
Research Articles

AllSome Sequence Bloom Trees

CHEN SUN,1,* ROBERT S. HARRIS,2,* RAYAN CHIKHI,3 and PAUL MEDVEDEV1,4,5

ABSTRACT

The ubiquity of next-generation sequencing has transformed the size and nature of many
databases, pushing the boundaries of current indexing and searching methods. One particular
example is a database of 2652 human RNA-seq experiments uploaded to the Sequence Read
Archive (SRA). Recently, Solomon and Kingsford proposed the Sequence Bloom Tree data
structure and demonstrated how it can be used to accurately identify SRA samples that have a
transcript of interest potentially expressed. In this article, we propose an improvement called
the AllSome Sequence Bloom Tree. Results show that our new data structure significantly
improves performance, reducing the tree construction time by 52.7% and query time by
39%–85%, with a price of upto 3 · memory consumption during queries. Notably, it can
query a batch of 198,074 queries in <8 hours (compared with around 2 days previously) and a
whole set of k-mers from a sequencing experiment (about 27 million k-mers) in <11 minutes.

Keywords: Sequence Bloom Trees, Bloom filters, RNA-seq, data structures, algorithms,

bioinformatics.

1. INTRODUCTION

Data structures for indexing and searching of databases have always been a core contribution of

algorithmic bioinformatics to the analysis of biological data and are the building blocks of many popular

tools (Mäkinen et al., 2015). Traditional databases may include reference genome assemblies, collections of

known gene sequences, or reads from a single sequencing experiment. However, the ubiquity of next-

generation sequencing has transformed the size and nature of many databases. Each sequencing experiment

results in a collection of reads (gigabytes in size), typically deposited into a database such as the Sequence

Read Archive (SRA) (Leinonen et al., 2011). There are thousands of experiments deposited into the SRA,

creating a database of unprecedented size in genomics (four petabases, as of 2016). The SRA enables public

access of the database through meta-data queries on the experiments’ name, type, organism, etc. However,

efficiently querying the raw read sequences of the database has remained out of reach for today’s indexing

and searching methods, until earlier this year (Solomon and Kingsford, 2016).

Departments of 1Computer Science and Engineering and 2Biology, Pennsylvania State University, University Park,
Pennsylvania.

3CNRS, CRIStAL, University of Lille, Lille, France.
4Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania.
5Genome Sciences Institute of the Huck, Pennsylvania State University, University Park, Pennsylvania.
*These authors contributed equally to this work.
A preliminary version of this article appeared in RECOMB 2017.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 5, 2018

Mary Ann Liebert, Inc.

Pp. 467–479

DOI: 10.1089/cmb.2017.0258

467

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Given a transcript of interest, an important problem is to identify all publicly available sequenced

samples that express it. The SRA contains thousands of human RNA-seq experiments, providing a powerful

database to answer this question. One approach is to use tools such as Trapnell et al. (2012), Patro et al.

(2014), and Bray et al. (2016) to first identify transcripts present in each of the experiments; however,

running these tools on a massive scale is time prohibitive [although cloud-enabled tools such as Rail-RNA

(Nellore et al., 2016) are making inroads]. Moreover, they introduce biases and can easily miss a transcript

that is supported by the reads. Another approach is to align the SRA reads to the transcript of interest;

however, this approach is infeasible for such large data sets (Solomon and Kingsford, 2016).

Recently, Solomon and Kingsford (2016) proposed the Sequence Bloom Tree (SBT) data structure and

demonstrated how it can accurately identify samples that may have the transcript of interest expressed in

the read data. SBT was a breakthrough, allowing to query a set of 214,293 transcripts against a database of

2652 human RNA-seq experiments in just <4 days. The SBT is not intended to replace more thorough methods,

like alignment, but is intended to be complementary, narrowing down the set of experiments for which a more

rigorous investigation is needed.

In this article, we present the AllSome Sequence Bloom Tree (SBT-ALSO), a time and space improvement

on the original SBT (denoted by SBT-SK). It combines three new ideas. The first one is a better construction

algorithm based on clustering. The second one is a different representation of the internal nodes of the tree so

as to allow earlier pruning and faster exploration of the search space. The final one is building a Bloom filter

(BF) on the query itself. This allows quick execution of queries that are not just transcripts but are themselves

large sequencing experiments.

We evaluate SBT-ALSO on the database of 2652 human RNA-seq runs used in Solomon and Kingsford

(2016). SBT-ALSO reduces tree construction time by 52.7%, when given the BFs of the data sets. It

reduces query time by 39%–85%, with a price of up to 3 · memory consumption. Notably, it can query a

batch of 198,074 queries in <8 hours, compared with >2 days for SBT-SK. It can also query a whole set of

k-mers from a sequencing experiment (about 27 million k-mers) in <11 minutes, compared with >23 hours

by SBT-SK. Our software is open source and freely available by GitHub.{

2. RELATED WORK

This work falls into the general category of string pattern matching, where we are asked to locate all

occurrences of a short pattern in a large text. In many cases, it is useful to preprocess the text to construct an

index that will speed up future queries. The k-mer-index, trie, suffix tree, suffix array, Burrows–Wheeler

transform, and FM-index are examples of such indices (Mäkinen et al., 2015). These form the basis of

many read alignment tools such as BWA-MEM (Li, 2013) and Bowtie 2 (Langmead and Salzberg, 2012).

Although many of these approaches are space and time efficient in their intended setting, they can nev-

ertheless be infeasible on terabyte or petabyte scale data. Other approaches based on word-based indices

(Navarro et al., 2000; Ziviani et al., 2000) and compressive genomics (Loh et al., 2012; Yu et al., 2015) do

not help for the type of data and queries we consider in this article.

