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Carrier-borne aircrafts aviation operation
automated scheduling using multiplicative
weights apprenticeship learning
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Abstract
Efficiency and safety are vital for aviation operations in order to improve the combat capacity of aircraft carrier. In this
article, the theory of apprenticeship learning, as a kind of artificial intelligence technology, is applied to constructing the
method of automated scheduling. First, with the use of Markov decision process frame, the simulative model of aircrafts
launching and recovery was established. Second, the multiplicative weights apprenticeship learning algorithm was applied
to creating the optimized scheduling policy. In the situation with an expert to learn from, the learned policy matches quite
well with the expert’s demonstration and the total deviations can be limited within 3%. Finally, in the situation without
expert’s demonstration, the policy generated by multiplicative weights apprenticeship learning algorithm shows an
obvious superiority compared to the three human experts. The results of different operation situations show that the
method is highly robust and well functional.
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Introduction

The capability of carrier-borne aircrafts launching and

recovery is significant for an aircraft carrier’s combat

capacity1,2 It is also one of the main concerns that the

designers have to deal with in the stage of carrier concep-

tual design. Carrier-borne aircrafts launching and recovery

operations present a complex and uncertain environment in

which time-critical scheduling should be done to fulfill

mission requirements and ensure the safety of aircrafts,

deck crews, equipments, and the carrier. The ultimate goal

is to ensure the efficiency of aviation operations on flight

deck and in the air, in these complex environments.

Most of the existing literatures mainly focus on

modeling the process of carrier-borne aircrafts aviation

operations and evaluating the sortie generation rates

(SGRs). Feng et al.3 established the sortie generation model

with full consideration of faults and maintenance effecting

on aviation operation flow, finally, this multi-agent system
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(MAS)-based simulation gained aircrafts SGRs. However,

every aircraft in the MAS system is the same priority,

which disagree with the facts (e.g. there are always many

aircrafts have priorities over others in fact). Taking the

priorities of different aircrafts into consideration, Zheng

et al.4 put forward a sortie generation model based on

closed queueing network and achieved a new analytic algo-

rithm to obtain the stationary solutions of this multi-class,

multi-server, non-preemptive closed queueing network. In

essence, the carrier-borne aircrafts launching and recovery

process is a closed queueing network in which every air-

craft changes its state after an operation is completed. So,

early research concentrated in different queueing networks

which were used to simulate the aircrafts aviation opera-

tions.5,6 However, these analytical models are so limited

that it is impossible to deal with actual combat operations,

such as launching and recovery aircrafts in waves which

cannot be regarded as Poisson-distribution statistic process.

To research complex queueing networks, Monte Carlo

simulation methods were widely introduced,7 and accurate

stationary solutions of queueing network were gained

through large amount of stochastic calculations. In 1997,

the USS Nimitz and Carrier Airwing Nine conducted surge

operations and the highest SGR of Nimitz reached 975 in 4

days.1,2 To analyze the bottleneck of SGR in surge opera-

tions, Zheng et al.8 established a simulation model using

Monte Carlo method to simulate the actual surge operations

conducted in 1997, achieving relatively accurate results.

These theoretical and simulation-based solutions men-

tioned above could give reliable results almost the same

as the data gained in surge operations, however, were lack

of robustness to nonstationary stochastic disturbances such

as aircraft malfunction and deck equipment malfunction.

So, these methods just could be good tools to analyze the

SGR of a carrier, because the policy for dealing with ran-

dom events is predetermined. To some extent, the lack of

robustness becomes a major limitation when developing

the aviation operation decision-making system. To improve

the robustness of these models needs gaining more accurate

operation information and unlocking the system’s poten-

tial, meanwhile, the scheduling and planning calculation

should be accomplished as quickly as possible. As the

amount of warfare situation information, aircrafts and car-

rier condition information is so tremendously huge that

human operators could not understand well. Therefore, it

is significant to deal with random events and accidents in a

more automated way. Operators need decision-making sup-

port system which can generate a schedule of coordinated

aviation operations for all active aircrafts and deck equip-

ments (catapults, arrestors, aviation support equipments,

etc.). The policy should be optimized for safety, efficiency,

and better robustness to different types of uncertainty

inherent on the flight deck and in the air based on large

amount of information.

