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Abstract: Remote sensing image scene classification is an important method for remote sensing image analysis and
interpretation and plays an important role in civil and military fields. In this study, a scene classification method of remote
sensing images based on hierarchical sparse coding is proposed. This method is essentially a kind of multi-layer, multi-scale,
and multi-path sparse coding. It can extract features of optical remote sensing images more effectively, so that the features of
the remote sensing images can be represented more sufficiently. The obtained codes are further used for spatial pyramid
pooling (SPP) operation, and the corresponding SPP representation is obtained. SPP representations in different paths are
combined and outputted to the support vector machine classifier, and the final classification results are obtained. Experiments
on two data sets show that the proposed method can obtain better scene classification accuracy.

1 Introduction
With the development of remote sensing technology, the spatial
resolution of spaceborne high-resolution remote sensing images
(such as WorldView-3 satellite remote sensing images) can reach
0.31 m, and the resolution of airborne remote sensing images can
be even higher. Remote sensing image scene classification is an
important means for remote sensing image interpretation and
analysis and plays an important role in monitoring of land use,
urban planning, environmental monitoring, agriculture, forestry,
and military reconnaissance. High-resolution remote sensing image
scenes are often complex in content and have high background
noise. It is a challenging problem in the field of remote sensing to
efficiently represent and recognise features. It is also a hot research
direction in remote sensing technology.

Scene classification is an important content of image
comprehension, focusing on the overall perception and analysis of
image scenes. In order to effectively model the remote sensing
image scene to improve the classification accuracy, many related
work with in-depth studies has been conducted in recent years.
Generally, the description of the local structure and spatial
attributes of scenes is the key to the accurate classification of high-
resolution remote sensing image scenes. The direct modelling of
scenes using low-level features is a common method. A typical
example is the bag-of-visual-words (BOVW) model. BOVW
originates from the bag-of-words (BOW) model in the field of text
analysis. This model has been widely used in the field of computer
vision. In recent years, it has gradually been introduced into image
scene classification. The BOVW model can be roughly divided
into two steps: feature learning and feature coding. In the feature
learning phase, the low-level image features are clustered and the
cluster centres form visual words. In the subsequent feature
encoding phase, the image is mapped to the nearest visual word,
and the new feature is constructed by calculating the histogram of
the visual word. The SPMK (spatial pyramid match kernel) method
divides a picture into multiple sub-regions, forms a word bag in
each region, and then uses spatial pyramid matching to converge to
generate a better scene representation. Considering the co-
occurrence relationship of visual words, SPMK was transformed
into SPCK (spatial pyramid co-occurrence kernel). SPCK+ and
SPCK++ are obtained by combining SPCK with BOVW and
SPMK, respectively, and the classification accuracy is improved
[1]. Chen et al. [2] proposed a pyramid-of-spatial-relations (PSR)

method to further mine the spatial relationship of local features and
introduce them into the BOVW method.

BOVW generally uses only the low-level visual features of the
image (mainly colours, textures, shapes etc., such as colour
histogram, LBP, and SIFT), and there is a gap between high-level
semantics. To overcome this deficiency, the probabilistic topic
model (PTM) used in natural language processing is introduced
into remote sensing image scene classification, such as latent
Dirichlet allocation (LDA) and probability implicit Probabilistic
latent semantic analysis (PLSA). LDA is a hierarchical
probabilistic model that describes the distribution of visual words
through unsupervised learning. Lienou et al. [3] first introduced
LDA into remote sensing scene classification, while Cheng et al.
[4] combined PLSA with BOVW to improve scene classification
accuracy. Zhang et al. [5] combined LDA with support vector
machine (SVM) and considered image saliency information to
improve scene classification accuracy [6–9].

Sparse coding-based methods are also widely used in remote
sensing scene classification tasks. Cheriyadat [10] proposed an
airborne remote sensing image scene classification method based
on unsupervised sparse coding. Zheng et al. [11] used spatial
correlation constraints to propose a multifeature joint sparse coding
method. Cheng et al. [12] proposed the concept of sparselet, and
used an autoencoder with sparse constraints to extract the middle
layer features. Qi et al. [13] proposed a sparse coding-based
correlation model to discover the co-occurrence relationship of
visual words to improve the accuracy of high-resolution remote
sensing imagery scene classification.