A BF is widely used to improve scalability by determining whether the pattern occurs in the text, without

giving its location. It is a space-efficient data structure for representing sets that occasionally provides false-

positive answers to membership queries (Bloom, 1970). For pattern matching, a BF can be constructed for

all the constituent k-mers (strings of length of k) of the text. Then, if a high percentage of a pattern’s

constituent k-mers matches, the text is a potential match and a full search can be performed. BFs are used in

several bioinformatics contexts such as assembly (Melsted and Pritchard, 2011; Chikhi and Rizk, 2013;

Salikhov et al., 2013; Heo et al., 2014) to index and compress whole genome data sets (Rozov et al., 2014),

and to compare sequencing experiments against whole genomes (Stranneheim et al., 2010).

When pattern matching against a database of read collections from sequencing experiments, additional

factors need to be considered. First, the reads contain sequencing errors. Second, they only represent short

fragments of the underlying DNA and are typically much shorter than the pattern. Third, there are many texts,

each of which is its own sequencing experiment. The goal is to identify all texts that match the pattern. A

simple way to adapt the BF idea to this case is to simply build a BF for every text and check the pattern

{SBT-ALSO GitHub repository. Available at: https://github.com/medvedevgroup/bloomtree-allsome

468 SUN ET AL.

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

separately against every text’s BF. A more sophisticated approach builds a tree to index the collection of BFs

(Crainiceanu and Lemire, 2015). This Bloofi data structure was introduced in the context of distributed data

provenance, but it was later adapted to the bioinformatics setting by Solomon and Kingsford (2016).

An orthogonal approach is the Bloom Filter Trie (BFT; Holley et al., 2015), which works similarly to a

trie on the k-mers in all the texts. Each leaf contains a bitvector describing the texts in which that k-mer

appears, and BFs are cleverly used inside the trie to ‘‘jump down’’ ‘ positions at a time, thus speeding up

the trie traversal process. The BFT complexity scales up with the number of k-mers in the query, whereas

SBT complexity scales up with the number of data sets. Thus the two approaches suggest orthogonal use

cases. In particular, the BFT is very efficient for queries that are single k-mers, significantly outperforming

the SBT. An approach that uses BFT to query longer patterns like those we consider in this article is

promising but is not yet available.

There is also a body of work about storing and indexing assembled genomes (Ernst and Rahmann, 2013;

Marcus et al., 2014; Baier et al., 2016; Liu et al., 2016; Minkin et al., 2016), which is part of the growing

field of pangenomics (Computational Pan-Genomics Consortium, 2018). However, our work relates to the

indexing of unassembled data (i.e., reads) as opposed to complete genomes. In addition to the topics

specifically mentioned previously, there are other studies related to scaling up indexing methods (Marchet

et al., 2016; Dolle et al., 2017), although the list here is in no way complete.

3. TECHNICAL BACKGROUND

3.1. Terminology

Let x and y be two bitvectors of the same length. The bitwise AND (i.e., intersection) between x and y is

written as x \ y, and the bitwise OR (i.e., union) is x [y. A bitvector can be viewed as a set of positions set

to 1, and this notation is consistent with the notion of set union and intersection. The set difference of x and

y is written as xny and can be defined as xny = x AND (NOT y). A BF is a bitvector of length b, together

with p hash functions, h1‚ . . . ‚ hp, where b and p are parameters. Each hash function maps a k-mer to an

integer between 0 and b - 1. The empty set is represented as an array of 0’s. To add a k-mer x to the set, we

set the position hi(x) to 1, for all i. To check if a k-mer x is in the set, we check that the position hi(x) is 1,

for all i. In this article, we assume that the number of hash functions is 1 (see Section 6). Next, consider a

rooted binary tree. The parent of a nonroot node u is denoted as parent(u), and the set of all the leaves of the

subtree rooted at a node v is denoted by leaves(v). Let lchild(u) and rchild(u) refer to the left and right

children of a nonleaf node u, respectively.

3.2. SBT

Let Q be a nonempty set of k-mers, and let B be a k-mer BF. Given 0 � h � 1, we say that Q h-matches B

if jfx 2 Q : x exists in Bgj=jQj � h. That is, the percentage of k-mers in Q that are also in B (including

false-positive hits) is at least h. Solomon and Kingsford (2016) consider the following problem. We are

given a database D = fD1‚ . . . ‚ Dng, where each Di is a BF of size b. The query is a k-mer set Q, and the

result of the query should be the set fi : Q h - matches Dig. The goal is to build a data structure that can

construct an index on D to support multiple future queries.

We make a distinction between the abstract data type that Solomon and Kingsford (2016) propose for the

problem and their implementation of it. We call the first SBT, and the second SBT-SK [note that in Solomon

and Kingsford (2016), no distinction is made and SBT refers to both]. A rooted binary tree is called a SBT of

a database D if there is a bijection between the leaf nodes and the elements of D. Define B[(u) for a leaf node

u as its associated database element and B[(u) for an internal node as
S

i2 leaves(u) B[(i). Note that B[(u) of an

internal node u can be equivalently defined as B[(lchild(u)) [B[(rchild(u)). Each node u then represents the

set of database entries corresponding to the descendant leaves of u. In addition, the SBT provides an interface

to construct the tree from a database, to query a k-mer set against the database, and to insert/delete a BF into/

from the database. An example of an SBT is shown in Figure 2.

3.3. Sequence Bloom Tree-SK

We call the implementation of the SBT interface provided in Solomon and Kingsford (2016) as SBT-SK.

In SBT-SK, each node u is stored as a compressed version of B[(u). The compression is done using RRR

ALLSOME SEQUENCE BLOOM TREES 469

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

(Raman et al., 2002) implemented in SDSL (Gog et al., 2014), which allows to efficiently test whether a bit

is set to 1 without decompressing the bitvector. To insert a BF B into an SBT T, SBT-SK does the

following. If T is empty, it just adds B as the root. Otherwise, let r be the root. If r is a leaf, then add a new

root r0 that is the parent of B and r and set B[(r0) = B[(r) [B. Otherwise, take the child v of r that has the

smallest Hamming distance to B, recursively insert B in the subtree rooted at v, and update B[(r) to be

B[(r) [B. Note that because RRR-compressed bitvectors do not support bitwise operations, each bitvector

must be first decompressed before bitwise operations are performed and then recompressed if any changes

are made. The running time of an insertion is proportional to the depth of the SBT. To construct the SBT

for a database, SBT-SK starts with an empty tree and inserts each element of the database one-by-one.

