It is an

Figure 1. Neighborhood networks.
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instance of a partition problem which is known as an NP-

complete.14 Being an application of the coalition game

theory, a coalition formation problem describes the pos-

sible occurring outcomes when the players decide to

participate in a group of cooperative peers, referred to

as coalitions. Static coalition formation has also been

addressed in multi-agent systems where its goal is to

find a coalition structure that maximizes the global util-

ity of all coalitions.10,15 Yet, a DCF problem, as a kind

of coalition formation problems, demands agents to

spontaneously form coalitions to complete emerging

tasks timeously and economically.

To deal with DCF problems, Shehory and Kraus in 1998

studied a computational task allocation problem via coali-

tion formation13 and proposed algorithms, which are

greedy distributed set partitioning and covering algorithms

with low ratio bounds, for task allocation among computa-

tional agents in RETSINA (REusable Task-based System

of Intelligence Networked Agents). In 2002, Klusch and

Gerber, from the German Research Centre for Artificial

Intelligence, studied DCF among rational software agents

in open, heterogeneous, and distributed environments,16

such as the Internet and Web, and defined a set of cooper-

ation methods, schemes, and technologies to beneficially

cope with the DCF problem among agents in those envir-

onments. However, the DCF-S scheme does not guarantee

an optimal solution in general. Bayram and Isil Bozma,

from Bogazici University, emphasized on finding a feasible

method of forming flexible coalitions for dynamic tasks.2

They proposed a centralized algorithm to solve the issue.

As DCF has been increasingly employed in decentra-

lized multi-agent systems, more attention is paid to dis-

tributed methods. Choi et al. concerned the dynamic

decentralized task allocation problem in military opera-

tions.8 They presented a consensus-based decentralized

auction algorithm utilized by a market-based decision

strategy for noncooperative task allocation, and extended

the algorithm for solving heterogeneous DCF.1,3,4 But the

structures of coalitions in those studies are fixed, which

constraints the flexibility of their algorithms. Chapman

and Kota, from the University of Southampton, propose

a distributed algorithm for a DCF problem in disaster

rescue.9 They formulate the problem as a Markov game,

analyze challenges in solving the Markov game, and then

use a series of potential games to approximate the Mar-

kov game they built for figuring out a possible solution.

The distributed algorithm they propose is capable of find-

ing a solution to DCF. However, the algorithm assumes

that all agents could communicate with any other agents,

which is infeasible.

Thus, considering a feasible communicating model and

a flexible coalitional structure for application in real

DMASs, Gaston and desJardins, from the University of

Maryland, Baltimore County, propose an agent-organized

network model based on neighbor networks for communi-

cation in DMAS to form coalitions and execute dynamic

task sequences based on its applicability.17 They design

adaption policies for the social network to optimize the

process of coalition formation, and propose a stochastic

algorithm of coalition formation. In every time step, each

agent could decide to either attempt to join a coalition or

adapt its local network structure. Then, Glinton and Scerri,

from Carnegie Mellon University, further this research

about self-adaption social networks on DCF under a

distributed circumstance of sensor coalition formation

problem.18 Their research mainly focuses on a hetero-

geneous agent coalition formation problem with time

constraints. They propose two main kinds of policies:

the performance-based policy and the structure-based

policy. As in such a system, agents could make deci-

sions to change their neighbors as they want based on

their own profit assessment without considering reality

limits. Through experiment analysis, they find that the

structure-based policy has its roof of improvement while

the performance-based policy works more effectively on

the entire performance of the algorithm.

