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1. Introduction

Let � ⊂ R
n be a bounded domain of class C3−, n ≥ 2. � contains two phases: at time t ,

phase k occupies subdomain �k(t) of � (k = 1, 2). Assume that ∂�1(t) ∩ ∂� = ∅; this
means no boundary intersection to avoid the contact angle problem. The closed compact
hyper-surface �(t) := ∂�1(t) ⊂ � forms the interface between the phases. �2(t) =
�\�1(t) is the continuous phase which typically will be connected, whereas �1(t) is the
disperse phase which consists of m components.

In this paper, we consider incompressible flows. Let �1, �2 > 0 denote the constant
densities, µ1,µ2 > 0 the constant viscosities, and σ > 0 the constant coefficient of
surface tension. Let u1, u2 be the velocity fields,π1, π2 be the pressureswhich are unknown
functions defined in �1,�2, respectively. In this paper, we assume that the temperature
is constant, i.e we consider the isothermal case. ν� designates the outer normal of �1, V�

the normal velocity of �(t), H� = H(�(t)) = −div�ν� the curvature of �(t), and j� the
phase flux defined by

j� := �(u · ν� − V�).
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Note that j� is well-defined due to the jump condition ��(u ·ν�−V�)� = 0,which expresses
conservation of mass across the interface. The quantity �φ� = (φ2 − φ1)|� denotes the
jump of the variable φ across �(t). Let D(u) = (∇u + [∇u]T)/2 denote the rate of strain
tensor, T the stress tensor, which is given by

T (u, π) = 2µD(u) − π I,

and ψ1, ψ2 be the given Helmholtz free energies, which are constants in the isothermal,
incompressible case. Hereafter we drop the index i , as there is no danger of confusion;
φ(t) = φ1(t) in �1(t), φ(t) = φ2(t) in �2(t), but we keep in mind that the unknown
functions u, π , and constants µ, � and ψ depend on the phases.
By incompressible isothermal two-phase flow with phase transition, we mean the fol-

lowing problem with sharp interface: Find a family of closed compact hypersurfaces
{�(t)}t≥0 contained in � and appropriately smooth functions u : R+ × �̄ → R

n , and
π : R+ × �̄ → R+ such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(∂t u + (u · ∇)u) − div T = 0, in �\�(t),
div u = 0 in �\�(t),
�u� = �1/��j�ν� on �(t),
�1/��j2�ν� − �T ν�� = σ H�ν� on �(t),
�ψ� + �1/(2�2)�j�2 − �T ν� · ν�/�� = 0 on �(t),
V� − u · ν� + j�/� = 0 on �(t),
u = 0 on ∂�,

u(0) = u0 in �\�0, �(0) = �0. (1.1)

This model is explained in our previous paper [4] and inmuchmore detail in [9, Chapter 1],
and also in Prüss and Shimizu [6]. Note that j� is a dummy variable as it can be eliminated
from the system according to

j� = �u · ν��/�1/��, V� = ��u · ν��/���,

and replacing the third equation in (1.1) by P��u� = 0, where P� = I − ν� ⊗ ν� . This
works if �1 
= �2, i.e. if ��� 
= 0. Throughout this paper, we assume this condition. In
the physically uninteresting situation ��� = 0, the problem is not well-posed, as then V�

hence equivalently j� are not uniquely defined by u and π , and in addition for a given
interface the system for (u, π) has too many transmission conditions on the interface, i.e.
it is over-determined. This shortcoming can be removed by either considering the non-
isothermal case as in [4], see also [9], or by introducing kinetic undercooling. The latter
means to replace the Gibbs–Thomson law, i.e. the fifth equation in (1.1) by

�ψ� + �1/(2�2)�j�2 − �T ν� · ν�/�� = −γ j� on �(t),

with some constant γ > 0. Then there will be energy dissipation on the interface, in
contrast to the case considered here. Moreover, the functional analytic setting will also be
different, and therefore we concentrate here on the physically relevant case ��� 
= 0.
The density of the mass-specific available energy is defined by ea := 1

2 |u|2 + ψ , hence
the total available energy of the system is given by

Ea(t) =
∫

�

�ea(t, x) dx + σ |�(t)|,
We know from Prüss and Shimizu [6] that along smooth solutions

d

dt
Ea(t) = −

∫

�

2µ|D(u)|2 dx .
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Therefore, if µ1, µ2 > 0, the total available energy Ea is a Lyapunov functional.
Now we look at the equilibria of (1.1). If d

dt Ea = 0 in some interval (t1, t2), then
D(u) = 0 on �\�(t), hence u = 0 by [9, Lemma 1.2.1], because the third equation in
(1.1) shows �u · ν��ν� = �1/��j�ν� = �u�, namely P��u� = 0. This implies ∇π = 0 in
each component of the phases. Balance of normal stress and the Gibbs–Thomson relation,
i.e. the fifth equation in (1.1) on �(t) yield

�π/�� + �ψ� = 0 and �π� = σ H�.

Therefore, by the first equation in (1.1), we know that the pressure is constant in the
components of the phases and by the second equation, the curvature H� is constant on the
components of �. As ψ is constant even in the phases, we see that that the pressure is also
constant in the phases. This implies that �2 is connected and that � consists of finitely
many disjoint spheres of equal size.
We explain now the main results of this paper. To fix the functional analytic setting, let

X be a Banach space, J be a time interval and assume that p ∈ (1,∞) and 1/p < μ ≤ 1.
We introduce weighted L p-spaces

L p,μ(J ; X) := {u : J → X : t1−μu ∈ L p(J ; X)},
H1

p,μ(J ; X) := {u : L p,μ(J ; X) ∩ H1
1 (J ; X) : d

dt
u ∈ L p,μ(J ; X)}.