Construction can take time proportional to nd, where d is the depth of the constructed SBT. The left panel

of Figure 1 provides an example of the construction algorithm. To query the database for a k-mer set Q,

SBT-SK first checks whether Q h-matches the root. If yes, then it recursively queries the children of the

root. When the query hits a leaf node, it returns the leaf if Q h-matches it.

Since SBT is designed to work on very large databases, its implementation should avoid loading the

database into memory. In SBT-SK, each B[(u) is stored on disk and only loaded into memory when u is

being h-matched by a query. When there are multiple queries to be performed, SBT-SK will batch them

together so that the h-matching of multiple queries to the same node will be performed simultaneously.

Hence, each node needs to be loaded into memory only once per batch. We implement the same strategy in

SBT-ALSO.

4. METHODS

We propose the AllSome SBT as an alternative implementation of the SBT abstract data type. In this

section, we describe the construction and query algorithms. Insertion and deletion algorithms are the same

as in SBT-SK, although some special care is needed. For completeness, they are described in the Appendix

section.

FIG. 1. Example of SBT-SK and SBT-ALSO construction algorithms for the database D = fD1 = 111000‚

D2 = 111010‚ D3 = 000100‚ D4 = 000011g. Leaves are shown in blue, internal nodes in gray. In this example, the data set

can be partitioned into two types: 000xxx and 111xxx, based on the first three bits. In the SBT-SK construction, after

the first two experiments are inserted (both of type 111xxx), they are destined to be in the two different sides of the

tree (regardless of future insertions). Any future 111xxx type query will have to examine all the nodes. The SBT-

ALSO construction, in contrast, groups together the experiments so that future 000xxx type or 111xxx type queries

will have to examine only about half the nodes of the tree. ALSO, AllSome Sequence Bloom Tree; SBT, Sequence

Bloom Tree.

470 SUN ET AL.

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

4.1. AllSome node representation and regular query algorithm

Define the intersection of leaves in the subtree rooted at a node u as B\(u) =
T

i2leaves(u) B[(i). Intuitively,

we can partition the 1 bits of B[(u) into three sets: Ball(u), Bsome(u), and B\(parent(u)). Ball(u) are the bits

that appear in all of leaves(u), excluding those in all of leaves(parent(u)). Bsome(u) are the bits in some of

leaves(u) but not in all. Both sets, therefore, exclude bits present in B\(parent(u)). Formally, define

Ball(u) = B\(u)nB\ (parent(u))

Bsome(u) = B[(u)nB\(u):

At the root r, define B\(parent(r)) = ;. Ball(u) and Bsome(u) are stored using two bitvectors of size b

compressed with RRR. B[(u) and B\(u) are not explicitly stored. We refer to this representation of the

nodes using Ball and Bsome as the AllSome representation (Fig. 2 gives an example).

When we receive a query k-mer set Q, we hash each k-mer to determine the list of BF bits corresponding to Q.

These are a multiset of position indices (between 0 and b - 1) stored as an array. We call these the list of

unresolved bit positions. We also maintain two counters: the number of bit positions that have been determined

to be 1 (present) and the number of bit positions determined to be 0 (absent). These counters are both initially 0.

The query comparison then proceeds in a recursive manner. When comparing Q against a node u, each

unresolved bit position that is 1 in Ball(u) is removed from the unresolved list and the present counter is

incremented. Each unresolved bit position that is 0 in Bsome(u) is removed from the unresolved list and the absent

counter is incremented. If the present counter is at least hjQj, we add leaves(u) to the list of h-matches and

terminate the search of u’s subtree. If the absent counter exceeds (1 - h)jQj, we realize that Q will not h-match

any of the leaves in the subtree rooted at u and terminate the search of u’s subtree. If neither of these holds, we

recursively pass the two counters and the list of unresolved bits down to its children. When we reach a leaf, the

unresolved list will become empty because Bsome is empty at a leaf, and the algorithm will necessarily terminate.

The idea behind the AllSome representation is that in a database of biologically associated samples, there

are many k-mers that are shared between many data sets. In the SBT-SK representation, a query must

continue checking for the presence of these k-mers at every node that it encounters. By storing at u all the bits

that are present in all the leaves of its subtree, we can count those bits as resolved much earlier in the query

process—limiting the amount of bit look-ups performed. Moreover, we will often prune the search space

earlier and decrease the number of bitvectors that need to be loaded from disk. A query that matches all the

leaves of a subtree can often be resolved after just examining the root of that subtree. In the extreme case, the

number of nodes examined in a search may be less than the number of database entries that are matched.

A second important point is that the size of the uncompressed bitvectors at each node is now twice

as large as before. Because query time has a large I/O component, this has potential negative effects.

FIG. 2. Example SBT on D = f1110001110000000‚ 1110111100000000‚ 1111110000000000‚ 1001000111001000‚

1001000011110000‚ 1001000000001111g. Leaves are shown in blue, internal nodes in gray. In SBT-ALSO, only Ball

and Bsome are explicitly stored, whereas in SBT-SK, only B[is stored. Bits present in Ball at one node are shown as

hyphens (‘-’) in the Ball and Bsome of its descendants, but in the actual SBT-ALSO data structure, they are 0’s.

ALLSOME SEQUENCE BLOOM TREES 471

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Fortunately, we observe that the compressed size of these bitvectors is roughly proportional to the number

of 1’s that are contained. By defining the AllSome representation as we do, the number of 1’s in total in

Ball(u) and Bsome(u) is no more than the number of 1’s in B[(u). Moreover, because we exclude B\(u) from

all of u’s descendants, the number of 1’s is less.

