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Abstract: The leader-following consensus problem of the general fractional-order linear multi-agent systems via event-triggered control
is considered. An effective event-trigger controller is designed, and then the leader-following consensus problem of the controlled multi-
agent systems is studied by using the Lyapunov theory of fractional-order systems and linear matrix inequality method. The consensus
condition and the convergence rate of the system are obtained based on the Mittag–Leffler stability of fractional-order systems. Simulation
indicates the effectiveness of the theoretical results.
1 Introduction

The distributed coordination control in multi-agent systems
is widely applied in multidisciplines engineering such as the
formation control of unmanned vehicles, the cooperation behaviour
of intelligent robots etc. [1–4]. The common advantage is that the
global collative behaviour of the system can be realised through
local information exchange between each individual agent. This
is the so-called consensus problem in multi-agent systems with
distributed coordination control. A special case is that the consensus
of a group relies on a leader agent, whose state is independent of
all the other follower agents. It is called the leader-following con-
sensus. For more information about the recently developed results
in this area, see [5, 6].
However, a series of research achievements show that

many physical systems are more suitable to be described by
fractional-order dynamic model, for example, the synchronisation
behaviour of agents in complex circumstances such as the macro-
molecule fluids or porous media [7], vehicles moving on road
surface of viscoelastic materials and so on [8]. Also, many pheno-
mena can be explained naturally by a coordinated behaviour
of agents with fractional-order dynamics [9]. Hence, it is very
meaningful to study the consensus problems of fractional-order
systems. To the best of our knowledge, the consensus of
fractional-order systems was first investigated in [10], the conver-
gence analysis of consensus to fractional-order systems was
further discussed in [11]. Recently, the leader-following consensus
problem of fractional-order systems also considered by some
authors [12].
It is noted that the work mentioned above all assumes that the

information received by agents at each time will be transmitted to
controllers, i.e. the consensus problem can be viewed as time-driven
consensus. Compared to the time-driven consensus, the event-
triggered consensus is more realistic. In this case, the information
transmission and controller update can occur only when the
events are triggered. Hence, to use the limited communication
network resources efficiently, such novel controller has been
widely introduced in the field of networked control systems. In
[13, 14], centralised and distributed event-triggered control strat-
egies have been employed to study the first-order or second-
order consensus problem of multi-agent systems. Also, the
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This is an open
leader-following asymptotic or exponential consensus problem
based on event-triggered control is considered in [15, 16].
Motivated by these researches, this paper deals with event-triggered
control design problem of general fractional-order linear systems
and aims to obtain the condition of achieving the leader-following
consensus.

The main contribution of this paper is that, first, we will extend
the exponential consensus conclusion of integer-order model
to the fractional-order case, based on the Mittag–Leffler stability
of the fractional-order system. Second, the event-triggered control
strategy is proposed to the fractional-order system, there are few
reports in this field.

The rest of this paper is organised as follows. In Section 2,
we will give preliminary knowledge about graph theory and
fractional calculus, and then the leader-following consensus
of fractional-order systems based on the Mittag–Leffler stability
condition is introduced briefly in Section 3. In Section 4,
we propose a class of event-triggered controller to achieve the
consensus and the convergence rate of the controlled multi-
agent systems is estimated. The numerical simulation illustrates
the effectiveness of the theoretical results in Section 5. Finally,
in Section 6 some concluding remarks are drawn from the
investigation.
2 Preliminaries

2.1 Graph theory

A digraph noted as G = (V, E, A), in which V = (v1, v2, . . . , vN )
is the set of agents, E # V × V is the set of edges andA = (aij)N×N

is the weighted adjacency matrix of G. If the directed edge
(j, i) [ E, agent j is called a neighbour of the agent i
with aij . 0, and agent i can receive information from the
agent j; otherwise, aij = 0. The degree matrix is D =
diag{d1, d2, . . . , dN} and di =

∑N
j=1, j=i aij , the Laplacian

matrix L of the weighted digraph G is defined as L =
(lij) [ RN×N = D−A. Let D = diag{d̂1, d̂2, . . . , d̂N} be the

leader adjacency matrix of the union graph Ḡ = G< 0, and we

can also define L̄ = L+ D = (̄lij)N×N .
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Lemma 1: A non-singular matrix A = (aij)n×n with aij ≤ 0, (i = j)
is called an M-matrix, the following statements are equivalent [17]:

(i) All eigenvalues of A have positive real parts. That is
Re(li(A)) . 0 i = 1, 2, . . . , n.