More details on weighted L p-spaces can be found e.g. in the monograph [9]. The basic
result for local well-posedness of problem (1.1) in an L p-setting is the following theorem.

Theorem 1.1. Let p > n+2, μ ∈ (1/2+(n+2)/2p, 1], σ, �k ,µk > 0, ψk ∈ R, k = 1, 2.
and suppose �1 
= �2. Assume the regularity conditions

u0 ∈ W 2μ−2/p
p (�\�0)

n, �0 ∈ W 2+μ−2/p
p ,

and the compatibility conditions

div u0 = 0 in �\�0, u0 = 0 on ∂�,

P�0�u0� = P�0�µ(∇u0 + [∇u0]T)ν�0� = 0 on �0.

Then there exists a unique L p,μ − L p-solution (u, π, �) of problem (1.1) on some possibly
small but nontrivial time interval J = [0, τ ].

Remark 1.2.

(1) Here the notion �0 ∈ W 2+μ−2/p
p means that �0 is a C2-manifold, such that its outer

normal field ν�0 is of class W 1+μ−2/p
p (�0). Therefore the curvature tensor L�0 =

−∇�0ν�0 of �0 belongs to W μ−2/p
p (�0) which embeds into Cα+1/p(�0), with α =

μ − (n + 2)/p > 0 since p > n + 2 by assumption.
(2) For the same reason we also have u0 ∈ C1+β(�̄ j (0))n, j = 1, 2 and V0 ∈ C1+β(�0),

with β = 2μ − 1 − (n + 2)/p > 0.
(3) The notion L p-solution means that (u, π, �) is obtained as the push-forward of an L p-

solution (ū, π̄ , h) of the transformed problem (2.1), which means that (ū, h) belongs
to Eμ(J ) = Eu,μ(J ) × Eh,μ(J ) with J = [0, τ ] defined by

Eu,μ(J ) = H1
p,μ(J ; L p(�))n ∩ L p,μ(J ; H2

p(�\�))n,
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Eh,μ(J ) = W 2−1/2p
p,μ (J ; L p(�)) ∩ H1

p,μ(J ; W 2−1/p
p (�))

∩ L p,μ(J ; W 3−1/p
p (�)).

Recall that the closed C2-hypersurfaces contained in � form a C2-manifold, which is
denoted by MH2(�). Define the state manifold SM as follows (here we set the time
weight parameter μ = 1):

SM := {
(u, �) ∈ L p(�)n × MH2 : u ∈ W 2−2/p

p (�\�)n, � ∈ W 3−2/p
p ,

div u = 0 in �\�, u = 0 on ∂�,

�P�u� = P��µ(∇u + [∇u]T)�ν� = 0 on �
}; (1.2)

cf. [7, (6.1)] and also [9, Chapter 11]. Problem (1.1) induces a local semiflow on SM.

PROPOSITION 1.3

Let p > n + 2, σ, �k,µk > 0, ψk ∈ R, k = 1, 2, and suppose �2 
= �1. Then problem
(1.1) generates a local semiflow on the state manifold SM. Each solution (u, �) exists on
a maximal time interval [0, t+), where t+ > 0 depends on the initial value u0 and �0.

We denote by

E := {(0, �∗) : �∗ =
⋃

1≤l≤m

SR∗(xl) ⊂ �,

x1, . . . xm ∈ R
n, |xk − xl | > 2R∗, k 
= l}

the set of non-degenerate equilibria i.e. the spheres satisfy

SR∗(xl) ∩ SR∗(xk) = ∅ (l 
= k), SR∗(xl) ∩ ∂� = ∅.

Note that E forms a real analytic manifold of dimension mn + 1, where n dimensions
come from the center and m from the number of components, 1 comes from the radius of
the sphere R∗ which is determined by m(ωn/n)Rn∗ = |�1(0)|. Note that for �1 
= �2, the
volumes of the phases are conserved. Indeed,

�1|�1(t)| + �2|�2(t)| ≡ �1|�1(0)| + �2|�2(0)| =: c0

which implies

���|�1(t)| = �2|�| − c0.

For the study of stability of non-degenerate equilibria, a major difficulty lies in the fact
that the equilibria are not isolated in the state manifold, but form a finite-dimensional
submanifold E of SM. For the linearization of the transformed problem, this implies that
the kernel of the linear operator L is nontrivial, i.e. the imaginary axis is not in the resolvent
set of L , and so the standard principle of linearized stability is not applicable. Fortunately,
0 is the only eigenvalue of L on iR and it is nicely behaved: the kernelN(L) is isomorphic
to the tangent space of E at this equilibrium, and 0 is semi-simple. Therefore, we may
employ what is called the generalized principle of linearized stability, a method which is
adapted to such a situation and has been worked out for quasilinear parabolic evolution
equations in [10]. For a through discussion of this principle for two-phase problems like
that considered here, we refer to Prüss and Simonett [9, Chapter 11].
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Theorem 1.4. Let p > n + 2, σ, �k,µk > 0, ψk ∈ R, k = 1, 2 and suppose �1 
= �2.
Then in the topology of the state manifold SM, we have

(i) (0, �∗) ∈ E is stable if and only if �∗ is connected.
(ii) Any solution starting in a neighborhood of a stable equilibrium exists globally and

converges to a probably different stable equilibrium in the topology of SM.
(iii) Any solution starting and staying in a neighborhood of an unstable equilibrium exists

globally and converges to a probably different unstable equilibrium in the topology
of SM.