4.2. Construction algorithm

Except for large queries or large batches of queries, the running time of the query algorithm is dominated

by the I/O of loading bitvectors into memory (Solomon and Kingsford, 2016). If the number of leaves that

the query h-matches is localized within the same part of the SBT, then fewer internal nodes have to be

explored and, hence, fewer bitvectors have to be loaded into memory. The SBT-SK construction algorithm

is greedy and sensitive to the order in which the entries are inserted into the tree, which can lead to trees

with poor localization (see Fig. 1).

To improve the localization property of the tree, we propose a nongreedy construction method based on

agglomerative hierarchical clustering (de Hoon et al., 2004). Every Di is initially its own SBT, with its B[
loaded into memory. At every step, two SBTs are chosen and joined together to form a new SBT. The new

SBT has a root node r with the left and right subtrees corresponding to the two SBTs being joined. B[(r) is

computed as B[(lchild(r)) [B[(rchild(r)). To choose the pair of SBTs to be joined, we choose the two

SBTs that have the smallest Hamming distance between the B[of their roots. The right panel of Figure 1

shows how our construction algorithm works.

Since each B[is a large bitvector, computing and maintaining the pairwise distances between all pairs

are computationally expensive. Instead, we use the following heuristic. We fix a number b0!b (e.g.,

b0 = 105!109 = b) and then extract b0 bits from each Di, starting from a fixed but arbitrary offset. We then

run the mentioned clustering algorithm on this smaller database of extracted bitvectors.

The resulting topology is then extracted and used for constructing the Ball and Bsome bitvectors for all the

nodes. We process the nodes in a bottom-up manner. Initially, for all leaves u, we set Ball(u) = B[(u) and

Bsome(u) = B. For the general case, consider an internal node u whose children ‘ and r have already been

processed. All bits that are set in both Ball(l) and Ball(r) go into Ball(u):

Ball(u) = Ball(l) \ Ball(r):

In addition, the Ball bits of ‘ and r must exclude those that are set in the parent Ball(u). After computing

Ball(u), we can unset these bits:

Ball(v) = Ball(v)nBall(u)‚ wherev 2 f‘‚ rg: (1)

Note that this is the only necessary update to the bitvectors of nodes in the subtree rooted in ‘ or r. Next,

we must compute Bsome(u), which is the set of bits that exist in some of u’s children nodes but not all:

Bsome(u) = Bsome(‘) [Bsome(r) [Ball(‘) [Ball(r):

Note that here we are using the Ball after the application of Equation (1). This completes the necessary

updates to the tree for a node u. These updates can be efficiently computed using bitwise operations on

uncompressed bitvectors, so we keep them uncompressed in memory and only compress them when they

are written to disk and are no longer needed. The total time for construction is proportional to n and not to

nd, as with SBT-SK. For completeness, we provide a more formal algebraic derivation of the update

formulas in the Appendix section.

4.3. Large query algorithm

The ‘‘regular query’’ algorithm (Section 4.1) is designed with relatively small queries in mind (e.g.,

thousands of k-mers from a transcript). However, after performing a new sequencing experiment, it might

be desirable to query the database for other similar samples. In such cases, the query would itself be a

whole sequencing experiment, containing millions of k-mers. Our experimental results show that neither

SBT-SK nor our own regular query algorithm is efficient for these large queries.

Although for small queries, the running time is dominated by the I/O of loading bitvectors into memory,

for large queries, the time taken to look up the query k-mers in Ball and Bsome of a node becomes the

bottleneck. Let BQ be the BF of size b for the k-mers in query Q. We propose an alternative ‘‘large query’’

472 SUN ET AL.

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

algorithm that can be used whenever the number of k-mers in the query exceeds some predefined user

threshold. This large query algorithm is identical to the regular one except in the way that the unresolved

list is maintained and updated. The basic idea is that instead of checking each k-mer in Q one-by-one, we

can do bitwise comparisons using BQ. Assume for the moment that there are no two k-mers in Q that hash to

the same position (recall that our BFs have only one hash function). In this case, the list of unresolved bit

positions can be represented as the set of 1 positions in BQ. At a node u, we first increment the present

counter by the number of 1’s in BQ \ Ball(u) and update the unresolved bit positions to be B 0Q = BQnBall(u).

Then we increment the absent counter by the number of 1’s in B 0QnBsome(u) and update the unresolved bit

positions to be B†Q = B 0Q \ Bsome(u). If the counters do not exceed their respective thresholds, then we pass

them and the remaining unresolved bits (B†Q) down to the children.

When there are k-mers that hash to the same bit positions, the mentioned algorithm can still be used as a

heuristic. In fact, it can be shown that the hits returned by the mentioned heuristic algorithm are always a

subset of the hits that are returned by an exact algorithm, since the heuristic’s counter values are never

greater than those of the exact algorithm. But, we can obtain an exact algorithm by modifying the men-

tioned heuristic to also maintain a list of bit positions that have multiple k-mers hashing to them. An entry

of the list is a bit position and the number of k-mers that hash to it. Whenever we make a bitwise

comparison involving BQ, this list is scanned to convert number of bits to number of k-mers. When the list

is small, this exact algorithm should not be significantly slower than the heuristic algorithm.

Unfortunately, computing bitwise operations cannot be efficiently done on RRR compressed bitvectors.

To support the large query algorithm, the bitvectors are compressed using the Roaring (Chambi et al., 2015)

scheme (abbreviated ROAR). ROAR bitmaps are compressed using a hybrid technique that allows them to

efficiently support set operations on bitvectors (intersection, union, difference, etc.). However, we found

that they generally do not compress as well as RRR on our data, leading to longer I/O times. In cases

wherein both small and large queries are common, and query time is more important than disk space, both a

ROAR and a RRR compressed tree can be maintained.