Characterising the local structure and spatial attributes of scenes
is the key to accurately classifying high-resolution remote sensing
image scenes. Most of the existing BOVW models use only the
low-level visual features of the image, and there is a gap between
high-level semantics. Probabilistic topic models and existing sparse
coding related methods have played a role in overcoming this
deficiency. How to perform more effective feature representation
on remote sensing image scenes to improve the classification
accuracy is still a challenging problem in the current remote
sensing field.

This paper proposes a remote sensing image scene classification
framework based on hierarchical sparse coding. The proposed
method utilises multi-layer multi-scale multi-path sparse coding to
extract the features of remote sensing images effectively, so that
the features of the images can be fully expressed. Experiments on
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two high-resolution optical remote sensing image datasets show
that the proposed method can obtain better scene classification
accuracy.

This rest of this paper is organised as follows. Section 2
describes the proposed method for optical remote sensing image
scene classification based on hierarchical sparse coding, and the
experimental results are given in Section 3. Section 4 summarises
this paper.

2 Multi-layer multi-scale multi-path sparse coding
To better perform feature extraction, we propose a remote sensing
scene classification framework based on hierarchical sparse
coding. The process is shown in Fig. 1. This method is called
multi-layer multi-scale multi-path sparse coding and is abbreviated
as M3SC. The proposed framework is inspired by the hierarchical
matching pursuit model proposed by Bo et al. [14] and combines
information from multiple sparse coding paths and applies it to
remote sensing image scene classification. The sparse encoding
part of the framework mainly includes two operations: patching
and pooling. Each pooling operation follows the patching
operation. The code obtained by the last pooling is further used as
the input of Spatial Pyramid Pooling (SPP) operation to obtain the
corresponding SPP representation. SPPs of different paths are sent
together to the SVM classifier to get the final classification result.
The number of layers is used to represent the number of ‘patching 
+ pooling’ structures on a path. It can be seen from Fig. 1 that the
number of layers of paths A1 and B1 is 1, the number of layers of
paths A2 and B2 is 2, and the number of layers of path B3 is 3. 

2.1 Patching operation

Specifically, the patching operation includes three sub-processes:
dictionary samples generation, dictionary learning, and sparse
coefficients solving.

2.1.1 Dictionary samples generation: The image is first
preprocessed, including normalisation and subtraction of the mean.
Subsequently, a sliding window operation is performed on the
entire image using a square window with a step size of one to
obtain patches. Then the patches obtained by the sliding window
are randomly selected as the samples to the train the dictionary.
The number of the selected patches is equal to the pre-given
dictionary size.

2.1.2 Dictionary learning: The dictionary learning is performed
after sliding window and randomly selecting samples. The K-SVD
algorithm [15] is used as the learning algorithm in this
classification framework. The K-SVD algorithm is actually a
combination of K-means clustering and singular value
decomposition. The goal is to solve the optimisation problem as
follows:

D^ = arg min
D

| |Y − DX| |F2 = arg min
D

∥ Y − ∑
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d jxj

T ∥
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2
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where Y ∈ ℝn × N is the data of samples (n denotes the dimension of
data and N denotes the number of samples), D ∈ ℝn × m is the
dictionary (m denotes the size of codewords), and X ∈ ℝm × N is the
sparse coefficients matrix.

First, the overall representation residual El = Y − ∑ j ≠ l d jxj
T is

computed, and then dl and xl are updated. In order to maintain the
sparsity of xl

T in this step, only the non-zero elements of xl
T should

be preserved and only the non-zero items of El should be reserved,
i.e. El

P, from dlxl
T. Then, SVD decomposes El

P into El
P = UΔV  and

then updates dictionary dl.

2.1.3 Sparse coefficients solving: The sparse coefficients are
solved using the orthogonal matching pursuit (OMP) algorithm
[16]. OMP selects the codeword best correlated with the current
residual at each iteration, which is the reconstruction error
remaining after the codewords chosen thus far are subtracted. At
the first iteration, this residual is exactly the observation. Once a
new codeword is selected, the observation is orthogonally
projected onto the span of all the previously selected codewords
and the residual is recomputed. The procedure is repeated until the
desired sparsity level is reached.