There is a large literature on incompressible Newtonian two-phase flows without phase
transitions.On the other hand, only recently, phase transitions have been taken into account.
For the more difficult non-isothermal case with different but constant densities, the system
is velocity-dominated, here we refer to the papers [5,7,8,12,13]. We emphasize that the
results in this paper are complementary to those in the isothermal case, but it is not possible
to deduce them, as the functional settings and the Lyapunov functionals are different. The
isothermal case appears to be a singular limit of the non-isothermal problem. In the non-
isothermal case with equal densities, the system is temperature-dominated. For this, we
refer to the papers [4,11]. Both cases are discussed in a much wider framework and in
much greater detail in the monograph [9].

In the remainder of this paper, we give proofs based on the methods and results from the
monograph [9]. In §2, we employ the direct mapping approach by using a Hanzawa trans-
formation to transform the problem to a fixed domain. Employing a fixed point argument,
the local well-posedness result Theorem 1.1 is obtained in §3. Section 4 is devoted to study
the linearization of the problem at a non-degenerate equilibrium, this is the essential part
of the proof of Theorem 1.4. Employing the generalized principle of linearized stability
we derive the stability assertions Theorem 1.4 in §5. In §6, we show that a solution which
does not develop singularities exist globally and converges to an equilibrium.

2. Transformation to a fixed domain

A basic idea is to transform the problem to a domain with a fixed interface �, where �(t)
is parametrized over� bymeans of a height function h(t). For this we rely on the so-called
Hanzawa transform which we will explain below. This transformation was introduced in
the famous paper by Hanzawa [1] in connection with the classical Stefan problem. For the
necessary geometric background, we refer to [9, Chapter 2].

Recall that the second order bundle of � is given by

N 2� := {(p, ν�(p),∇�ν�(p)) : p ∈ �}.
The hypersurface � can be approximated by a real analytic hypersurafce �, in the sense
that the Hausdorff distance of the second order normal bundles is as small as we please.
More precisely, given η > 0, there exists a real analytic hypersurface � such that
dH (N 2�,N 2�) ≤ η. If η > 0 is small enough, then � bounds a domain ��

1 with

��
1 ⊂ � and then we set ��

2 = �\��
1 ⊂ �. The hyper-surface � admits a tubular

neighbourhood, which means that there is a0 > 0 such that the map

� : � × (−a0, a0) → R
n,

�(p, r) := p + rν�(p)
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is a diffeomorphism from � × (−a0, a0) onto im(�), the image of �. The inverse

�−1 : im(�) → � × (−a0, a0)

of this map is conveniently decomposed as

�−1(x) = (��(x), d�(x)), x ∈ im(�).

Here ��(x) means the metric projection of x onto � and d�(x) the signed distance from
x to �; so |d�(x)| = dist(x, �) and d�(x) < 0 if and only if x ∈ ��

1 . In particular, we
have im(�) = {x ∈ R

n : dist(x, �) < a0}. The maximal number a0 is given by the radius
r� > 0, defined as the largest number r such that the exterior and interior ball conditions
for � in � holds. In the following, we choose

a0 = r�/2 and a = a0/3.

The derivatives of ��(x) and d�(x) are given by

∇d�(x) = ν�(��(x)), ∂��(x) = M0(d�(x))P�(��(x)),

where P�(p) = I − ν�(p) ⊗ ν�(p) denotes the orthogonal projection onto the tangent
space Tp� of � at p ∈ �, and M0(r) = (I − r L�)−1, with L� the Weingarten tensor.
Then

|M0(r)| ≤ 1/(1 − r |L� |) ≤ 3 for all |r | ≤ 2r�/3.

If dist(�,�) is small enough, we may use the map � to parametrize the unknown free
boundary �(t) over � by means of a height function h(t) via

�(t) = {p + h(t, p)ν�(p) : p ∈ �}, t ≥ 0,

for small t ≥ 0, at least. Extend this diffeomorphism to all of �̄ by means of

�h(t, x) = x + χ(d�(x)/a)h(t,��(x))ν�(��(x)) =: x + ξh(t, x).

Here χ denotes a suitable cut-off function. More precisely, let χ ∈ D(R), 0 ≤ χ ≤
1, χ(r) = 1 for |r | < 1 and χ(r) = 0 for |r | > 2. We may choose χ in such a way that
1 < |χ ′|∞ ≤ 3. Note that �h(t, x) = x for |d�(x)| > 2a, and

��(�h(t, x)) = ��(x), |d�(x)| < a,

as well as

d�(�h(t, x)) = d�(x) + χ(d�(x)/a)h(t,��(x)), |d�(x)| < 2a.

This yields

�−1
h (t, x) = x − h(t,��(x))ν�(��(x)) for |d�(x)| < a.

Now we define the transformed quantities

ū(t, x) = u(t, �h(t, x)), π̄(t, x) = π(t, �h(t, x)), t > 0, x ∈ �\�,

the pull backs of u and π . This way we have transformed the time varying regions �\�(t)
to the fixed domain�\�. This transformation leads to the following quasi-linear problem,
dropping the bars and collecting its principal linear part on the left hand side.