5. RESULTS

We implemented SBT-ALSO, building on the SBT-SK code base (Kingsford, 2016). Solomon and King-

sford (2016) already explored the advantages, disadvantages, and accuracy of the SBT approach as a way of

finding experiments wherein the queried transcripts are expressed. Since SBT-ALSO gives identical query

results as SBT-SK, we, therefore, focus our evaluation on its resource utilization. We used the same data set for

evaluation as in Solomon and Kingsford (2016). This is the set of 2652 runs representing the entirety (at the time

of Solomon and Kingsford, 2016) of human RNA-seq runs from blood, brain, and breast tissues at the SRA,

excluding those sequenced with SOLID. In Solomon and Kingsford (2016), each sequencing run was converted

to a k-mer BF (b = 2 � 109, k = 20) by the Jellyfish k-mer-counting software (containing k-mers that occur greater

than a file-dependent threshold, typically at least three occurrences). We downloaded these BFs from Kingsford

(2016) and used them as our database. Per the results of Solomon and Kingsford (2016), this BF size leads to a

false-positive rate of 0.5 for an individual BF. We performed experiments on an OpenStack instance with 12

vCPUs (Intel Xeon E312xx), 128 GB memory, and 4 TB network-mounted disk storage.

To choose the appropriate number of bits to use for clustering (b0), we randomly sampled 5000 bitvector

pairs from the data set and computed their pairwise distances. We then computed distances for the same

pairs using only b0 bits for various values of b0. The two distance metrics showed a high correlation

(r2 = 0:9999874) for b0 = 500‚ 000.

We then constructed SBT-SK and SBT-ALSO, as well as two other trees to help us separate out the

contributions of the clustering algorithm from the AllSome representation. These two trees are SBT-

SK+CLUST, which uses the B[node representation of SBT-SK but the SBT-ALSO clustering construction,

and SBT-SK+AS, which uses the greedy construction of SBT-SK but the AllSome node representation of

SBT-SK.

First, we compared the space and time used to construct SBT-SK and SBT-ALSO (Table 1). SBT-ALSO

reduces the tree construction time by 52.7% and resulting disk space by 11.4%. It requires twice as much

intermediate space, due to maintaining two uncompressed bitvectors for each node instead of just one.

To study the regular query performance, we downloaded all known transcripts at least k bases long

(198,074 of them) from Gencode (ver. 25). We then queried several subsets of transcripts against both trees,

ALLSOME SEQUENCE BLOOM TREES 473

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

and measured the number of nodes examined for each query (Fig. 3) as well as the running time (Table 2).

The results of all query experiments in this article were verified to be equivalent between the tested data

structures. SBT-ALSO reduces the runtime by 39%–85%, depending on the size of the batch, likely due to

the fact that the number of nodes examined per query is reduced by 52.7%, on average. Notably, SBT-

ALSO was able to query a very large batch (198,074 queries) in <8 hours, whereas SBT-SK took >2 days.

SBT-ALSO uses more memory than SBT-SK on larger batches.

To study the performance of the large query algorithm, we selected an arbitrary run from our database

(SRR806782) and used Jellyfish (Marçais Kingsford, 2011) to extract all 20-mers that appear at least three

times. These 27,546,676 k-mers formed one query. In heuristic mode, the large query algorithm was 22

times faster than the regular algorithm, but only detected 47 hits, which is a subset of the 50 hits by regular

algorithm (Table 3). In the exact mode, the large query algorithm recovered all the hits (as expected) and

was 18 times faster. Compared with SBT-SK, it was 155 times faster.

The clustering construction, even without the AllSome representation, significantly reduces the number

of nodes that need to be examined per query (36.5% on average when comparing SBT-SK to SBT-

SK+CLUST in Fig. 3). The improvement seems to be uniform regardless of the number of leaf hits. As

expected, this leads to a significant improvement in the running time (19%–32%, Section 5).

The AllSome representation, without the clustering construction, also gives the benefit of allowing

earlier query resolution, but the effect only becomes pronounced for queries that hit many leaves. For

instance, queries that hit >800 leaves examined 27.4% less nodes in SBT-SK+AS then in SBT-SK. In the

extreme case, there are 7 queries out of 1000, where the number of nodes examined is less than the number

of leaf hits, something that is not possible with SBT-SK. However, the benefits of clustering construction

and AllSome representation are synergistic: the multiplicative effect of their individual contributions

(42.3% decrease in number of examined nodes) is less than the observed effect of their combined

contributions (52.7%). In terms of the running time performance, the AllSome representation incurs the

Table 1. Construction Time and Space

SBT-SK SBT-ALSO

Construction of tree topology (i.e., clustering) N/A 27 minutes

Construction of internal nodes 56 hours 54 minutes 26 hours 3 minutes

Peak memory usage 726 MB 908 MB

Temporary disk space 1235 GB 2469 GB

Final disk space 200 GB 177 GB

Times shown are wall-clock times. A single thread was used. Note that the SBT-SK tree that was constructed for

the purposes of this table differs from the tree used by Solomon and Kingsford (2016) and in our other experiments

because the insertion order during construction was not the same as in Solomon and Kingsford (2016) (because it

was not described there).

SBT-ALSO, AllSome Sequence Bloom Tree; N/A, not applied; SBT, Sequence Bloom Tree.

FIG. 3. Number of nodes examined per query

for SBT-SK, SBT-ALSO, and two intermediate

SBTs. A set of 1000 transcripts were chosen at

random from Gencode set, and each transcript

was queried against the four different trees. A dot

represents a query and shows the number of

matches in the database (x-axis) compared with

the number of nodes that had to be loaded from

disk and examined during the search (y-axis). For

each tree (color), we interpolated a curve to show

the pattern. The dashed horizontal line represents

the hypothetical algorithm of simply checking

whether the query h-matches against each of the

database entries, one-by-one. For h, we used the

default value in the SBT software (h = 0:9).

474 SUN ET AL.

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

overhead of making two queries per active bit, instead of just one. This is more than compensated by a

decrease in the number of active bits when the tree is clustered well. But, as the SBT-SK+AS column of

Section 5 shows, the running time can actually deteriorate when the tree is not clustered.