In the fields of robotics, reinforcement learning, such as

State Action Reward State Action (SARSA), Q-learning,

and deep reinforcement learning (DRL), was widely applied

on the basis of reward functions. In automatic driving areas,

it is easy to provide reward functions, for example, we can

determine the reward functions in the states when our car is

taxiing on the middle of the road, keeping proper distances

with other cars as a good value. Unfortunately, for aviation

scheduling problems, even specifying a reward function is

not easy. However, it is often easier to provide examples of a

desired behavior than to define the corresponding reward

function for human experts. Learning policies from demon-

strations, known as apprenticeship learning (AL) via inverse

reinforcement learning (IRL),9 were also proposed by

researchers. To improve the efficiency of aviation operation

scheduling on flight deck, Li et al.10 proposed a computer-

aided decision-making system, using IRL, obtaining almost

the same performance as human operators. Wu et al.11 devel-

oped a dynamic sequencing algorithm to deal with the

sequencing problem for landing a team of aircrafts using ant

colony method, gaining the optimal sequence, and guaran-

teeing a higher level of flight safety and an effective

response to dynamic circumstance.

In recent years, researchers in MIT12,13 (2011–2013)

developed the Deck operations Course of Action Planner

(DCAP) system to improve the overall mission perfor-

mance, which allows human operators to highly interact

with computer system for scheduling both the carrier-

borne aircrafts and different kinds of aviation support

equipments. Especially taking more factors which influ-

ence the capability of carrier-borne aircrafts aviation oper-

ation into consideration,1,2,14 the system robustness to

different types of uncertainty inherent on the flight deck

and in the air was improved. DCAP system integrates

human operators’ thinking with optimization algorithm

using IRL which is a kind of artificial intelligence algo-

rithm,15,16 which can generate risky policies and safety

policies. This human–computer interaction system could

also adapt unmanned aerial vehicles (UAV) operated on

carriers better than human operators.17

AL is a kind of machine learning theory which was

introduced by Abbeel and Ng in 2004,18 and from then

on, a number of different new algorithms were put for-

ward.19–21 AL now is a focus of machine learning research

and widely applied in the field of robot control and naviga-

tion.22,23 For complex systems, such as aircraft aviation

operation process on aircraft carrier, it is difficult to gain

the optimum scheduling based on theoretical calculation.

On the contrary, machine learning methods could extract

information from operators’ demonstration and make deci-

sions like human operators, needing not knowing the exact

mathematical models. Through AL, the expert’s scheduling

experience will be extracted and kept as mathematical para-

meters, then, the scheduling and planning will be created

automatically based on learned policies.

AL, introduced by Abbeel and Ng, is motivated by two

observations in applications.24 The first is that the reward

functions are difficult to gain directly; however, it is easy to
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specify what the rewards should depend on. The second is

that the human experts could offer enough examples for

machine learning. From then on, a number of different new

algorithms were put forward. Now, AL is a focus of

machine learning research and widely applied in the field

of robot control and navigation.22 For complex systems,

such as aircraft aviation operations process on aircraft car-

rier, it is not only difficult to put forward an optimal sche-

duling based on theoretical method, but also impossible to

describe the reward function. On the contrary, AL could

learn the scheduling policies from operators’ demonstra-

tions and make decisions like human operators. Through

AL, the expert’s scheduling experience will be extracted

and kept as mathematical parameters; then, the scheduling

and planning will be created automatically based on

learned policies.

Initially inspired by Michini,15 the work of this article

expands the application of the AL method in generating

optimized scheduling policy for carrier-borne aircrafts. First,

the Markov decision process (MDP) was used to structure

the detailed process of carrier-borne aircrafts aviation oper-

ation. Second, one of the AL algorithms, multiplicative

weights AL (MWAL)25,26 was applied to generate the

learned policy from an expert’s demonstration. Third, the

MWAL algorithm was also applied to dealing with the sit-

uation with no expert available by updating the state features

and weight vectors with the iterations. Finally, the computa-

tional experimental results in the typical conditions showed

that this method is of both reliability and practicability.