�∂t u − µ�u + ∇π = Fu(u, π, h) in �\�,

div u = Gd(u, h) in �\�,

P��u� + c(t, x)∇�h = Gm(u, h) on �,

−P��µ(∇u + [∇u]T)ν�� = Guτ (u, h) on �,

−�µ(∇u + [∇u]T)ν�� · ν� + �π� − σ��h = Guν(u, h) on �,

−�(µ/�)(∇u + [∇u]T)ν�� · ν� + �π/�� = Gs(u, h) on �,

���∂t h − ��u · ν�� + b(t, x) · ∇�h = Fh(u, h) on �,

u = 0 on ∂�,

u(0) = u0 in �\�, h(0) = h0 in �. (2.1)
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The nonlinearities are given by

Fu(u, π, h) = M1(h)∇π − �(u · (I − M1(h)) − R(h)·)∇u

− µ(M2(h) : ∇2)u − µ(M3(h) · ∇)u + µM4(h) : ∇u,

Gd(u, h) = M1(h) : ∇u,

Gm(u, h) = �u · ν��M0(h) − e�� t�u0 · ν��∇�h,

Guτ (u, h) = −P��µ(∇u + [∇u]T)M0(h)∇�h�

− P��µ(M1(h)∇u + [M1(h)∇u]T)(ν� − M0(h)∇�h)�

+ �µ((I − M1)∇u + [(I − M1)∇u]T )

(ν� − M0∇�h) · ν��M0(h)∇�h,

Guν(u, h) = −�µ(∇u + [∇u]T)M0(h)∇�h · ν��

− �µ(M1(h)∇u + [M1(h)∇u]T)(ν� − M0(h)∇�h) · ν��

+ σ(H�(h) − ��h) − �u · ν��/�1/��,

Gs(u, h) = −�ψ� − �1/2�2� j2

+ 2�(µ/�)∂νu� − �(µ/�)(M1(h)∇u + [M1(h)∇u]T)ν� · ν��,

Fh(u, h) = (b(t, x) − ��M0(h)u�)∇�h,

j� = �u · ν��/β(h)�1/��, ν� = β(h)(ν� − M0(h)∇�h).

Here we employed the abbreviations

M1(h) = [Dξh]T[I + Dξh]−T, M2(h) = MT
1 (h) − M1(h)MT

1 (h),

M3(h) = (I − M1(h))div M2(h),

M4(h) = ((I − M1(h))∇)M1(h) − [((I − M1(h))∇)M1(h)]T

and c(t, x) = e�� t�u0 · ν��, b(t, x) = e�� t��u0� are artificially added in order to deal
with large initial data u0 for local well-posedness.

3. Local well-posedness

The proof of Theorem 1.1 is based on maximal L p-regularity of the following principal
part of the linearized problem

�∂t u − µ�u + ∇π = � fu in �\�,

div u = gd in �\�,

P��u� + c(t, x)∇�h = gm on �,

−2�µD(u)ν�� + �π�ν� − σ��hν� = gu on �,

−2�µD(u)ν� · ν�/�� + �π/�� = gs on �,

u = 0 on ∂�

���∂t h − ��u · ν�� + b(t, x) · ∇�h = ��� fh on �,

u(0) = u0 in �\�, h(0) = h0 on �. (3.1)

For this problem we have maximal regularity result in the L p-setting, which is a special
case of [9, Theorem 8.4.1].
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Theorem 3.1. Let p > n+2, μ ∈ (1/2+(n+2)/2p, 1], σ, �k ,µk > 0, k = 1, 2, �2 
= �1
and

(b, c) ∈ [W 1−1/2p
p,μ (J ; L p(�)) ∩ L p,μ(J ; W 2−1/p

p (�))]n+1

with J = [0, τ ]. Then (3.1) admits a unique solution (u, π, h) with regularity

u ∈ H1
p,μ(J ; L p(�))n ∩ L p,μ(J ; H2

p(�\�))n,

�u · ν�� ∈ H1
p,μ(J ; Ẇ −1/p

p (�)), π ∈ L p,μ(J ; Ḣ1
p(�\�)),

πk := π|∂�k
∈ W 1/2−1/2p

p,μ (J ; L p(�)) ∩ L p,μ(J ; W 1−1/p
p (�)), k = 1, 2,

h ∈ W 2−1/2p
p,μ (J ; L p(�)) ∩ H1

p,μ(J ; W 2−1/p
p (�)) ∩ L p,μ(J ; W 3−1/p

p (�)) (3.2)

if and only if the data fu, gd , gm, gu, gs, fh, u0, h0 satisfy the following regularity and
compatibility conditions:
(a) fu ∈ L p,μ(J ; L p(�,Rn+1)),
(b) gd ∈ H1

p,μ(J ; Ḣ−1
p (�)) ∩ L p,μ(J ; H1

p(�\�)),

(c) (gu, gs) ∈ W 1/2−1/2p
p,μ (J ; L p(�,Rn+1)) ∩ L p,μ(J ; W 1−1/p

p (�,Rn+1)),

(d) (gm, fh) ∈ W 1−1/2p
p,μ (J ; L p(�,Rn+1)) ∩ L p,μ(J ; W 2−1/p

p (�,Rn+1)),

(e) u0 ∈ W 2μ−2/p
p (�\�,Rn), h0 ∈ W 2+μ−2/p

p (�),
(f) div u0 = gd(0) in �\�,
(g) P��u0� + c(0, ·)∇�h0 = gm(0) on � if 1 + μ > 3/p,
(h) −P��µ0(·)(∇u0 + [∇u0]T)� = P�gu(0) on � if μ > 3/p.