6. DISCUSSION

In this article, we present an alternative implementation of the SBT that provides substantial improve-

ments in query and construction time. We are especially effective for large batches of queries (6 times

faster) or for large queries (155 times faster). Solomon and Kingsford (2016) make a convincing case that

an efficient SBT implementation translates to an efficient and accurate solution to the broader problem of

identifying RNA-seq samples that express a transcript of interest. They study the best parameter values of

SBT (h‚ k‚ b‚ p) to achieve accuracy and speed for the broader problem. The focus of this article is on

improving resource performance, and hence we do not revisit these questions; however, a more thorough

exploration of the biological questions that the SBT can answer will be important moving forward.

The implications of using the SBT for queries that are themselves sequencing experiments were not

explored in SBT-SK or here. The BFT (Holley et al., 2015), if adapted to multi-k-mer queries with

h-matching, could prove to be powerful in this context. In general, the question of whether the percentage of

matching k-mers is a good metric for comparing sequencing experiments is still open, and more investigation

into how to best measure similarity is needed (see Murray et al., 2016). However, our large query algorithm

opens the door for efficiently exploring the parameter space of k-mer-based approaches.

In contrast to SBT-SK, we do not currently support multiple hash functions. For the type of application

considered in this article, Solomon and Kingsford (2016) demonstrated that one hash function is optimal.

Yet, there may be other applications wherein multiple hash functions offer advantages. This may make

SBT-ALSO, in its current state, less broadly applicable than SBT-SK. However, multiple hash functions

could be implemented within the AllSome representation using partitioned BFs (where each hash function

maps to a different bit array; Kirsch and Mitzenmacher, 2008). This remains a future work.

Table 2. Query Wall-Clock Run Times and Maximum Memory Usage

for Batches of Different Sizes

No. of queries SBT-SK SBT-SK+AS SBT-SK+CLUST SBT-ALSO

1 1.2 min/301 MB 2.7 min/301 MB 0.9 min/299 MB 0.5 min/301 MB

10 4 min/305 MB 8.3 min/319 MB 3.3 min/304 MB 2 min/313 MB

100 7.7 min/315 MB 13.7 min/346 MB 6.5 min/317 MB 4.7 min/353 MB

1000 25.5 min/420 MB 20.8 min/575 MB 17.3 min/418 MB 8.3 min/639 MB

198,074 3082 min/22 GB 1286 min/51 GB 1910 min/23 GB 463 min/63 GB

For the batch of 1000 queries, we used the same 1000 queries as in Figure 3. For the batch of 100 queries, we generated

three replicate sets, where each set contains 100 randomly sampled transcripts without replacement from the 1000 queries

set. For the batch of 10 queries, we generated 10 replicate sets by partitioning 1 of the 100 query sets into 10 sets of 10

queries. For the batch of 1 query, we generated 50 replicate sets by sampling 50 random queries from Gencode set. The

shown running times are the averages of these replicates. For h, we used the default value in the SBT software (h = 0:9).

Table 3. Performance of Different Trees and Query Algorithms on a Large Query

SBT-SK
SBT-ALSO

Regular algorithm

Regular

algorithm

Large exact

algorithm

Large heuristic

algorithm

Query time 1397 minutes 18 seconds 195 minutes 33 seconds 10 minutes 35 seconds 8 minutes 32 seconds

Query memory 2.3 GB 4.7 GB 1.3 GB 1.2 GB

We show the performance of SBT-SK and three query algorithms using SBT-ALSO compressed with ROAR: the regular algorithm,

the large exact algorithm, and the large heuristic algorithm. We show the wall-clock run time and maximum RAM usage. We used

h = 0:8 for this experiment. The ROAR compressed tree was 190 GB (7.3% larger than the RRR tree).

ROAR, roaring.

ALLSOME SEQUENCE BLOOM TREES 475

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Some of the ideas in this article were independently and concurrently discovered by Solomon and

Kingsford (2017), appearing in the same issue.

7. APPENDIX

7.1. Insertion

If a tree is modified by the addition (or removal) of a leaf, the only nodes for which B[and B\ can

change are along the path from the leaf to the root. This fact, along with the definitions of Ball and Bsome,

shows that it is sufficient to only consider changes in Bsome along that path, and in Ball along that path and

the siblings of those nodes.

To insert a new BF B, we follow the same strategy as SBT-SK. We insert B starting at the root and

recursively pass it down to the child u that has the smallest Hamming distance between B[(u) and B.

Although B[(u) is not explicitly stored in the SBT-ALSO, it can be recovered on the fly using the following

equations:

B\(u) = Ball(u) [B\ (parent(u)): (2)

B[(u) = Bsome(u) [Ball(u) [B\ (parent(u)): (3)

As we proceed down the tree, we must also update the appropriate bitvectors. Consider the insertion of

B into the subtree rooted at a node u. We inductively assume that the bitvectors of nodes outside the subtree

rooted at u have already been updated, that the bitvectors of nodes inside this subtree have been unchanged,

and that B\(parent(u)) is available in memory. We use the superscript new to denote the bitvectors of the

nodes after B is recursively passed down to one of the child’s subtrees.

At u, observe that Bnew
[(u) = B[(u) [B and Bnew

\ (u) = B\(u) \ B. This formula, together with

B\(parent(u)), is used to update Ball(u) and Bsome(u), using their corresponding definitions. Assuming

without loss of generality that B will be passed down to the left child of u, the only other node that needs to

be updated is the right child. Even though B[(rchild(u)) and B\(rchild(u)) remain unchanged, we need to

update Bnew
all (rchild(u)) = Ball(rchild(u))nB.

7.2. Deletion

Consider the deletion of an entry from the database. Let v be the leaf representing the deleted entry, and

let v0 be its sibling. We set parent(v0) = parent(parent(v0)) and delete v and parent(v) from the tree, Next, we

need to update the bitvectors of the tree.

Let p be the path from the root down to v0. Let p0 be the nodes of p along with the children of nodes in p.