The MDP model of carrier-borne
aircrafts aviation operation and
the MWAL algorithm

The sketch of carrier-borne aircrafts
aviation operation

A heavy nuclear-powered aircraft carrier’s typical flight

deck layout plan is shown in Figure 1. Generally, the flight

deck can be divided into three functional areas including

the parking area, launching area, and landing strip.27 In

most cases, aircrafts awaiting orders to take off are depos-

ited in their specified parking positions in parking areas on

flight deck. The fueling, arming, and other kinds of aviation

support operations have to be completed. Once having

received the order to take off, they will start jet engines

and taxi to an available catapult, checking hydraulic sys-

tems, ailerons, rudders, and other flight control surfaces,

preparing for launching.

The operating frequency of Catapults 3 and 4 is higher

than Catapults 1 and 2. All the four catapults may conflict

with each other when operating at the same time, but stag-

gering their working time a little will avoid this problem.

Meanwhile, Catapults 3 and 4 overlap with the landing strip

and these two catapults’ launching and the landing opera-

tion could not be conducted at the same time. After launch-

ing, these carrier-borne aircrafts climb to the cruising

altitude, fly to mission area, and perform conventional mis-

sions. When their missions are completed, these aircrafts

will fly back and circle around the carrier known as the

Marshal stack, waiting for the order to land. If an aircraft

attaches the arresting cable and be stopped finally, it will

taxi to parking area. However, if it fails to catch any arrest-

ing cable, it will take off and climb to the Marshal Stack

again and wait for another attempt, until it lands on the

flight deck. Figure 2 shows the process of one carrier-

borne aircraft aviation operation.

Abstraction of the state features. State features should pro-

vide enough information of the MDP, as well as their

number should not be so large that the computational

expense increases extremely. To approve the quality of

the learned policy in the situation with an expert available,

just like the model established by Ryan,12 the following

24 state features are chosen to describe the reward func-

tion and they are:

f (1) * f (6): numbers of aircrafts with fuel level 1*6;

f (7) * f (12): numbers of aircrafts in the air with fuel

level 7*12;

f (13) * f (14): numbers of aircrafts crashed and num-

ber of aircrafts with no fuel on the flight deck;

Figure 1. The layout plan of a Nimitz class aircraft carrier’s flight deck.
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f (15): number of aircrafts in special priority; and

f (16) * f (24): numbers of aircrafts in each of the nine

locations.

The settings of operation pattern research. There are two kinds

of regular combat modes for aircraft carriers, known as con-

centrated assault and constant assault. In the concentrated

assault mode, the carrier should project as much firepower as

possible in short time, that means the carrier must launch and

recover a large number of aircrafts with high efficiency. In

the constant assault mode, the carrier should maintain there

will always be enough number of aircrafts in the air waiting

for orders to provide allies with fire support, so the launching

and landing operations may take place at the same time on

the flight deck. Considering the characteristics of these two

kinds of combat modes, in this article, two operation pat-

terns, group sortie and alternate sortie are chosen in the

computational experiments. Additionally, the case when

there is no expert’s demonstration available will also be

discussed.

Figure 3 shows these two kinds of sortie operations. For

group sortie, the initial state is that all the aircrafts (all the

aircrafts belong to Squadron A and Squadron B) are depos-

ited in their parking positions on the flight deck, waiting for

orders to take off, and the final state is that all the aircrafts

return to the flight deck and taxi to their parking positions

again. For alternate sortie, the initial state is that half of the

aircrafts (Squadron A) circle in the Marshal stack and the

rest (Squadron B) are in their parking positions on the flight

deck. The final state is the same as group sortie. For each

combat mode, scheduling 6 and 12 aircrafts will be the two

specific research cases.