2.2 Pooling operation

Each pooling operation following after a patching operation is a
type of max pooling. The maximum value of the sparse coefficients
of the patching operation is used as the result of the pooling. If the
number of layers is greater than one, the result of the pooling
operation is passed as input to the subsequent patching operation.

After the last pooling operation, the encoded feature map is
segmented by 1 × 1, 2 × 2, 3 × 3 to obtain 1, 4, and 9 blocks,
respectively. The max pooling operation is performed on each
block to obtain the spatial pyramidal pooling (SPP) representation,
as shown in Fig. 2. 

In general, the M3SC classification framework proposed in this
paper has several advantages: (i) Some paths has multi-layered
structure, and the deeper and more abstract features of the image
can be extracted through the hierarchical feature representation. (ii)
Feature extraction can be achieved at different scales. This
different scale is reflected in different patching scales, different
pooling sizes, and the SPP operation; (iii) The number of layers on
different paths, the patching size, and the size of the pooling may

Fig. 1  Schematic diagram of the classification framework of M3SC
 

Fig. 2  Schematic diagram of SPP
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be different, and each path may serve to compensate for each other.
Due to these advantages, M3SC hopes to achieve higher
performance in remote sensing image scene classification.

3 Experimental results
To verify the performance of M3SC for the task of remote sensing
image scene classification, we conducted experiments on the UCM
and WHU-RS data sets.

3.1 Experiments on UCM dataset

The UCM (University of California Merced) dataset has 21 land-
use categories, each containing 100 airborne remote sensing
images. The size of the image is 256 × 256 and the resolution is 1
foot (0.3 m). In Fig. 3, two sample images are given for each
category. For each category, 80 pictures were randomly selected as
training samples, and the remaining 20 pictures were used as test
samples. A total of five runs were performed, and the average of
five results was used as the classification accuracy. 

The parameters of the M3SC method are set as follows: The
dictionary size of the A1 and B1 paths in layer 1 is 500; the
dictionary sizes of the first layer of the A2 and B2 paths in layer 2
are 75 and 200, respectively. The dictionary size in the second
layer is 500; the three layers dictionary size of the path B3 in layer
3 is 75, 300, and 500; the size of the patching and pooling in each
path is shown in Fig. 1.

Figs. 4 and 5 show the initialised DCT dictionary and the
dictionary obtained through K-SVD learning, respectively. It can
be seen that compared to the DCT dictionary, the K-SVD learned
dictionary contains more abundant image feature information, not
only contains multiple line segments with directionality but also
contains information related to colours. 

Next, we discuss the effect of different path combinations on
the classification accuracy, as shown in Table 1. Since the number
of different types of test samples is the same, the average accuracy
(AA) and overall accuracy (OA) are also the same, so the AA is
not listed in this table. From Table 1 we can see that in a single
path, the accuracy of A2 is the highest, with the OA of 0.8548 and
the Kappa coefficient of 0.8475. In the multi-path combination, the
accuracy of the A1 + A2 path is relatively high, with the OA of
0.9095 and the Kappa coefficient of 0.9050. Overall, the
classification performance of the method considering all five routes
is the highest, with the OA of 0.9214 and the Kappa coefficient of
0.9175. Unless otherwise specified, the M3SC method mentioned
in this paper refers to as the method that considers all paths. 

Furthermore, we examine the effect of different paths on class-
specific accuracy, as shown in Fig. 6. We can observe that on the
UCM data set, the method of considering all paths gets much
higher classification accuracies than single paths for baseball-
diamond, buildings, freeway, golf-course, medium-residential,
mobile-homepark, overpass, sparse-residential, and storage-tanks. 