We use the superscript new to denote the bitvectors after the deletion, and omit the superscript to indicate

bitvectors before the deletion. We will update the bitvectors in three passes. In the first pass, we will go

down from the root to recover B\ and B[for nodes in p0 and store them in active memory. In the second

pass, we will go up from v0 and use the output of the first pass to calculate Bnew
[(u) and Bnew

\ (u) for nodes in

p. Note that Bnew
\ (u) = B\(u) and Bnew

[(u) = B[(u) for nodes not in p. In the third pass, we will go up from v0

and use the output of the second pass to calculate Bnew
all (u) and Bnew

some(u) for all nodes on p0.
In the first pass, we can recover B\ using Equations (2) and (3). In the second pass, we can compute

(going up from the leaf)

Bnew
[(u) = Bnew

[(lchild(u)) [Bnew
[(rchild(u)):

Bnew
\ (u) = Bnew

\ (lchild(u)) \ Bnew
\ (rchild(u)):

In the third pass, we can compute

Bnew
all (u) = Bnew

\ (u)nBnew
\ (parent(u)):

Bnew
some(u) = Bnew

[(u)nBnew
\ (u):

We note that with a smart implementation, the second and third passes can be combined, and the com-

putation of B[(u) in the first pass can be done instead on the fly in the second pass. The mentioned algorithm

also requires maintaining O(d) bitvectors in memory, where d is the depth of the tree. If memory is limited,

then it is possible to read and write the bitvectors to disk for each node as it is being covered in a pass.

476 SUN ET AL.

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

The running time of both an insertion and deletion is of the order of the depth of the tree. Performing an

insertion/deletion requires performing bitwise operation on bitvectors, which can be done efficiently on a

ROAR-compressed tree or an uncompressed tree. If RRR is being used, then, similar to SBT-SK, we need

to uncompress nodes before processing them and recompress them after.

Finally, we note that if there are many modifications to the tree, the advantages of the initial clustering

construction may dissipate. In this case, the tree can be reconstructed from scratch, incurring a time penalty

but reducing the run time of future queries.

7.3. Formal derivation of update formulas for construction

In Section 4.2, we presented the update rules for constructing Ball and Bsome for the internal nodes of an SBT.

Here, we give a formal derivation of the rules’ correctness. First, let DB(u) denote the database entries corre-

sponding to the descendant leaves of a node u. Note that the subtree rooted at u is, by definition, an SBT of

DB(u). At any point of the construction, we will have the invariant that if node v was processed, then the subtree

rooted at v is a correct SBT-ALSO for DB(v). For the base case, for all leaves u we set Ball(u) = B[(u) and

Bsome(u) = ;. For the general case, consider an internal node u whose children have already been processed. We

will use the superscript new to denote the values of the bitvectors for the new subtree rooted at u and to

distinguish it from those values passed up inductively from the trees of the children. An important point is that,

for a child v, Bnew
all (v) may be different from Ball(v). This is because once the SBT-ALSO of DB(v) is incorporated

into the SBT-ALSO of DB(u), any bits that are set in Bnew
all (u) need to be unset in Bnew

all (v). Also, observe that for a

root r of an SBT-ALSO tree (e.g., v in DB(v) or u in DB(u)), Ball(r) = B\(r) and B[(r) = Ball(r) [Bsome(r).

Applying our observations and definition, we can derive formula for Bnew
all (u), Bnew

some(u), and Bnew
all (v):

Bnew
all (u) = Bnew

\ (u)

= B\(lchild(u)) \ B\(rchild(u))

= Ball(lchild(u)) \ Ball(rchild(u)):

Bnew
all (v) = Bnew

\ (v)nBnew
\ (parent(v))

= B\(v)nBnew
\ (u)

= Ball(v)nBnew
all (u):

Bnew
some(u) = Bnew

[(u)nBnew
\ (u)

=
[

w is a child of u

B[(w)

 !
nBnew

all (u)

=
[
w

B[(w)nBnew
all (u)

� �
=
[
w

Ball(w) [Bsome(w)ð ÞnBnew
all (u)

� �
=
[
w

Ball(w)nBnew
all (u)

� �
[Bsome(w)nBnew

all (u)
� �� �

=
[
w

Ball(w)nBnew
all (u)

� �
[Bsome(w)

� �
=
[
w

Bnew
all (w) [Bsome(w)

� �
:

ACKNOWLEDGMENT

This work was supported, in part, by NSF awards DBI-1356529, CCF-551439057, IIS-1453527, and

IIS-1421908 to P.M.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

ALLSOME SEQUENCE BLOOM TREES 477

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

REFERENCES

Baier, U., Beller, T., and Ohlebusch, E. 2016. Graphical pan-genome analysis with compressed suffix trees and the

Burrows–Wheeler transform. Bioinformatics. 32, 497–504.

Bloom, B.H. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM. 13, 422–426.

Bray, N.L., Pimentel, H., Melsted, P., et al. 2016. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.

34, 525–527.

Chambi, S., Lemire, D., Kaser, O., et al. 2015. Better bitmap performance with roaring bitmaps. Softw. Pract. Exp. 46,

709719.

Chikhi, R., and Rizk, G. 2013. Space-efficient and exact de Bruijn graph representation based on a Bloom filter.

Algorithms Mol. Biol. 8, 1.

Computational Pan-Genomics Consortium. 2018. Computational pan-genomics: Status, promises and challenges. Brief.

Bioinform. 19, 118–135.

Crainiceanu, A., and Lemire, D. 2015. Bloofi: Multidimensional Bloom filters. Inf. Syst. 54, 311–324.

de Hoon, M.J., Imoto, S., Nolan, J., et al. 2004. Open source clustering software. Bioinformatics. 20, 1453–1454.

Dolle, D.-D., Liu, Z., Cotten, M.L., et al. 2017. Using reference-free compressed data structures to analyze sequencing

reads from thousands of human genomes. Genome Res. 27, 300–309.