Based on the social network in DMASs, Ye and Zhang

probe into a DCF problem of sensor surveillance.19 They

present a novel coalition formation mechanism that is con-

structed by a market-based algorithm under a distributed

social network. In their mechanism, agents are cataloged

into two types: the initiator who initializes a task allocation

and the participant who accepts the announced task. The

initiator releases tasks it initialized through its social net-

works and forms coalitions. The participant chooses its task

among the received tasks by a market-based algorithm for

optimization. Once the tasks are refused by one participant

it will be passed to the neighbors of the participant for

coalition formation. And they also introduce a penalty

mechanism for breaking coalitions formed to adapt the

dynamic task environment, which helps reduce the cost

of the coalition formation process and enhance the effec-

tiveness of the global system. However, those distributed

methods and mechanisms are not suitable for a DCF under

an environment with agent varying locations.

Therefore, our method of solving DCF problems is to

design a mechanism for approximating the optimal solu-

tion. And our approach is motivated by these ideas where

the process of finding optimal agent coalitions is modeled

as a coalition formation game. Our approach to approxi-

mate the DCF is motivated by a somewhat similar tech-

nique for producing approximating solutions to a Markov

game using a series of potential games.5

Dynamic coalition formation

In this section, we utilize a coalition formation model with

dynamic tasks,2 beginning with a DCF problem formula-

tion, and then defining a coalition character function and

approximating global utility function and an agent individ-

ual utility function based on Shapley value definition.20 At

the end of this section, we introduce a social network

Xie et al. 3



model17,18 applied in our study, and propose a negotiation

mechanism and corresponding algorithms for DCF.

Problem formulation

A set of agents with heterogeneous resources are distribu-

ted in a target area for responding to dynamic tasks. Con-

sidering practical limits on agent communication range,

those agents communicate with each other through a social

network built on neighbor agents within the communica-

tion range. Tasks, with deadlines, heterogeneous require-

ments, and unpredicted locations, emerge dynamically over

time. Agents are assumed to stay motionless until they are

assigned to execute missions. And our objective is to find

coalitions to respond to those dynamically emerging tasks.

Based on coalition game theory, the problem we study

can be defined as G ¼ < A; T ; u; ð�iÞi2A >

� Agents, A ¼ fa1; :::; ajAjg is a set of agents.

� Tasks, T ¼ ft1; :::; tjT jg is a set of tasks.

� Utility: u is a utility function portraying agent ai’s

payoff and cost. Here cost refers to consuming time

on moving.

� Preference: �ai
describes agent ai’s preference

over coalitions. For instance, Ck�ai
Cj means that,

for agent ai, it prefers to join coalition Ck than

coalition Cj.

And more specifically, notations of an agent and a task

are given as follows.

For an agent ai 2 A, it can be defined as a tuple

ai ¼ <l; s; rai
>, where l and s denote the location and

status of agent ai, and rai
¼ < r1; :::; rn > represents its

resources. For task ti 2 T , it can be defined as a tuple

<l; s; rtj ; tdl; w>, where l and s denote the location and

status of task tj, r tj ¼ < r1; :::; rn > represents its require-

ment over resources, tdl and w denote the deadline and

reward of task tj, respectively. A set of agents that can

perform task tj is defined as Cj, which is a coalition on the

agent set A. And detailed notations on the status of agents

and tasks will be given in section coalition character

function.

Here, all agents are assumed to be self-interested but

honest. Thus, each agent shares its information with its

neighbors, and has a neighbor information list, which is

also shared with agents in its neighborhood. Note that,

“self-interested” does not mean agents have intentions to

violate the utilities of other agents, but is only used for

optimization here. Since agents are honest, the information

they share with each other is reliable. And we assume that

the utility of each task is transferable, which means utilities

can be transferred among coalition members freely. Also,

all task rewards are assumed to be given when tasks

emerge, and mutually independent.

Thus, how the executing coalition constructs and when

the task will begin execution both will impact the utility of

corresponding coalitions. Obviously, resource excessive-

ness or resource insufficiency cause low agent utilizations.

Also, for a certain task the earlier it gets started the more

efficient the system will be. Therefore, based on those con-

siderations, we can define a coalition character function,21

which is the fundament of a global utility function, in the

“Coalition character function” section.