The solution map [( fu, gd , gm, gu, gs, fh, u0, h0) �→ (u, π, h)] is continuous between the
corresponding spaces.

Based on this maximal regularity result, the proof of Theorem 1.1 then follows by the
contraction mapping principle as in [7]; we refer also to [9, Chapter 9].

4. Linear stability of equilibria

The analysis in this section follows the arguments of [9, Chapter 10]. See also [7] for an
earlier analysis.

(1) We obtain the following fully linearized problem at a non-degenerate equilibrium
e∗ := (0, �∗) ∈ E with reference hyper-surface � = �∗.

�∂t u − µ�u + ∇π = � fu in �\�,

div u = gd in �\�,

P��u� = gm on �,

−�T (u, π)ν�� + σA�hν� = gu on �,

−�T (u, π)ν� · ν�/�� = gs on �,

u = 0 on ∂�,

∂t h − ��u · ν��/��� = fh on �,

u(0) = u0 in �\�, h(0) = h0 on �. (4.1)
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where A� = −H ′(0) = −(n − 1)/R2∗ − �� . The time-trace space Eγ of E(J ) is given
by

(u0, h0) ∈ Eγ = W 2−2/p
p ((�\�)n × W 3−2/p

p (�),

and the space of the right-hand sides is

( fu, gd , (gu, gs), (gm, fh)) ∈ F(J ) := Fu(J ) × Fd(J )×Gu(J )n+1×Gh(J )n,

where

Fu(J ) = L p(J × �)n+1,

Fd(J ) = H1
p(J ; Ḣ−1

p (�)) ∩ L p(J ; H1
p(�)),

Gu(J ) = W 1/2−1/2p
p (J ; L p(�)) ∩ L p(J ; W 1−1/p

p (�)),

Gh(J ) = W 1−1/2p
p (J ; L p(�)) ∩ L p(J ; W 2−1/p

p (�)).

By localization and coordinate transformations it follows from the maximal regularity
result in [5] that the linear operator defined by the left-hand side of (4.1) is an isomorphism
from E(J ) into F(J ) × Eγ . If the time derivatives ∂t are replaced by ∂t + ω,ω > 0
sufficiently large, then this result is also true for J = R+. As a base space for the underlying
analytic semigroup, we use

X0 = L p,σ (�)n × W 2−1/p
p (�),

where the subscript σ means solenoidal, and define the operator L by

L(u, h) = ( − (µ/�)�u + ∇π/�,−��u · ν��/���
)

with

D(L) = {(u, h) ∈ H2
p(�\�)n × W 3−1/p

p (�) ∩ X0 :
div u = 0 in �\�, u = 0 on ∂�,

P��u� = P��µD(u)ν�� = 0 on �}.

The phase flux j� is given by j� = �u · ν��/��−1�, and π is determined as the solution of
the weak transmission problem

(∇π |∇φ/�)2 = ((µ/�)�u|∇φ)2, φ ∈ Ḣ1
p′(�), φ = 0 on �,

�π� = −σA�h + 2�µ(D(u)ν� |ν�)�, on �,

�π/�� = 2�(µ/�)(D(u)ν� |ν�)� on �.

Let us introduce solution operators Tj , j ∈ {1, 2, 3} as follows:
1

�
∇π = T1((µ/�)�u) + T2(−σA�h + 2�µ(D(u)ν� |ν�)�)

+ T3(2�(µ/�)(D(u)ν� |ν�)�).

We refer to [2], and for a more detailed exposition, see [9, Chapter 6.4] for the analysis of
such transmission problems.
Then the linearized problem can be rewritten as an abstract evolution problem in X0,

ż + Lz = f, t > 0, z(0) = z0, (4.2)
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where z = (u, h), f = ( fu, fh), z0 = (u0, h0), provided gd = gm = gu = gs = 0.
The linearized problem has maximal L p-regularity, hence (4.2) has this property as well.
Therefore, by a result due to Hieber and Prüss, −L generates an analytic C0-semigroup in
X0; cf. [3, Proposition 1.1]. Since the embedding X1 ↪→ X0 is compact, the semigroup
e−Lt as well as the resolvent (λ + L)−1 of −L are compact, too. Therefore the spectrum
σ(L) of L consists of countably many eigenvalues of finite algebraic multiplicity, and it
is independent of p.

(2) We study the eigenvalues of −L . Suppose that λ with Re λ ≥ 0 is an eigenvalue of
−L . This means

λ�u − µ�u + ∇π = 0 in �\�,

div u = 0 in �\�,

P��u� = 0 on �,

−�T (u, π)ν�� + σA�hν� = 0 on �,

−�T (u, π)ν� · ν�/�� = 0 on �,

u = 0 on ∂�,

λ���h − ��u · ν�� = 0 on �. (4.3)

Observe that on � we may write

uk = P�uk + λhν� + j�ν�/�k, k = 1, 2.

By this identity, taking the inner product of the problem for u with u and integrating by
parts, we get

0 = λ|�1/2u|22 − (div T (u, π)|u)2

= λ|�1/2u|22 + 2|µ1/2D(u)|22
+ (�T (u, π)ν��|P�uk + λhν�)� + (�T (u, π)ν� · ν�/��| j�)�

= λ|�1/2u|22 + 2|µ1/2D(u)|22 + σ λ̄(A�h|h)�.

