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Abstract. A hypothesis put forward in late 20th century and subsequently substantiated experimentally
posited the existence of optical vortices (twisted light). An optical vortex is an electromagnetic wave that in
addition to energy and momentum characteristic of flat waves also possesses angular momentum. In recent years
optical vortices have found wide-ranging applications in a number of branches including cosmology. The main
hypothesis behind this paper implies that the magnitude of gravitational redshift for an optical vortex will differ
from the magnitude of gravitational redshift for flat light waves. To facilitate description of optical vortices, we
have developed the mathematical device of gravitational interaction in seven-dimensional time-space that we
apply to the theory of electromagnetism. The resulting equations are then used for a comparison of gravitational
redshift in optical vortices with that of normal electromagnetic waves. We show that rotating bodies creating
weak gravitational fields result in a magnitude of gravitational redshift in optical vortices that differs from the
magnitude of gravitational redshift in flat light waves. We conclude our paper with a numerical analysis of the
feasibility of detecting the discrepancy in gravitational redshift between optical vortices and flat waves in the

gravitational fields of the Earth and the Sun.
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1. Introduction

High monochromaticity and directionality being two
prominent features of laser emission, its properties can
thus be described using the concept of a wavefront
where the phase of optical vibrations is identical in all
points. If the laser beam has no optical vortices (twisted
light) for n = 0, it can be represented by a system
of surfaces having the same phase in every point. The
distance between such neighboring surfaces is equal to
the wavelength A, with photon energies proportional to
their frequencies £ = hv where h is the Planck con-
stant and the momentum equals p = & /A. The situation
becomes different if optical vortices n # 0 are present
in the laser beam. In this case an orbital angular momen-
tum L = hn/(2m) is imparted to photons with n being
the orbital topological charge (Torres & Torner 2011;
Arita et al. 2013). A wavefront in such an optical vor-
tex comprises a helicoid, i.e. a spiral winding toward
the wave propagation direction, with a special central
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point where amplitude is zero and phase is indefinite
Refs. (Allen et al. 1992; He et al. 1995; Mehmood et al.
2014; McMorran et al. 2011; Kazak & Tolstik 2010).
For instance, at n = =1, it takes one turn around the
wave vector to for the phase of the wave to change by
27, while at n = £2 a half-turn has the same effect.

Optical vortices have found wide-ranging application
in recent years: thanks to their unique properties, they
can be used efficiently in optical communications sys-
tems, can be harnessed for optical tweezers, and are
remarkably useful in gravitation and cosmology (Port-
nov 2015; Tamburini ef al. 2011).

This paper examines the magnitude of redshift in
optical vortices and weak gravitational fields.

2. The optical vortex equation

The standard theory of gravitation uses the point-mass
model to describe the motion of test bodies despite of the
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fact that all astrophysical objects have dimensions and
may rotate around their axes. To overcome this contra-
diction, relativism was generalized to extended rotating
bodies, which allowed the application of models of rel-
ativistic extended bodies to elementary particles (the
relativistic rotator of the relativistic rotator) (Minkevich
2011; Huang et al. 2014; Popawski 2010; Hehl 2007;
Banerjee 2010; Babourova et al. 2016; Kuvschinova
& Panov 2014; Capozziello & Vignolo 2010; Git-
man 2009; Staruszkiewicz 2008; Sadurni 2009). This
direction in fundamental theoretical physics describes
the processes occurring in the space of the symmetry
parameters of the Lie group. For example, to describe
the motion of rigid bodies, we can consider the rotation
group SO (3), a topological space formed by a set of
points, each of which is a rotation of g in the Euclidean
space R3. When parameterized by Euler angles: ¢ is
the rotation angle, ¥ is the precession angle, 6 is the
nutation angle, the rotation can be represented as the
composition of three rotations g (¢, ¥, 6).

On the group variety of a Lie group there exists the
so-called Killing-Cartan metric, which for the rotation
group has the form of a Euclidean metric, which implies
that the variety of rotation groups is locally Euclidean
(Cho 1975; Ne’eman & Regge 1978; Toller 1978; Toller
& Vanzo 1978; Cognola et al. 1979). For convenience,
in addition to the space-time coordinates, we will use
the rotation coordinates determined by the Euler angles:

(D

are coordinate coefficients:

| J
=== 2 2)
m

J is the moment of inertia of the test body relative to
axes of rotation, precession and nutation, m is the mass
of the body. The form of the metric in the coordinate
space will be determined by the formula:

where r#, 2, r

Gap = gaﬁhof\hﬁ,

where h% 18 the matrix of the tetrad coefficients, Greek
symbols run from zero to 3, and the uppercase Latin
characters are from zero to 6.