Time distributions of aviation operations. To embody the

uncertainty of carrier-borne aircrafts aviation operation

scheduling, the hypothesis is applied that each operation’s

time obeys normal distribution and the settings are as

follows:

time of refueling *Nð8; 0:1Þ;
time of taxiing from a parking location to a catapult

*Nð15; 0:2Þ;
time of launching *Nð15; 0:2Þ;
time of mission *Nð60; 0:5Þ;
time of landing and arrested to stop *Nð10; 0:1Þ;
time of taking off again and flying to the Marshal

stack *Nð12; 0:1Þ; and

time of taxiing from the landing strip to a parking

location *Nð4; 0:05Þ.

The simulation program runs in 0.1 unit (we define 1

min as a time unit in simulation) of time as a step size. The

failure rate of each aircraft aviation support equipment is

set to be 0.05, and the rate of each aircraft leaking fuel in

the air is set to be 0.01.

Figure 2. The process of one carrier-borne aircraft aviation operation.
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The MDP model of the scheduling process

The first step in developing a scheduling system is finding a

suitable model which captures the relevant system

dynamics, actions, constraints, and uncertainties. MDP is

a discrete time stochastic control process. It provides a

mathematical framework for modeling decision-making

in situations where outcomes are partly random and partly

under the control of a decision maker. With this in mind,

the carrier deck scenario is modeled as a finite-state MDP.

The process of carrier-borne aircrafts aviation operation

scheduling can be modeled with the use of a finite-state

MDP. An MDP contains six elements, including the space

of states S, the space of actions A, the transition probabil-

ities q, the discount factor g, decision time T, and the

reward function R, which can be written as a tuple fS, A,

q, g, T, Rg.
According to the abovementioned analysis, S includes

the aircraft location, fuel level and the priority states for

landing, as well as the condition states of the aviation

support equipments on the flight deck such as catapults and

landing strip, and so on. The location states include (1)

Parking location/Aviation support operation, (2) Catapult-

1, (3) Catapult-2, (4) Catapult-3, (5) Catapult-4, (6) On

mission, (7) Marshal Stack, (8) Landing/bolter, and (9)

Landing strip. The fuel level of each aircraft can be dis-

cretized into seven levels, in which level-6 represents the

fuel is full and level-0 represents no fuel in fuel tank. An

aircraft will crash if using up all the fuel in the air. The

priority states for landing include the normal priority and

special priority. The normal priority is determined by the

sequence of each aircraft reaching the Marshal Stack, and

the special priority concerns whether the aircraft is dam-

aged and the aircraft fuel level in the air. The condition

states of the aviation support equipments on the flight deck

includes the condition parameters of four catapults and one

landing strip. They are available, occupied, task conflict, and

malfunctional (the task conflict mainly occurs between cata-

pult 3 or 4 and the landing strip). As a result, the size of states

space S could be as large as ð9locations � 7fuellevels�
2priority � nÞn � 4condition5 equipments, where n represents

the number of operating aircrafts. With the growth of n, the

size of S will exponentially increase.

Figure 3. Two kinds of sortie operations on carrier. (a) Group sortie operation period on aircraft carrier and (b) alternate sortie
operation period on aircraft carrier.
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The available actions for each aircraft in actions space A

include towing the aircraft to a specified position, launch-

ing, returning, landing, and so on, encoding some con-

straints (e.g. it is impossible to transition to an occupied

catapult, or land when the landing strip is inoperative) as

well as the key uncertainties (e.g. an aircraft tries to transit

from approaching to landing strip, but misses the wires and

thus transits to the Marshal Stack instead). Some of these

actions could lead the MDP to a determined state and others

to a stochastic state using transition probabilities q.
As described earlier, the size of S is extremely large, so

the reward function R can be hardly represented by tradi-

tional state-to-action pairs. Instead, a reward function based

on a set of state features, which could be represented as

f ðsÞ ¼ ff ð1ÞðsÞ; f ð2ÞðsÞ; . . . ; f ðmÞðsÞgT
, would be an effec-

tive way to solve this problem, and the reward function can

approximately be a linear combination of these state

features

RðsÞ ¼ R
�

f ðsÞ
�
¼ wT f ðsÞ ð1Þ

where w is a weight vector corresponding to f(s) and it is an

unknown variable to be computed. So for policy p, its value

function can be written as

V ðpÞ ¼ E
X1

l¼0
glRðslÞjp

h i
¼ wT E

X1
l¼0
glf ðslÞjp

h i

¼ wT�ðpÞ
ð2Þ

where �(p) is the discounted expectation vector of the state

features, and l indexes over all state features.