(ii) There exists a positive definite diagonal matrix J such that
JA+ ATJ is positive definite.

2.2 Fractional calculus

The definition of Riemann–Liouville fractional integral [18] is

0I
a
t f (t) =

1

G(a)

∫t
0

f (t)

(t − t)1−a
dt

and the Caputo fractional-order derivative [18] is defined as

C
0D

a
t f (t) =

1

G(n− a)

∫t
0

f (n)(t)

(t − t)a−n+1 dt

where n is the integer satisfying n− 1 , a ≤ n and G(z) is the
Gamma function satisfying G(z+ 1) = zG(z) for z . 0. In this
paper, we consider the case of 0 , a ≤ 1. According to the fraction-
al calculus theory, the following formula C

0D
a
t (0I

a
t f (t)) = f (t) holds.

Lemma 2: Let V (t) be a continuous function on [0, +1) satisfying
C
0D

a
t V (t) ≤ uV (t), where u is a constant. Then

V (t) ≤ V (0)Ea(ut
a) t . 0.

The Mittag–Leffler function is Ea(z) =
∑1

k=0 (z
k/G(ka+ 1)). As

a = 1, the Mittag–Leffler function [19] evolves into the exponen-
tial function.

Lemma 3: Let x(t) [ Rn be a vector of a differentiable function.
Then, for any time instant t ≥ t0, the following relationship holds:

1

2
C
0 D

a
t (x

T(t)Px(t)) ≤ xT(t)PC
0 D

a
t x(t)

where P [ Rn×n is a symmetric and positive definite or semi-definite
matrix [19].
3 Problem formation

Consider a group of N identical follower agents and a leader with
general continuous time linear dynamics over directed network top-
ology. The dynamics of the ith agent is described by

C
0D

a
t xi(t) = Axi(t)+ Bui(t) i = 1, 2, . . . , N . (1)

where xi [ Rn and ui [ Rm denote the state and control input of
agent i, respectively, A [ Rn×n and B [ Rn×m are constant matri-
ces. The leader indexed by 0 has dynamics given by

C
0D

a
t x0(t) = Ax0(t). (2)

Definition 1: The leader-following consensus is said to be reached
under the Mittag–Leffler stability, if there exist positive constants
k . 0, l . 0, 0 , b ≤ 1 and T . 0, such that

‖xi(t)− x0(t)‖ ≤ k(Ea(− lta))b, (3)

for all t . T , l is called the convergence rate.

Remarks 1: If the system is Mittag–Leffler stable, which implies the
asymptotic stability. As a = 1, it converts to the traditional expo-
nential stability of the integer-order system. Hence, under
This is an open access article published by the IET under the Creative
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Definition 1, the state of the following agents will converge to
the leader agent with a general exponential convergence rate as
time t is larger enough.

In this paper, we will study the leader–follower consensus problems
of (1) and (2) with the event-triggered control strategy. The event-
triggered controller designed as

ui(t) = −K
∑N
j=1

aij(xi(tik) − xj(tik)) − Kd̂i(xi(tik ) − x0(tik ))

t [ [tik, tik+1),
(4)

where K [ Rm×n is the control gain to be designed later, tik is the tri-
ggering times to be determined and d̂i = 1 if the agent i is connected
to the leader, d̂i = 0 otherwise. The measurement error between the
agent i and the leader is defined as 1i(t) = xi(t)− x0(t). By introdu-
cing the Laplacian matrix L = (lij)N×N , the multi-agent system (1)
and (2) controlled by (4) can be rewritten as

C
0D

a
t 1i(t) = A1i(t)− BK

∑N
j=1

lij1j(t
i
k )− BKd̂i1i(t

i
k )

t [ [tik , t
i
k+1).

(5)

4 Event-trigger design and analysis

4.1 Event-triggered controller design

let qi(t) =
∑N

j=1 l̄ij1j(t) and fi(t) = qi(t
i
k )− qi(t), then

qi(t
i
k ) = fi(t)+ qi(t). Designing the control gain K = BTP, where

P is a positive definite matrix, the vector form of (5) can be
expressed as

C
0D

a
t 1(t) = (IN ⊗ A)1(t)− (IN ⊗ BBTP)(f (t)+ q(t)). (6)

where 1(t) = (1T1 (t), . . . , 1TN (t)), f (t) = (f T1 (t), . . . , f TN (t)), and
q(t) = (qT1 (t), . . . , qTN (t)).