Coalition character function

Coalition character function is a function v : 2A ! R that

assigns a value to every possible coalition, revealing a

given coalition Cj’s utility with a given task tj via encoding

resource sufficiency, resource excessiveness, and mem-

bers’ proximity to the task location. It can be defined as

vðCj; tjÞ ¼ bðCj; tjÞ�t
C
tj ; ifCj satisfy the requirement

0; else

(

ð1Þ

where the term bðCj; tjÞ is defined as

bðCj; tjÞ ¼ rðtjÞ � 1� hðCjÞ � hðtjÞ
hðtjÞ

����
����

� �
ð2Þ

where rðtjÞ is task tj’s reward, which is a given constant when tj

emerges in the system. And function hðCjÞ can be defined as

hðCjÞ ¼ v � rCj , wherev is a weight vector and rCj is a hetero-

geneous resource vector presenting resources possessed

by coalition Cj. So, hðCjÞ can also be expressed as hðCjÞ ¼
o1r1 þ :::oiri þ :::þ onrn with one item representing one

resource, where ri is a quantized resource and oi is its weight.

And based on the notion of coalition character function,

we can have the preference relation � defined in detail in

theorem 1.

Theorem 1 [preference]. For agent ai 2 A, Ck�ai
Cj if and

only if vðCkÞ > vðCjÞ, where Ck and Cj are both coalitions

obtaining ai.

Apparently, a coalition utility will be reduced when the

coalition ability is beyond or below the task requirement.

Meanwhile, tC
tj

is the estimated time when the coalition

could arrive at the task location, and generally we use the

time of the latest agent arriving. Obviously, the earlier a

coalition arrives, the greater a coalition utility is.

Approximating global utility

Based on coalition character function, we can define a

global utility of this coalition game as follows. The goal

of a coalition game is to find an optimal coalition structure

to maximize global utility

ugðCS�Þ ¼ max
X
tj2T

X
Cj2CS�

vðCj; tjÞ ð3Þ

As a DCF problem, the coalition formation process goes

with time, and un-emerging tasks remain unknown. Thus,
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finding a solution to a dynamic coalition game seems to be

impossible as now, and we try to approximate it with a

series of static coalition formation game to find an approx-

imating solution.

At each time step, a DCF problem can be viewed as a

static coalition formation problem with known tasks

emerged. That is, for any time period ½t; t þ x�, where t
is the starting time of this period, and x is a time amount, if

x is a small time amount, we can view this coalition for-

mation as static coalition formation. Then we have

ut;x
g ðCS�½t; tþ x� ¼ max

X
tj2T½t; tþ x�

X
Cj2CS�

vðCj; tjÞ ð4Þ

where CS�½t; tþ x� is a current optimal coalition structure for

period ½t; t þ x�, ut;x
g ðCS�½t; tþ x�Þ is a current global utility,

and T½t; tþ x� is a set of tasks emerging in this time slice.

In this way, at each time step, the DCF problem is approxi-

mated by a static coalition formation game with complete task

information over the nextx time steps. Then, the global utility

functions in each approximating coalition formation games

are defined as equation (4). Based on the definition of Shapley

value, we can design a function to distribute the total utility of

a coalition to its members. Each assignment of the utility for

an agent can be viewed as an agent individual utility.

Individual utility definition

As assumed above, coalition utility could be transferable

among agents and agents can only participate in one task at

a time. Based on the definition of Shapley value for each

agent, we can define agent individual utility for one task.

Our main principle of the distribution is that, what degree is

the contribution of each coalition member on the task.