Fig. 7 shows the confusion matrix for the M3SC classification
method on UCM data. From this figure, it can be seen that the
confusion between medium-residential, dense-residential,
buildings, dense-residential is relatively large. Fig. 8 gives
examples of several misclassified images on the UCM data set. In
Fig. 8a, the true label is dense-residential while the predicted label
is medium-residential; in Fig. 8c, the medium-density residential
area is misclassified as high density residential area; in Fig. 8e,
storage-tanks are mistakenly classified as sparse-residential in
Fig. 8f, tennis-courts are misclassified ad dense-residential (high
density residential area). There are two main reasons for the
misclassification: (i) The category attributes are relatively similar.
For example, even for human eyes, it is difficult to distinguish
whether it is a high density residential area or a medium-density
residential area; (ii) The pictures contained various objects. For

Fig. 3  Sample images of the UCM dataset
(a) Agricultural, (b) Aeroplane, (c) Baseball-diamond, (d) Beach, (e) Buildings, (f) Chaparral, (g) Dense-residential,(h) Forest, (i) Freeway, (j) Golf-course, (k) Harbour, (l)
Intersection, (m) Medium-residential, (n) Mobile-homepark, (o) Overpass, (p) Parking lot, (q) River, (r) Runway, (s) Sparse-residential, (t) Storage-tanks, (u) Tennis-court
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example, the buildings in Figs. 8e and f interfere with the
classification of the scene. The misclassification of Fig. 8 is
basically consistent with the confusion between the classes of the
confusion matrix shown in Fig. 7. 

Table 2 compares the classification accuracy of the proposed
M3SC method with other over 30 methods on the UCM dataset. In
each method, the training sample and the test sample are divided
by 80 and 20%. Compared with the earlier SPMK [17] and BOVW
[17] methods, the M3SC method has an ∼15% improvement in
OA. In recent years, deep learning or other hierarchical methods

have been used more and more in UCM remote sensing image
scene classification. Among them, the classification accuracy of
EPLS + CNN [18] is 84.53%, 89.1% for MFL [19], 89.90% for
LPCNN [20], 90.5% for HCV [21], and 91.12% for TLFR [22].
HCV-FV [21] combines the HCV method with the Fisher vector
method, achieving a classification accuracy of 91.8%. The
proposed M3SC method has further improved the classification
performance, achieving an OA of 92.14%. 

3.2 Experiments on WHU-RS dataset

The WHU-RS data set was provided by the Signal Processing
Laboratory of Wuhan University. The data set includes 19 images
of the ground scene category. The image size is 600 × 600. Fig. 9
gives an exemplary image of this data set. Each category randomly
selected 30 pictures as training samples and the remaining pictures
as test samples. The number of test samples of the corresponding
category in Figs. 9a–s is 25, 20, 22, 26, 20, 20, 20, 23, 23, 31, 20,
20, 20, 24, 23, 20, 24, 26, and 28, respectively. A total of five runs
were performed and the average of five results was used as the
classification accuracy. 

The effect of different path combinations on the classification
accuracy is shown in Table 3, which gives the OA, AA, and Kappa
coefficient under different path combinations. As can be seen from
the table, the accuracy of B3 in the single path is the highest, with
the OA of 0.7655, the AA of 0.7710 and the Kappa coefficient of
0.7523. In addition, the multi-path combination has significantly
improved the classification performance over a single path. In the

Fig. 4  Initialised DCT dictionary
 

Fig. 5  Dictionary obtained by K-SVD
 

Table 1 Accuracy comparison of different path
combinations on the UCM dataset
Path OA Kappa
A1 0.7857 0.7750
A2 0.8548 0.8475
B1 0.8048 0.7950
B2 0.8262 0.8175
B3 0.8262 0.8175
A1 + A2 0.9095 0.9050
B1 + B2 0.8762 0.8700
B1 + B3 0.8857 0.8800
B2 + B3 0.8810 0.8750
B1 + B2 + B3 0.8929 0.8875
ALL 0.9214 0.9175
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multi-path combination, the accuracy of the B1 + B2 + B3 path is
relatively high, with an OA of 0.8460, an AA of 0.8505, and a
Kappa coefficient of 0.8373. Overall, the classification
performance of the method considering all five paths is the highest,
with the OA of 0.8483, the AA of 0.8530, and the Kappa
coefficient of 0.8397. 

From the classification accuracy of various categories, we can
see from Fig. 10 that the method of considering all the paths in the
WHU-RS data set has a greater degree of improvement than the
single path for airport, forest, meadow, and railway stations. Fig. 11
shows the confusion matrix for the M3SC classification method on
the WHU-RS data. 