Taking real parts yields

0 = Re λ|�1/2u|22 + 2|µ1/2D(u)|22 + σRe λ(A�h|h)�. (4.4)

Taking imaginary parts yields

0 = Im λ|�1/2u|22 − σ Im λ(A�h|h)�,

hence if Im λ 
= 0, then

σ(A�h|h)� = |�1/2u|22.
Inserting this identity into (4.4) leads to

0 = 2Re λ|�1/2u|22 + 2|µ1/2D(u)|22. (4.5)

This shows that when ��� 
= 0, if λ is an eigenvalue of −L with Re λ ≥ 0 then λ is real. In
fact, identity (4.5) implies D(u) = 0, then u = 0 by [9, Lemma 1.2.1], which is a variant
of Korn’s inequality, the no-slip condition on ∂� and P��u� = 0 on�. Substituting u = 0
in the last equation in (4.3), we obtain λ���h = 0. If λ satisfies Re λ ≥ 0 and Im λ 
= 0,
then ���h = 0, hence h = 0. This shows that λ with Re λ ≥ 0 and Im λ 
= 0 are not
eigenvalues.
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The identity

λ

∫

�

hd� =
∫

�

(uk · ν� − j/�k)d� = −�−1
k

∫

�

jd�,

shows that the mean values h̄ of h and j̄ of j vanish in case λ 
= 0 since the densities are
non-equal. If � is connected, then A� is positive semi-definite on functions with mean
zero. Therefore by (4.4) we see that λ > 0 are not in the spectrum of −L , provided � is
connected.
Hereafter we use the notation

L2,0(�) = {h ∈ L2(�) :
∫

�

hd� = 0}.
(3) Next we consider the asymmetric Stokes problem

�λu − µ�u + ∇π = 0 in �\�,

div u = 0 in �\�,

P��u� = P��T (u, π)ν�� = 0 on �,

−�T (u, π)ν� · ν�� = g on �,

−�T (u, π)ν� · ν�/�� = 0 on �,

u = 0 on ∂� (4.6)

to obtain as output

��u · ν��/��� = Sλg.

For this problem we have the following result which is a special case of [9, Proposition
10.7.1].

PROPOSITION 4.1

The operator Sλ for the Stokes problem (4.6) admits a bounded extension to L2,0(�) for
λ ≥ 0 and has the following properties:
(i) If u denotes the solution of (4.6), then

(Sλg|g)L2(�)2 = λ

∫

�

�|u|2dx + 2
∫

�

µ|D(u)|22dx,

λ ≥ 0, g ∈ L2,0(�) ∩ H1/2
2 (�).

(ii) Sλ ∈ B(L2,0(�)) is self-adjoint, positive semidefinite and compact.
(iii) |Sλ|B(L2,0(�),H1

2 (�)) ≤ C uniformly for λ ≥ 0.

(vi) Sλ : L2,0(�) → H1
2 (�) ∩ L2,0(�) is isomorphism for each λ ≥ 0.

(4) Now suppose that λ > 0 is an eigenvalue of −L . We set g = −σA�h to obtain
λh = Sλ(−σA�h), namely

λTλh + σA�h = 0 (4.7)

with Tλ = S−1
λ . λ > 0 is an eigenvalue of −L if and only if the problem (4.7) admits a

nontrivial solution, i.e. if and only if 0 is an eigenvalue for Bλ := λTλ + σA� . Here the
domain of Bλ is that of A�, Tλ is a relatively compact perturbation of A� .

We consider this problem in L2,0(�). Then A� is self-adjoint and

σ(A�h|h)� ≥ −σ(n − 1)

R2 |h|2�.
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If τ > 0 is an eigenvalue of Tλ, then

τ−1h = T −1
λ h = Sλh,

hence we get

τ−1|h|� ≤ C |h|�,

since by Propositions 4.1, Sλ is bounded in L2,0(�), uniformly for every λ ≥ 0. Therefore
τ = τ(λ) ≥ c0 > 0 for every λ, and so

(Bλh|h)� = λ(Tλh|h)� + σ(A�h|h)� ≥
(

c0λ − σ(n − 1)

R2

)

|h|2�.

This proves that Bλ is positive definite, hence (4.7) has no nontrivial solution for large λ.
But for small λ > 0 we have with h = ∑m

k=1 χ�k hk , where χA denotes the characteristic
function of A, hk = constant on �k ,

∑m
k=1 hk = 0,

σ(A�h|h)� = −σ(n − 1)

R2 ωn Rn−1
m∑

k=1

h2
k < 0.

For h ∈ H3/2
2 (�) ∩ L2,0(�), we have Tλh = S−1

λ h → T0h in L2,0(�) as λ → 0. This
shows that Bλ is not positive semi-definite for small λ. Therefore, by a continuity argument,
Bλ has a nontrivial kernel for some λ0 > 0, which implies that−L has at least one positive
eigenvalue.
Even more is true. We have seen that Bλ is positive definite for large λ and B0 = σA�

has −σ(n − 1)/R2∗ as an eigenvalue of multiplicity m − 1 in L2,0(�). Therefore, as λ

increases to infinity, m − 1 eigenvalues of Bλ must cross through zero, this way inducing
m − 1 positive eigenvalues of −L .