Thus, for agent ai 2 Cj, its individual utility on task tj that

coalition Cj executes can be defined as

utjðaiÞ ¼ vðCj; tjÞ � gðai; tjÞ ð5Þ

where gðai; tjÞ is the contribution function of agent ai in

coalition Cj on task tj. And the entire utility of agent ai

depends on tasks it participates

uðaiÞ ¼
X
tj2Tai

vðCj; tjÞ � gðai; tjÞ ð6Þ

where Tai
is a set of all tasks that agent ai participates

during the whole process. And based on its individual util-

ity definition, we can rewrite the approximating global

utility function in equation (3) as

ugðCS �Þ ¼
X
tj2T

X
Cj2CS�½t; tþ x�

vðCj; tjÞ

¼
X
tj2T

X
Cj2CS�½t; tþ x�

X
ai2Cj

utjðaiÞ ð7Þ

With equation (7), we can design a distributed algo-

rithm with agent undertaking computation and making

self-decision to figure out an optimal or suboptimal

solution.

A distributed mechanism for DCF

In this section, we design a distributed mechanism to find

an optimal or a suboptimal solution for our problem. First,

we introduce a kind of network adopted in our study, social

network, and give some formal definitions of related con-

cepts. Then, we present the proposed algorithm, MSMA

(mutual-selecting market-based algorithm), introducing its

framework, working process, and so on. And finally, we

give the pseudocodes of our main algorithms for better

comprehension of the proposed mechanism.

Social networks

To deal with the issue of DCF in a structured network,

we first give the definition of social networks, as in

definition 1.

Definition 1 [Social networks]. An agent network consists of a

set of independent agents, namely A ¼ fa1; a2; :::; ang and

a set of compatible relations R � A 	 A. R presents a

neighbor relation between agents. So,< ai; aj >2 R means

if and only if aj is a neighbor of ai. Since R is a compatible

relation, which means R is reflexive and symmetric, it can

be achieved in two forms,

� 8ai : ai 2 A)< ai; aj >2 R;

� and 8ai; aj 2 A : < ai; aj >2 R)< aj; ai >2 R.

Agents in a social network transport information via

their neighbors, which are within their communication

range, to those out of their neighborhoods. Because the

working environment changes dynamically, once agents

are allocated certain tasks, they start moving and their

neighbors keep changing during the movement.

Based on the definition of social networks, we give out

some definitions used in our mechanisms as follows.

Definition 2 [Sub-neighbors]. For each agent, sub-neighbors

are a set of agents which are not in that agent’s communi-

cation range but are neighbors of their neighbors. Namely,

Figure 2. Agent state transition.
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sub-neighbors are a set of agents that can communicate

with an agent indirectly through their neighbors once.

As shown in Figure 1, for agent a1, a2, a3, and a9 are its

neighbors, and a4, a5, and a6 are its sub-neighbors. Appar-

ently, an agent communicates with the neighbors of its neigh-

bors by utilizing its neighbors as communication relay stations.

Whether information can be passed over the system’s social

network via sub-neighbors depends on how the social network

is constructed, or how the social network is connected.

Definition 3 [Announcer, respondent, executor]. The agent

which finds a task based on its location initializing the

coalition formation process is called an announcer; the

agent which accepts the call of announced coalition forma-

tion is called a respondent; and the agent which is selected

to form the final corresponding coalition for task execution

is called an executor.

As in the DCF-S scheme,8 the coalition leading agent

(CLA) is designed for leading a coalition and acting on

behalf of its members.8 Here, agent announcers are

designed for optimizing the coalition formation process.

It should be noted that the roles do not imply any architec-

ture in a coalition and are only used to distinguish different

responsibilities of agents.

Definition 4 [Agent status]. There are three states of agents in

the network, s ¼ f idle; waiting; busyg. An agent can only

be in one of the three states in any time step. When an agent

is in a formed coalition, the state of the agent is busy; when

an agent is in the negotiation its state is waiting; an agent in

idle state has not been assigned any task nor any negotia-

tion process for forming coalitions and an agent state tran-

sition is shown in figure 2.

Definition 5 [Task status]. There are three kinds of task

states, s ¼ fwaiting; assigned; completedg. A task that is

waiting for its coalition before its deadline is in waiting

status. A task is in assigned status when a qualified coali-

tion responds to it. And a task is completed after the finish-

ing time that it requires.