Table 4 compares the accuracy of our proposed M3SC method
with other methods on the WHU-RS dataset. For each method, 30
samples are selected as training samples and the remaining samples
as test samples. The bag of colours model and the tree of c-shapes
model [35] achieve classification accuracy of 70.63 and 80.42%,
respectively. The classification accuracy of LTP-HF [36] and SIFT
[36] are 77.6 and 82.8%, respectively. Among several methods, the
M3SC method achieves the highest classification accuracy of
84.83%, again confirming the effectiveness of our proposed
method. 

Fig. 6  Class-specific accuracy of different paths on the UCM dataset
 

Fig. 7  Confusion matrix (in per cent) of the proposed method on the UCM dataset (values <5% are not displayed)
 

Fig. 8  Samples of misclassification on the UCM dataset
(a) Dense-residential→medium-residential, (b) Golf-course→forest, (c) Medium-residential→dense-residential (d) Mobile-homepark→dense-residential, (e) Storage-tanks→sparse-
residential, (f) Tennis-court→dense-residential
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4 Conclusion
In this paper, a framework of remote sensing image scene
classification based on hierarchical sparse coding is proposed. The
method uses a M3SC to extract the features of remote sensing
images. Experiments on two high-resolution optical remote sensing
images (UCM and WHU-RS dataset) show that the proposed
method can obtain better scene classification accuracy.
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Table 2 Accuracy comparison of different methods on the UCM dataset
Method Accuracy, % Year Method description References
BOVW 76.81 2010 bag-of-visual-words  [17]
SPMK 75.29 2010 spatial pyramid match kernel  [17]
SCK 72.52 2010 spatial co-occurrence kernel  [17]
BOVW + SCK 77.71 2010 combination of BOVW and SCK  [17]
SPCK 73.14 2011 spatial pyramid co-occurrence kernel  [1]
SPCK +  76.05 2011 combination of SPCK and BOVW  [1]
SPCK + + 77.38 2011 combination of SPCK and SPMK  [1]
UFL 81.67 2014 unsupervised feature learning by sparse coding  [10]
wavelet-BOVW 87.38 2014 wavelet based bag-of-visual-words model [23]
mCENTRIST 89.9 2014 multi-channel census transform histogram [24]
COPD 91.33 2014 collection of part detectors [25]
SVM-LDA 80.33 2015 combination of SVM and LDA [5]
saliency-UFL 82.72 2015 saliency-guided unsupervised feature learning [5]
MCBGP 86.52 2015 multi-channel binary Gabor patterns descriptor [26]
MCBGP 86.52 2015 multi-channel binary Gabor patterns descriptor [26]
BOW- RD 87.67 2015 bag-of-words using random dictionary [27]
SAL-PTM 88.33 2015 semantic allocation level probabilistic topic model [8]
PSR p 89.1 2015 pyramid of spatial relatons model [2]
UFL-SC 90.26 2015 unsupervised feature learning via spectral clustering [28]
partlets 91.33 2015 partlets-based method [12]
ASP 80.7 2016 adaptive spatial pooling [29]
SCM 84.31 2016 sparse correlaton model [13]
EPLS + CNN 84.53 2016 sparse unsupervised deep convolutional networks [18]
CLBP 85.5 2016 completed local binary patterns [30]
FBC 85.53 2016 fast binary coding [31]
CKC 86.28 2016 supervised collaborative kernel coding [32]
ERT 86.69 2016 extremely randomised trees [33]
MFL 89.1 2016 multi-layer feature learning via convolution and pooling operations [19]
MS-BOV 89.10 2016 multi-scale bag-of-visual-words representation [34]
LPCNN 89.90 2016 large patch convolutional neural networks [20]
HCV 90.5 2016 hierarchical coding vectors [21]
MS-CLBP 90.6 2016 multi-scale completed local binary patterns [30]
TLFR 91.12 2016 two-level feature representation [22]
HCV-FV 91.8 2016 hierarchical coding vectors with Fisher vectors [21]
ours 92.14 2018 M3SC —

 

Fig. 9  Sample images of the WHU-RS dataset
(a) Airport, (b) Beach, (c) Bridge, (d) Commercial, (e) Desert, (f) Farmland, (g) Football field, (h) Forest, (i) Industrial, (j) Meadow, (k) Mountain, (l) Park, (m) Parking, (n) Pond,
(o) Port, (p) Railway station, (q) Residential, (r) River, (s) Viaduct
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