Consider a Lyapunov function candidate V defined as
V (t) = 1T(t)(J⊗ P)1(t). Lemma 3 can be used to calculate the
upper bound of C

0D
a
t V (t) along the trajectory of system (6)

C
0D

a
t V (t) ≤1T(t) J⊗ (ATP + PA)

( )
1(t)− 21T(t)

× (J⊗ PBBTP)q(t)− 21T(t)(J⊗ PBBTP)f (t).
(7)

Since q(t) = (L̄⊗ IN )1(t), i.e. 1(t) = (L̄
−1 ⊗ IN )q(t), inequality (7)

can be rewritten as

C
0D

a
t V (t) ≤qT(t) (L̄

−1
)
T
JL̄

−1 ⊗ (ATP + PA)

( )
q(t)

− qT(t) [(L̄
−1
)TJ+JL̄

−1
]⊗ PBBTP

( )
q(t)

− qT(t) [(L̄
−1
)TJ+JL̄

−1
]⊗ PBBTP

( )
f (t)

=qT(t) F1 ⊗ (ATP + PA)
( )

q(t)− qT(t)

× (F2 ⊗ PBBTP)q(t)− qT(t)(F2 ⊗ PBBTP)f (t).

(8)

we note F1 = (L̄
−1
)TJL̄

−1
, F2 = (L̄

−1
)TJ+JL̄

−1
for simplicity,

since L̄ is an M-matrix, from Lemma 1, we have F2 . 0. By using
the inequality xTy ≤ (a/2)xTx+ (1/2a)yTy for all a . 0, it has

qT(t)(F2 ⊗ PBBTP)f (t) ≤ a

2
l2max(F2)q

T(t)q(t)

+ 1

2a
l2max(PBB

TP)f T(t)f (t).
(9)
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Fig. 1 Topology of multi-agent systems
Suppose P be the solution to the following Riccati inequality:

ATP + PA− lmin(F2)

lmax(F1)
PBBTP + al2max(F2)

2lmax(F1)
IN + u

lmax(F1)
IN , 0,

then it holds

C
0D

a
t V (t) ≤lmax(F1) ATP + PA− lmin(F2)

lmax(F1)
PBBTP

(

+ al2max(F2)

2lmax(F1)

)
qT(t)q(t)+ 1

2a
l2max(PBB

TP)f T(t)f (t)

≤− u
∑N
i=1

qTi (t)qi(t)+
1

2a
l2max(PBB

TP)
∑N
i=1

f Ti (t)fi(t).

(10)

We can see that V (t) = qT(t)(F1 ⊗ IN )q(t), and a sufficient con-
dition for C

0D
a
t V (t) ≤ −gV (t) is

f Ti (t)fi(t) ≤ 2a
(u− glmax(F1))

l2max(PBBTP)
qTi (t)qi(t),

with 0 , g , (u/lmax(F1)). It implies that ‖fi(t)‖ ≤ h‖qi(t)‖,
where h = ���������������������

2a(u− glmax(F1))
√

/lmax(PBB
TP). Hence, we define

the triggering function and the triggering time instants satisfying

ei(t) = ‖fi(t)‖ − h‖qi(t)‖ t [ [tik , t
i
k+1), (11)

tik+1 = inf {t . tik :ei(t) . 0}. (12)

for an agent i, the events will be triggered at t = tik when ei(t) = 0,
and then fi(t) is reset to 0 automatically. Now, we are in the position
to realise the leader-following consensus with the event-triggered
control strategy.

4.2 Analysis of leader-following consensus

Theorem 1: Suppose Assumptions 1 and 2 hold, then the event-
triggered controller designed in (4) with triggering function (11)
and the control gain K = BTP ensures that the leader-following
consensus of the system (1) and (2) can be reached asymptotically
with convergence rate g under the Mittag–Leffler stability condi-
tion. Furthermore, the Zeno behaviour can be excluded.

Proof: For the triggering function (11), when ‖fi(t)‖ ≤ h‖qi(t)‖, we
can derive that C

0D
a
t V (t) ≤ −gV (t). Thus, for some t1 ≥ 0, V (t) ≤

V (t1)Ea −g(t − t1)
a

( )
holds. On the other hand, since V (t) =

1T(t)(J⊗ IN )1(t), it is obvious that V (t) ≥ lmin(J)1Ti (t)1i(t) for
all i. Hence

‖1i(t)‖ ≤
���������
V (tik )

lmin(J)

√
Ea(− g(t − tik )

a
)

( )1/2
.