Ernst, C., and Rahmann, S. 2013. PanCake: A data structure for pangenomes, 35–45. In German Conference on

Bioinformatics, Volume 34. Eds: Beibarth T., Kollmar, M., Leha, A., Morgenstern, B., Schultz, A.-K., Waack, S., and

Wingender, E. Dagstuhl Publishing, Germany.

Gog, S., Beller, T., Moffat, A., et al. 2014. From theory to practice: Plug and play with succinct data structures, 326–

337. In International Symposium on Experimental Algorithms. Gudmundsson, J., and Katajainen, J. Springer, Cham,

Switzerland.

Heo, Y., Wu, X.-L., Chen, D., et al. 2014. BLESS: Bloom filter-based error correction solution for high-throughput

sequencing reads. Bioinformatics 30, 1354–1362.

Holley, G., Wittler, R., and Stoye, J. 2015. Bloom Filter Trie—a data structure for pan-genome storage, 217–230. In

Algorithms in Bioinformatics. Eds: Pop, M., and Touzet, M. Springer, London, UK.

Kingsford, C. 2016. SBT-SK software and data. Available at: www.cs.cmu.edu/%7Eckingsf/software/bloomtree.

Accessed July 1, 2016.

Kirsch, A., and Mitzenmacher, M. 2008. Less hashing, same performance: Building a better Bloom filter. Random

Struct. Algorithms. 33, 187–218.

Langmead, B., and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359.

Leinonen, R., Sugawara, H., and Shumway, M. 2011. The Sequence Read Archive. Nucleic Acids Res.39:D19–D21.

Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics. arXiv

preprint arXiv:1303.3997.

Liu, B., Zhu, D., and Wang, Y. 2016. deBWT: Parallel construction of Burrows–Wheeler transform for large collection

of genomes with de Bruijn-branch encoding. Bioinformatics. 32, i174–i182.

Loh, P.-R., Baym, M., and Berger, B. 2012. Compressive genomics. Nat. Biotechnol. 30, 627–630.

Mäkinen, V., Belazzougui, D., Cunial, F., et al. 2015. Genome-Scale Algorithm Design. Cambridge University Press,

Cambridge, UK.

Marçais, G., and Kingsford, C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.

Bioinformatics. 27, 764–770.

Marchet, C., Limasset, A., Bittner, L., et al. 2016. A resource-frugal probabilistic dictionary and applications in

(meta)genomics. Data Structures and Algorithms. arXiv preprint arXiv:1605.08319.

Marcus, S., Lee, H., and Schatz, M.C. 2014. SplitMEM: A graphical algorithm for pan-genome analysis with suffix

skips. Bioinformatics. 30, 3476–3483.

Melsted, P., and Pritchard, J.K. 2011. Efficient counting of k-mers in DNA sequences using a Bloom filter. BMC

Bioinformatics. 12, 333.

Minkin, I., Pham, S., and Medvedev, P. 2016. TwoPaCo: An efficient algorithm to build the compacted de Bruijn graph

from many complete genomes. Bioinformatics. 33, btw609.

Murray, K.D., Webers, C., Ong, C.S., et al. 2016. kWIP: The k-mer weighted inner product, a de novo estimator of

genetic similarity. PLoS Comput. Biol. 13, e1005727.

Navarro, G., De Moura, E.S., Neubert, M., et al. 2000. Adding compression to block addressing inverted indexes. Inf.

Retr. 3, 49–77.

Nellore, A., Collado-Torres, L., Jaffe, A.E., et al. 2016. Rail-RNA: Scalable analysis of RNA-seq splicing and cov-

erage. Bioinformatics. 33, 4033–4040.

Patro, R., Mount, S.M., and Kingsford, C. 2014. Sailfish enables alignment-free isoform quantification from RNA-seq

reads using lightweight algorithms. Nat. Biotechnol. 32, 462–464.

478 SUN ET AL.

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Raman, R., Raman, V., and Rao, S.S. 2002. Succinct indexable dictionaries with applications to encoding k-ary trees

and multisets, 233–242. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms.

Society for Industrial and Applied Mathematics, San Francisco, CA, USA.

Rozov, R., Shamir, R., and Halperin, E. 2014. Fast lossless compression via cascading Bloom filters. BMC Bioin-

formatics. 15, 1.

Salikhov, K., Sacomoto, G., and Kucherov, G. 2013. Using cascading Bloom filters to improve the memory usage for

de Brujin graphs, 364–376. In Darling, A., and Stoye, J., eds. Algorithms in Bioinformatics, Volume 8126 of Lecture

Notes in Computer Science. Springer, Berlin, Heidelberg.

Solomon, B., and Kingsford, C. 2016. Fast search of thousands of short-read sequencing experiments. Nat. Biotechnol.

34, 300–302.

Solomon, B., and Kingsford, C. 2017. Improved search of large transcriptomic sequencing databases using split

Sequence Bloom Trees, 257–271. In International Conference on Research in Computational Molecular Biology.

Ed: S. Cenk Sahinalp. Springer, Cham, Switzerland.

Stranneheim, H., Käller, M., Allander, T., et al. 2010. Classification of DNA sequences using Bloom filters. Bioin-

formatics. 26, 1595–1600.

Trapnell, C., Roberts, A., Goff, L., et al. 2012. Differential gene and transcript expression analysis of RNA-seq

experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578.

Yu, Y.W., Daniels, N.M., Danko, D.C., et al. 2015. Entropy-scaling search of massive biological data. Cell Systems. 1,

130–140.

Ziviani, N., de Moura, E.S., Navarro, G., et al. 2000. Compression: A key for next-generation text retrieval systems.

IEEE Computer. 33, 37–44.

Address correspondence to:

Prof. Paul Medvedev

Department of Computer Science and Engineering

The Pennsylvania State University

343J IST Building

University Park, PA 16802

E-mail: pashadag@cse.psu.edu

ALLSOME SEQUENCE BLOOM TREES 479

D
ow

nl
oa

de
d

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