Note that when tasks are completed, responding coali-

tions are released at once and agents in those coalitions are

labeled as idle. And after formalizing the social network,

the principle of our coalition formation mechanism will be

depicted.

Distributed mechanism design

In a social network, agents are distributed for responding

tasks, thus they make decisions on their local information

about the system. Based on this cognition, we design a

distributed mechanism for DCF and the framework of our

mechanism is designed as in Figure 3.

Figure 3 illustrates how the negotiation mechanism

works. Its main idea comes from a mutual-selecting market

principle, with which sellers and buyers both do selections

on their provided choices. And we give notion of PreCoa-

litionSet in definition 6.

Definition 6 [PreCoalitionSet]. A set of agents which accept

offers from a coalition formation announcer of task tj is

denoted as PreCoalitionSet of task tj.

As mentioned above, agents responding to the coalition

forming announcement of task tj form a PreCoalitionSet,

total resources of which might be over tj’s requirement.

Therefore, announcers implement the selection process to

form an optimal coalition for executing task tj and generat-

ing a greater utility.

Definition 7 [The negotiation protocol]. The agreement of

the negotiation mechanism consists of the following

three parts:

Figure 3. The framework of mechanism for DCF. DCF: dynamic coalition formation.
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� announcers of each task generate and send offers to

their neighbors;

� then, agents that receive offers hold auctions to

select task offers and return their response to respec-

tive announcers;

� finally, announcers form the optimal coalition for

tasks they receive from the respective responding

agents, which could be defined as PreCoalitionSet

in definition 6.

Announcements sent from announcers are denoted as

Offers, which includes information of tasks, and a respond-

ing utility the receiver will get if participating in the task

coalition. Thus, we can use a tuple < tj; ai; nbk
ai
> to

describe Offer. Here nbk
ai

is a receiver of announcer ai.

Evidently, offers are related to agent ai’s individual utility;

moreover, the time when an agent arrives at the location of

task tj also impacts the offer. It is obvious that a coalition

gains a greater utility when its members arrive earlier.

Hereafter, we take the two factors mentioned above into

account, and give the definition of Offer as

Offerðtj; nbk
ai
Þ ¼ uðnbk

ai
Þ ¼ valueðCj; tjÞ � gðnbk

ai
; tjÞ ð8Þ

where gðnbk
ai
; tjÞ is a contribution function about how

coalition utility is allocated among coalition members, as

mentioned in equation (5). The definition of gðnbk
ai
; tjÞ is

given as

gðnbk
ai
; tjÞ ¼ v � r

ai

rti
ð9Þ

where v is a weight vector of resources with each item

representing a weight on the corresponding resource. The

main process of our mechanism is given in detail in algo-

rithm 1. And algorithm 1 is our MSMA.

As introduced in algorithm 1, we design a two-sided

market-based algorithm, which calculate distributedly for

solve the DCF. For task tj in time step t in line 2, a random

idle agent ai is selected as the announcer for coalition

formation process of tj. Then, the announcer updates its

status to waiting, and generates offers for its receivers.

Considering the constraint of physical distance and the

requirement on arriving time, announcers are set to send

offers to a set of agents composed of its neighbors and

sub-neighbors, which helps on search pruning. Note that,

offers for sub-neighbors are transported via its neighbors.

Receivers select their optimal offer from those they

receive, and reply corresponding announcers to form a

PreCoalitionSet. Once the PreCoalitionSet has been

formed, announcers do the process of coalition optimiza-

tion to maximize the coalition utility. When final coali-

tions are formed, members in those coalitions change their

status to busy and start to proceed tasks.

When the task requirement can be satisfied by the Pre-

CoalitionSet, the announcer optimizes coalition through

forming a greatest coalition utility out of the

PreCoalitionSet to approximate the global utility. Or else,

the coalition for task tj forms unsuccessfully and will be

announced in next time step until its deadline.