Which means that the leader-following consensus is reached
asymptotically with convergence rate g.
Next, we will show the Zeno behaviour can be excluded. For

t [ [tik , t
i
k+1), we have

C
ti
k
Da

t fi(t) = −C
ti
k
Da

t qi(t), thus

C
ti
k
Da

t ‖fi(t)‖ ≤ ‖A‖ · ‖1i(t)‖ + ‖BBTP‖ · ‖qi(tik )‖

≤ ‖A‖ + ‖BBTP‖( ) ���������
V (tik )

lmin(J)

√
,
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This is an open
straight calculation shows that

‖fi(t)‖ ≤ ‖A‖ ����������������
V (tik )/lmin(J)

√ + ‖BBTP‖‖qi(tik )‖
G(1+ a)

(t − tik )
a.

When the event is triggered, we have ‖fi(tik+1)‖ ≥
(h/(h+ 1))‖qi(tik )‖.

Thus, a low bound of the inter-event time is determined by

tik+1 − tik ≥
G(1+ a)(h/(h+ 1))‖qi(tik )‖

(‖A‖ + ‖BBTP‖) ����������������
V (tik )/lmin(J)

√
( )1/a

. 0,

which means that Zeno behaviour has been excluded. □
5 Numerical examples

In this section, a numerical example is illustrated to verify the
effectiveness of the theoretical results for the leader-following
consensus of the fractional-order linear multi-agent systems.

Example 1: Consider a multi-agent system contains a leader and
four agents under directed topology described as in Fig. 1. The
system matrices are given as follows:

A =
−1 1 0
0 −0.3 0.4
0 −0.4 −0.3

⎛
⎝

⎞
⎠ B =

0.1
0

−0.1

⎛
⎝

⎞
⎠.

A simple checking shows that (A, B) is stable. According to the
graph theory, the Laplacian L and the matrix D written as

L =
2 −1 0 −1
−1 1 0 0
0 0 0 0
−1 0 0 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ D =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎛
⎜⎜⎝

⎞
⎟⎟⎠.

Obviously, L̄ = L+ D . 0 is M-matrix, we can choose a positive
definite diagonal matrix J as

J =
0.8 0 0 0
0 0.792 0 0
0 0 0.812 0
0 0 0 0.798

⎛
⎜⎜⎝

⎞
⎟⎟⎠

such that F1 = (L̄
−1
)TJL̄

−1
. 0, F2 = (L̄

−1
)TJ+JL̄

−1
. 0.

Given a = 1.6, u = 12, the Riccati inequality

ATP + PA− lmin(F2)

lmax(F1)
PBBTP + al2max(F2)

2lmax(F1)
IN + u

lmax(F1)
IN , 0
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Fig. 2 Trajectory of state error ‖1i‖, i = 1, 2, 3, 4
can be solved by using MATLAB. we can obtain a set of solutions
P . 0 such as

P =
1.8416 1.2743 0.3952
1.2743 8.6112 1.2648
0.3952 1.2648 7.7020

⎛
⎝

⎞
⎠ K = BTP =

0.1419
0.0010
−0.7307

⎛
⎝

⎞
⎠

T

Since 0 , g , (u/lmax(F1)) = 1.0823, chosen g = 0.9, then
h = ���������������������

2a(u− glmax(F1))
√

/lmax(PBB
TP) = 4.5906. Under the

control law (4) and the triggering function (11), the state error tra-
jectories of ‖1i‖ i = 1, 2, 3, 4 are converges to 0 very fast as
shown in Fig. 2. Hence, the leader-following consensus is achieved.
Note that: (i) the convergence speed of the consensus is based
on Definition 1, which has a fast convergence rate similar to the
exponential form. (ii) Since the event-time interval can be adjusted
flexibly by changing the value of a due to value of tik+1 − tik is de-
pendent on a. Hence, the event-triggered controller proposed in this
paper is effective.
6 Conclusion

The proposed event-triggered controller combined with the trigger-
ing function is effective to guarantee the leader-following con-
sensus of the controlled fractional-order multi-agent systems. The
consensus condition of the system and the convergence rate esti-
mate are based on the Mittag–Leffler stability of fractional-order
systems, which have a faster convergence speed and it implies the
asymptotic stability. In the future work, we will consider the leader-
following consensus of event-trigger controlled multi-agent systems
with large-scale network, but in this case, we should consider many
actual factors such as non-linear factor and communication time
delays.
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