(5) Finally, we look at the eigenvalue λ = 0. Then (4.4) yields

|µ1/2D(u)|22 = 0,

hence D(u) = 0. Korn’s inequality yields ∇u = 0 and then we have u2 = 0 by the no-slip
condition on ∂�, u1 = 0 by P��u� = 0. This implies further that the pressures are constant
in the phases and �π� = −σA�h. Thus the dimension of the eigenspace for eigenvalue
λ = 0 is the same as the dimension of the manifold of equilibria, namely mn +1 if �1 has
m ≥ 1 components. The kernel of L is spanned by eR = (0, 1), e jk = (0, Y k

j ) with the

spherical harmonics Y k
j of degree one for the spheres �k, j = 1, . . . , n, k = 1, . . . , m. As

[9, Chapter 10.7], one shows that λ = 0 is a semi-simple eigenvalue of L .

Let us summarize what we have proved.

Theorem 4.2. Let p ∈ (1,∞), σ, �k,µk > 0, ψk ∈ R, k = 1, 2 and suppose �1 
= �2.
Let L denote the linearization at e∗ := (0, �) ∈ E as defined above. Then −L generates
a compact analytic semigroup in X0 which has maximal L p-regularity. The spectrum of
L consists only of eigenvalues of finite algebraic multiplicity. Moreover, the following
assertions are valid:
(i) The operator −L has no eigenvalues λ 
= 0 with nonnegative real part if and only if

� is connected.
(ii) If � is disconnected and has m components, then −L has precisely m − 1 positive

eigenvalues.
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(iii) λ = 0 is an eigenvalue of L and it is semi-simple.
(iv) The kernel N (L) of L is isomorphic to the tangent space Te∗E of the manifold of

equilibria E at e∗.

Consequently, e∗ = (0, �) ∈ E is normally stable if and only if � is connected, and
normally hyperbolic if and only if � is disconnected.

This result parallels [9, Theorem 10.7.2] in the isothermal case.

5. Nonlinear stability of equilibria

For the stability analysis of equilibria we follow the exposition of [9, Chapter 11]. We
employ again the Hanzawa transform around the given equilibrium e∗ = (0, �∗) where
the reference manifold is � = �∗.

�∂t u − µ�u + ∇π = �Fu(u, h, π) in �\�,

div u = Gd(u, h) in �\�,

P��u� = Gm(u, h) on �,

−P��T (u, π)ν�� = Guτ (u, h) on �,

−�T (u, π)ν�� · ν� + σA�h = Guν(u, h) + Gγ (h) on �,

−��−1T (u, π)ν� · ν�� = Gs(u, h) on �,

u = 0 on ∂�,

∂t h − ��u · ν��/��� = Fh(u, h) on �,

u(0) = u0 in �\�, h(0) = h0 on �. (5.1)

Here the nonlinearities are of class C1 fromE to F, and satisfy G ′
d(0) = G ′

k(0) = 0 for all
k = m, uτ, uν, γ, s. Let w := (z, π) := (u, h, π) and z0 := (u0, h0). We will frequently
make use of the shorter notation

Lw = N (w), z(0) = z0.

We need to parametrize SM over its tangent space

Xγ := {
(u, h) ∈ L p(�)n × C2(�) : u ∈ W 2−2/p

p (�\�)n, h ∈ W 3−2/p
p (�),

div u = 0 in �\�, u = 0 on ∂�

P��u� = 0, −P��µ(∇u + [∇u]T)�ν� = 0 on �
}
.

For fixed ω > 0 and given z̃ = (ũ, h̃) belonging to a small ball B
Xγ
r (0), we solve the

problem

�ωū − µ�ū + ∇π̄ = 0 in �\�,

div ū = Gd(ū + ũ, h̄ + h̃) in �\�,

P��ū� = Gm(ū + ũ, h̄ + h̃) on �,

−P��µ(∇ū + [∇ū]T)�ν� = Guτ (ū + ũ, h̄ + h̃) on �,

−�T (ū, π̄)ν� · ν�� = Guν(ū + ũ, h̄ + h̃) on �,

−�T (ū, π̄)ν� · ν�/�� = Gs(ū + ũ, h̄ + h̃) on �,

ũ = 0 on ∂�. (5.2)

We write this equation as

Lωū = N (z̄ + z̃) on W 2−2/p
p (�\�) × W 3−2/p

p (�).
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It holds that N ′(0) = 0. Lω is invertible by [9, Proposition 11.2.5], hence the implicit
function theorem yields a unique solution φ satisfying φ′(0) = 0. Then we define

�(ũ, h̃) = (ũ, h̃) + (φ(ũ, h̃), 0) = (u, h).

� is isomorphism and satisfies �′(0) = I and �(B
Xγ
r (0)) ⊂ SM.

Let (u, π, h) be a solution on its maximal time interval [0, t∗) with initial value
(u0, h0) = (ũ0, h̃0) + (φ(ũ0, h̃0), 0). We want to derive a decomposition of the form
u = ū + ũ, π = π̄ + π̃ , h = h̄ + h̃ with (ũ(t), h̃(t)) ∈ Xγ . For a given (ũ, π̃ , h̃) such that
(ũ, h̃) has a sufficiently small norm, we solve the problem

�ωū + �∂t ū − µ�ū + ∇π̄ = �Fu(u, h, π) in �\�,

div ū = Gd(u, h) in �\�,

P��ū� = Gm(u, h) on �,

−P��µ(∇ū + [∇ū]T)�ν� = Guτ (u, ϑ, h) on �,

−�T (ū, π̄)ν� · ν�� + σA� h̄ = Guν(u, h) + Gγ (h) − Gγ (h̃) on �,

−�T (ū, π̄)ν� · ν�/�� = Gs(u, h) on �,

ū = 0 on ∂�,

ωh̄ + ∂t h̄ − ��ū · ν��/��� = Fh(u, h) on �,

ū(0) = ū0 in �\�, h̄(0) = h̄0 on �, (5.3)

with (ū0, h̄0) = (φ(ũ0, h̃0), 0). Define (ũ, π̃ , h̃) as a solution of the problem