In this case, the calculations yield the following com-
ponents for a non-perturbed metric:
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0
Goo =1,
0
Gab =-1,
0 0
G45 = G54 = —cosf
and the inverse matrix:
0
G® — 1,
0 0 0 0
Gll — G22 — G33 G66 — 1’
0 0
G¥ =G> = —(sin6) 2
0 0

G™* = G* = cosb(sin6) 2,

where the numerical values over G refer to the order
of the perturbation. To the resulting metric there corre-
sponds a Riemannian Levi-Civita connection for which
the affine-coupling coefficients are calculated by the for-
mula:

1
FfoB = EGCD(aAGBD + 0pGap — 3pGap).

As aresult, we obtain unperturbed connectivity compo-
nents:

0 0 0 0
4 4 5 5 m cotf
M6 =164 =156 =65 = |

J o2
0 0 0 0
m 1
56 65 46 64 \/ 7 3sind
0 0 .
m sin 6
[O45 =10, = [——,
45 54 7o

all other components of Fg p are equal to zero. These
coupling coefficients correspond to the curvature tensor:

A A A A -F A F
RBCD = 8CFBD - aDFBC + FFCFBD - FFDFBC'

Calculating the components of this tensor, we can estab-
lish the equalities:

0
Aun = Run,
0 0 0 0 O 0 0
0O 0 0 0 O 0 0
0O 0 0 0 O 0 0
0O 0 0 0 O 0 0
Auv=1o9 o0 o o 2 M0 4 f.
2J92J
mcosv m
0 0 0 O — 0
2J 2J m
00 0 0 O 0 —
2J
0  3m
R=-2",
2J
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which prove that the variety of the rotation group is a
space of constant curvature. This allows us to write the
gravitational field equations in the form:

Rap = (TAB - %GABT) + Aas,
where T4p is the momentum energy tensor, and A 4p
is the curvature tensor of the empty space.

One of the postulates of fundamental physics is the
variational principle of the extremal action, according to
which the trajectory of the motion of the physical system
realizes the extremum of some functional composed of
the dynamic variables of the given system. In the theory
of gravitation, such an extremum is the motion of the
body along the geodesic, that is, obeying the equation
of motion:

ut <8AuB + FgAuC) =0.

The above equations describing the motion of test
solids in gravitational fields in extended space-time
with rotation allow one to describe optical vortices as
extended rotating objects.

Components of the metric of unperturbed spherical
space-time with rotation appear as follows at zero-order
decomposition:

0
Goo = 1, 3)
o 2

Gy =-r", “4)
0 0 0 0

Gi1 = Gy4 = Gs5 = Ggg = — 1, (5
0

Gz = —r2(sin9)2, (6)
0 0

Gy4s = G54 = —cos b, (7

where 7, ¥, ¢ are the radial coordinate, the zenith and
azimuth angles of the spherical space, respectively. The
components of the metric of the perturbed space, of the
second and third order of the expansion can be obtained
from gravitational equations in the form of equalities:

0
2 & T9(x)
Go=—— [ = ’x, ®)
4 [x' — x|
2 0 2
Gap = —GapGoo, )
1
3 0 @ T(x)
G =—Gup— d’x, (10)

2 ) |x! — x|

Here lowercase Latin letters iterate from 1 to 6. We find
that the components of the metric will be composed of
unperturbed and perturbed parts:
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0 2
Goo = Goo + Goo,

0 2
Gab = Gab + Gap,

1 3
Ga0 = Gao + Gao-

Interactions between charged particles will be des-
cribed using a force field whose properties in contrast
to the classical theory - will be characterized by a 7-
dimensional vector of electric E; and magnetic H; field
strength with functions of coordinates, time and orienta-
tion angle comprising vector components. As shown in
Ref. (Portnov 2016), Maxwell’s equations for an empty
7-dimensional time-space have the form:the form:

G* o Hy =0, (1D

esan GG 3, E ¢ = —%%Hs, (12)

GM W Es = 4mp, (13)

emG"G™ oy Hy = 19E + 4—”jk, (14)
c ot c

where €x,,; are symbols similar to the Levi-Civita nota-
tion; p is bulk density of electric charge; ji are current
density. Considering that the space-time at hand does
not permit for multiplication of spatial and angular coor-
dinates, the structure of gg,; symbols is as follows:

-1 (1,2,3); (2,3,1); 3,1,2);

(4,5,6); (5,6,4); (6,4,5)
sikw =14 +1 (3,2,1);(1,3,2); (2,1, 3);
(6,5,4); (4,6,5); (5,4,6)

0

Derive a 7-dimensional curl from the Eq. (12):

eruG™ G" dpesan G G 3, E 4

10

= ———¢eouG""G" 3 H,.

c ot
Proceeding from the Eq. (14) in free space p = 0,
Jjr = 0, a wave equation of the following form can
be obtained:
1 0°E
b ~us ~dm ~hf _ e
oru€sanG'" G GG o Ef = 232
The resulting wave equation can be transformed as
below with indices in Levi-Civita symbols raised:

1 9%E,

2 9t
The product &, g™/ is a true tensor of the 6th rank that
can be expressed as a combination of products of unit

tensor components 8 = Gy, G" using the following
formula:

Eerue™ = 515 — 5751 .

eru™ MG YO Ep =
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This transform enables us to cast the wave equation into
the form:

2
f Fyparb 1 9°E
(878" — 8781 )G ™ 9O E f = _ET;‘

which can be simplified to result in:

1 0°E,
2 92
The other term in the left-hand part of the equation is

zero according to the Eq. (13), thus the final wave equa-
tion for the electric component will appear as follows:

G"3,,0,E, — 3,G" 0 E,y =

1 3%E,
G"ondpEe + 5~
A similar transform applied to the Eq. (11) will result
in the wave equation for the magnetic component.