As Gerding et al.22,23 and Gerkey and Mataric24 present,

the auction algorithm preforms well in optimizing utility

functions of discrete parameters. Thus, we use the auction

algorithm for the negotiation process. Responders choose

the offer with maximum individual utility, and announcers

choose those responders providing the maximum utility of

the corresponding coalitions. Thus, we design the coalition

formation algorithm with auctions, as in algorithm 2.

Algorithm 2 is an algorithm for coalition optimization,

which is a sub-processing in algorithm 1. Each announcer

proceed algorithm 2 after receiving responding during a

certain time.

Expriment analysis

We now discuss the evaluation of our MSMA based on a

comparison with two established algorithms, namely, the

Algorithm 1. Coalition formation mechanism at time t.

1 For 8ai 2 A call Algorithm 1
2 For task tj in time step t
3 Update(Neighbors); //update neighbor sets of agents
4 Update(Sub-Neighbors); //update sub-neighbor sets
5 Select a random idle agent ai to be the announcer;
6 StateðaiÞ  Waiting;
7 While t < DeadLineðtjÞ
8 if rðtjÞ is not fulfilled do
9 For 8aj 2 Nai

SendOffersðai; ajÞ // from ai to aj
10 End for
11 End if
12 End For
13 For each ai 2 A in State Waiting
14 OfferSelectðaiÞ // offer selection
15 End for
16 For each announcer
17 If t < DeadLineðtjÞ, do
18 PreCoalitionSetConstructðÞ //waiting for response
19 If rð PreCoalitionSettjÞ satisfies tj’s requirement, do
20 CoalitionOptðtjÞ //optimize coalitions
21 End if
22 End if
23 End For

Algorithm 2. Coalition optimization for task tj at time t.

1 Start
2 Check the PreCoalitionSet PCStj
3 if resourceðPCStjÞ 
 requirementðtjÞ
4 For each coalition Cj 2 2PCStj

5 if resourceðCjÞ 
 requirementðtjÞ
6 C�j ¼ maxvalueðCjÞ
7 End for
8 End if
9 End

Xie et al. 7



OPGAA (overlapping potential game approximation algo-

rithm)5 and the CGCFA (centralized greedy coalition for-

mation algorithm)17 in the same simulation environment. In

this section, we first present simulation settings in our

experiment, including agent number and resource type.

Then, we define two evaluation functions to compare per-

formances of the three algorithms. Finally, we give out the

evaluation function results for comparison and the analysis

on the difference.

Simulation settings

For simplification, we assume that each agent possesses

two kinds of resources and the quantity of its carried

resources varies randomly, and that tasks have different

requirements on resources, and their locations are gener-

ated randomly.

When allocating heterogeneous agents to dynamic het-

erogeneous task flows, task requirements usually could not

be satisfied exactly due to the heterogeneity and the distri-

bution of agents. Therefore, the total resources a coalition

possessed for a task might be over the requirement, which

would impact task completion directly. To achieve statis-

tical significance, each experiment was run 20 times with

different task flow simulations in three scenarios.

We give the detailed settings in our experiments in

Table 1.

Evaluation functions

In scenario 1, there were sufficient agents; and in scenar-

ios 2 and 3, the agents were reduced by 30% and 50%,

respectively. Also, we adopted standard scores, like task

completion and resource utilization, to review the perfor-

mances of these three algorithms. In the two distributed

algorithms, the communication range was restricted to the

same fixed radius. In the OPGAA, its stochastic parameter

was set as 0.7.

Here, we use task completion performance Rtc and

resource utilization rate Rru to evaluate the preformation

of DCF algorithms. They are defined as

Rtc¼
Nc

Nt

ð10Þ

where Nt is the total number of tasks during calculating

time, and Nc is the completing number of tasks during

that time.

Rru¼
Nrd

Nrr

ð11Þ

where Nrd is the total number of resources required in a

task, and Nrr is the real number of resources in the corre-

sponding task coalition.