�∂t ũ − µ�ũ + ∇π̃ = �ωū in �\�,

div ũ = 0 in �\�,

P��ũ� = 0 on �,

−P��µ(∇ũ + [∇ũ]T)�ν� = 0 on �,

−�T (ũ, π̃)ν� · ν�� + σA� h̃ = Gγ (h̃) on �,

−�T (ũ, π̃)ν� · ν�/�� = 0 on �,

ũ = 0 on ∂�,

∂t h̃ − ��ũ · ν��/��� = ωh̄ on �,

ũ(0) = ũ0 in �\�, h̃(0) = h̃0 on �. (5.4)

Employing Theorem 3.1 with the time weight parameter μ = 1, we solve (5.4) as

(ũ, π̃ , h̃) = �(ũ0, h̃0, ū, h̄)

and insert it into (5.3). π̃ is given by a function of (ũ, h̃) in a similar manner as in subsection
4.1. By the implicit function theorem,we obtain a unique solution of (5.3) z̄ := (ū, π̄ , h̄) =
z̄(ũ, h̃) in the function space E(J ) on each interval J = [0, τ ], provided that ω > 0 is
large enough. Now (5.3) can be written abstractly as

˙̃z + Lz̃ = R(z̄), t > 0, z̃(0) = z̃0, (5.5)

where z̃ = (ũ, h̃) and

R(z̃) := ω((I − T1)ū(z̃) − T2Gγ (z̃), ωh̄(z̃)).

Therefore wemay apply [10, Theorems 2.1 and 6.1] with an additional semilinear nonlocal
term, using [2, Theorem 4] to obtain Theorem 1.4.
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6. Global existence and convergence

There are basically two obstructions against global existence:

• Regularity: the norms of either u(t) or �(t) become unbounded;
• Geometry: the topology of the interface changes; or the interface touches the outer
boundary of ∂�.

Note that the compatibility conditions,

div u(t) = 0 in �\�(t), u = 0 on ∂�,

P��u(t)� = P��µD(u)(t)� = 0 on �(t),

are preserved by the semiflow. Observe that the pressure does not enter as an explicit
system variable, as it can be reconstructed by solving a weak transmission problem, at any
time instant t ∈ [0, t+).
By the uniform ball condition we mean the existence of a radius r0 > 0 such that for

each t , at each point x ∈ �(t) there exists centers xk ∈ �k(t) such that Br0(xk) ⊂ �k(t)
and �(t) ∩ B̄r0(xk) = {x}, k = 1, 2. Note that this condition bounds the curvature of
�(t), prevents parts of it to touch the outer boundary ∂�, and to undergo topological
changes. Hence if this condition holds, then the number of components of the phases are
preserved.
With this property, combining the local semiflow for (1.1) with the Lyapunov functional

and compactness, we obtain the following result.

Theorem 6.1. Let p > n + 2, σ, �k,µk > 0, ψk ∈ R, k = 1, 2, and suppose �1 
= �2.
Let (u, �) be a solution of (1.1) in the state manifold SM on its maximal time interval
[0, t+). Assume there is a constant M > 0 such that the following conditions hold on
[0, t+):

(i) |u(t)|
W 2−2/p

p
, |�(t)|

W 3−2/p
p

≤ M < ∞;
(ii) �(t) satisfies the uniform ball condition.

Then t+ = ∞, i.e. the solution exists globally, and its limit set ω+(u, �) ⊂ E is non-empty.
If further (0, �∞) ∈ ω+(u, �) with �∞ connected, then the solution converges in SM to
this equilibrium.

Conversely, if (u(t), �(t)) is a global solution inSMwhich converges to an equilibrium
(0, �∗) ∈ E in SM as t → ∞, then (i) and (ii) are valid.

Proof. Assume that (i) and (ii) are valid. Then �([0, t+)) ⊂ W 3−2/p
p (�, r) is bounded,

hence relatively compact in W 3−2/p−ε
p (�, r). Thus we may cover this set by finitely many

balls with centers �l real analytic in such a way that

dist
W 3−2/p−ε

p
(�(t),� j ) ≤ δ,

for some j = j (t), t ∈ [0, t+). Let Jl = {t ∈ [0, t+) : j (t) = l}; using for each
l a Hanzawa-transformation �l , we see that the pull backs {(u(t, ·), ) ◦ �l : t ∈ Jl}
are bounded in W 2−2/p

p (�\�l)
n+1, hence relatively compact in W 2−2/p−ε

p (�\�l)
n+1.

Employing now Theorem 3.1 we obtain solutions (u1, �1) with initial configurations
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(u(t), �(t)) in the state manifold on a common time interval, say (0, τ ] and by uniqueness,
we have

(u1(τ ), �1(τ )) = (u(t + τ), �(t + τ)).

By definition of t+ this yields t+ = ∞, and continuous dependence implies that the orbit
of the solution (u(·), �(·)) is relative compact in SM. The available energy is a strict
Lyapunov functional, hence the limit set ω+(u, �) ⊂ SM of a solution is contained in the
set E of equilibria. By compactness, ω+(u, �) ⊂ SM is non-empty, hence the solution
comes close to E . Then we may apply the convergence result Theorem 1.4. The converse
follows by a compactness argument. �
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