We will assume the components of the electrical
induction vector to be a function of temporal, spatial
and rotational coordinates £ = Esr(t, x!, x4), where
xl=r x*= r4<p see (1), (2).

For a space with a massive rotating body, in view of
Egs. (3)-(7) and Egs. (8)-(10), the Eq. (15) will appear
as follows:

=0. (15)

! (92 + wd) E 182E—o
2a | ) Bt e =0
c2r
where

c®r? — 4G M2 + 16 M Q2G2 Jg(cos 0)?
w = ’
(cOr2 — 4G2M2c? + 16G2JoM Q) R (sin 0)>

M is mass, Jq is the moment of inertia, €2 is the angular
velocity of the body creating the gravitational field, G
is Newtons gravitational constant, and R; = /J/m is
a certain constant of the electromagnetic wave which
can be provisionally named inertial radius. Assuming
the nutation angle 6 of the electromagnetic wave to be
equal to r /2, the equation can be simplified to the form:

1 2. 1o\ 5 1 9%E
- 2GM r+?¢ 2 a2
I+

cr

=0, (16)

where

f=<1+

Then the solution of this equation for the case of an
electromagnetic wave traveling along the axis r and

16G?IqMQ? )
Or2 —4G2M22 )
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rotating around the same with phase turning at angle
¢ will appear as follows:

E(t,r,¢) = A-exp(—i (ot —kr —ng+0)), (17)
where w = 2mv is the cyclical vibration frequency, k =
27 /X is the wave number, n is the orbital topological
charge, numerically equal to the number of wave phase
changes corresponding to a change of the angle ¢ by

2m radians. Substitution of Eq. (17) into Eq. (16) yields,
after simplification:

1 2 n? w?*
—2GM (" +7>—§=0~
1+ ——

c°r

If the equation were modified to express wave fre-
quency, the resulting equation would show the wave
frequency in a gravity field:

nZAZ
1 LY E
( - 4n2f)

or, decomposed in Taylor series:

1 c nZe
Nee——— -+t =)

2GM \» 8m*f
1+

c 1
N 2GM
A 1+

C2}"

(18)

c2r

The laboratory wave frequency in an optical vortex,
away from massive bodies:

c n n2en (19)
Vo N — —_—
LY 87r2Rl.2

It should be noted that the classical relation between
wave frequency and wavelength breaks down when a
topological charge n # 0 is present. The second term in
Eq. (19) could be named the first topological adjustment
for frequency.

Consider adimensionless gravitational redshift quan-
tity:

Vg — v
z= ,
v

where v is the measured wavelength and vy is the labo-
ratory wavelength. With formulas (18) and (19) substi-
tuted, at the Newtonian limit with 2G M/ (c*r) << 1,
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the resulting redshift value will be a function of wave-
length and topological charge:

- n2x2 - GM
8712Rl.2 c2r
I~

2)\2

—1. (20)
n

+ 2 2
1 16G-JoMQ
cOr2 —4G2M2c?

) 87r2Rl.2

3. Discussion

As is evident from Eq. (20), for a non-rotating grav-
itating body €2 = 0 or for an electromagnetic wave
having no topological charge n = 0, redshift value can
be approximated by reduction to the classical formula:
_GM
v
When the electromagnetic wave possesses an orbital
angular momentum n # 0 and the gravitating body
is rotating 2 # 0, gravitational redshift will differ
from the classical one particularly by being wavelength-
dependent and orbital topological charge.
For Earth the magnitude of corrections in the Eq. (20)
is:

16G2 Jo M Q?

- 10-30
cOr2 — 4G?2M?2c? 107,

while for the Sun it is:

16G2JoMQ?

1021
cOr2 — 4G?2M?2? 10

Both are far below the margin of error afforded by
contemporary measurement techniques. Thus, if cor-
rections so minuscule were applied to the Eq. (20), they
would be of no help for detecting the deviation of the
standard redshift of a flat wave or the redshift of an
optical vortex using state-of-the art measurement tech-
niques on Earth and in the circumsolar range.
However, when the optical vortex passes near a rotat-
ing neutron star, the order of correction in Eq. (20)
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becomes significant, so that the dependence of the gravi-
tational redshift on the wavelength A and the topological
charge n can be observed. In addition, if such a ray is
recorded on the Earth from the gravitational redshift it
will be possible to determine such characteristics of a
neutron star as its mass M and the angular velocity of
rotation 2.
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