Result analysis

To begin with, we discuss the results of the mean task

completion rate obtained in our experiments. Figure 4 indi-

cates the mean task completion performance of MSMA

compared with CGCFA and OPGAA.

Although, as seen in Figure 4, the task completion rate

of the MSMA fluctuates significantly in three scenarios

compared with the other two algorithms, the task comple-

tion rate is only 11% worse, on average, than the CGCFA.

And when agents are sufficient, the MSMA performs obvi-

ously better than the CGCFA. Furthermore, the MSMA

performs magnificently better than the OPGAA in all the

three scenarios. When taken together, these results show

that our algorithm, based on the market mechanism, is a

good model for the task allocation method in DCF. In

detail, the performance of MSMA varies mainly because

communication objects are reduced remarkably when

agents are insufficient and task information is restricted

in a smaller scale, which obviously impact the coalition

generation, compared with the scenario provided with suf-

ficient agents.

Figure 5 illustrates the specific resource utilization rate

of each algorithm. Apparently, the MSMA performs almost

comparably to the CGCFA, with only 1% worse, while

the OPGAA performs worst on this score. Taking Figures

4 and 5 together, it is evident that high resource utility rate

benefits the task completion rate, because it does not

occupy agents beyond necessary numbers, which helps to

keep more idle agents for other emerging tasks.

Table 1. Simulation settings in experiment.

Parameter Value

Number of agents Senario1 100
Senario2 70
Senario3 50

Number of resource types 2
Ranges of agent resource Resource 1 [0, 6]

Resource 2 [0, 6]
Ranges of task resource Resource 1 [0, 20]

Resource 2 [0, 20]

Figure 4. Task completion rate.
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It is clear that MSMA performs better when agents are

sufficient. This is mainly because the social network that

MSMA adopts can obtain a better network structure for

more efficiently transferring information when agents are

sufficient. While the OPGAA takes task completing time

on top consideration besides optimization in coalition for-

mation, it causes a task coalition obtaining agents much

more than the task demands. Thus, the OPGAA presents

a poor performance compared with MSMA.

Also, we can see that when agents are insufficient, the

performance of MSMA drops quickly, which is because

there are not enough agents to construct a good network

for information transmission.

Conclusion

This article introduces a market mechanism for distributed

computing to address a DCF problem. There are three main

aspects of this problem. First, agents are heterogeneous,

possessing more than one kind of resources with different

quantities. Each agent has a sequence of tasks with differ-

ent requirement to respond, which means tasks may need

more than one agent to execute them successfully. Second,

the task flow comes dynamically as a new one emerging

timeously. This leads to a Markov planning. However, as

stochastic tasks are normally intractable, an approximate

global utility is proposed for approaching an optimal solu-

tion. Third, the structure of communication network keeps

changing due to agents’ movement within the target scope.

Therefore, we propose a negotiation protocol for the chang-

ing network. Finally, experiments are designed to evaluate

the efficiency of our approach, which is compared with

other two algorithms proposed in other articles. In doing

so, we find it almost comparable to a centralized coalition

formation algorithm, especially when agents are sufficient.

However, some factors of the problem are simplified so

that our study focuses on the proposed mechanism. In the

future, we will extend our model to capture those factors,

for example, by allowing agents subject to different execu-

tion costs for performing the same task (e.g. fuel cost or

their own costs), and also allowing agents capable of rea-

soning their current circumstance and predicting the com-

ing tasks to adjust their strategies for a better global utility.

The former needs agents to make their decisions for reason-

ing about the type and decisions of other agents, while the

latter requires agents to learn from historical data and

adjust their decision-making models.

As we analyzed in the “Distributed mechanism for

DCF” section, our algorithm’s performance drops quickly

when agents are insufficient due to a poor communication

social network under such situation. Thus, designing a self-

adaption mechanism for agents to construct a better net-

work in structure is a future work to do.
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