MWAL in carrier-borne aircraft scheduling

MWAL is one of the AL algorithms and is easy to be

operated and programmed, meanwhile, the iteration con-

verges fast.

As the output of MDP is stochastic, for a given policy p,

the mean value of numerous repeated simulations will be

calculated to estimate the relatively precise value of the

state feature expectations which could be written as follows

� ¼ E
X1

l¼0
glf ðslÞ

h i
� �̂ ¼ 1

k

Xk

i¼1

X1
l¼0
glf ðslÞ

ð3Þ

where k represents the number of repeated simulations.

Thus, the expectation vectors of the state features and their

estimated values can be written as �E and �̂E, respectively,

corresponding to the expert’s policy pE.

The final goal of AL is to find a learned policy p�, whose

state features can be very close to the expert’s policy pE. In

this article, the reward function is chosen as a kind of profit

map, which means for a given w, the optimal policy is

popt ¼ argmaxp2PfV ðpÞg ¼ argmaxp2PfwT�ðpÞg ð4Þ

where P is the set of all possible policy, different from

traditional gradient optimization algorithms, in every itera-

tion, MWAL updates each component of w by multiplying

by a positive parameter b

w
ðiÞ
tþ1 ¼ w

ðiÞ
t b

�̂
ðiÞ
t ��̂

ðiÞ
E j i¼1; 2; . . . ;m ð5Þ

where superscript i for w
ðiÞ
t represents ith component of w at

iteration t (weight vector w has m components in all corre-

sponding to each state feature). �̂t is the estimated value of

state features expectation vector which corresponds to the

weight vector wt and its optimal policy pt. pt can be cal-

culated by the use of the approximation method introduced

by Bertsekas and Tsitsiklis.28 Let T is the number of itera-

tions. We can define parameter b as follows

b ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffi
2lnðmÞ

T

q ð6Þ

Especially, if there is no expert’s demonstration available,

let �E ¼ 0 to replace the primary expert’s demonstration’s

discounted expectation of the state features. This is an

important difference between the MWAL algorithm and the

original IRL algorithm. The situation without expert’s

demonstrations will be discussed in the fourth section.

Finally, when the iteration completes, the objective

learned policy of MWAL algorithm will be a mixed policy

p � ¼ fðpt; ltÞgT
t¼1 ð7Þ

It means that at the beginning of the MDP, pt will be

chosen due to the probability lt and lt ¼ 1
T
. Thus, the

expectation vector of state features of p� will be

�� ¼ 1
T

PT
t¼1 �ðptÞ. In all, the iterations of the MWAL

algorithm application in carrier-borne aircrafts aviation

operation scheduling are presented in Figure 4.

The situation with human expert’s
demonstrations

The principle of expert’s demonstrations

In this section, it is assumed that human expert will try to

balance the safety and efficiency, which means when he is

conducting the scheduling, before taking off, he would fuel

each aircraft to an appropriate level and when arranging the

sequences of landing of the aircrafts queuing in the Marshal

stack, he would consider both normal priority and special

priority. Considering both the precision and time expense, in

this article, it is specified that for the expert’s policy, the expert

would give 10 demonstrations and for the learned policy, 100

iterations would be used to gain the average state features.

Choosing the mixed objective policy

As has been discussed in “MWAL in carrier-borne aircraft

scheduling” section, the typical output of the MWAL

6 International Journal of Advanced Robotic Systems



algorithm is a mixed policy like equation (7). To exam the

convergent performance of MWAL, taking scheduling 6

aircrafts group sortie as the experimental condition, the

total deviations of the expectation vector of each iteration

�̂t related to that of the expert’s demonstration �̂E are cal-

culated and when the iteration times T¼ 30, the changes of

�̂t versus the increase of T are shown in Figure 5(a) and (b)

p� ¼ fðpt; ltÞgT
t¼2¼

1

T � 1

XT

t¼2
�ðptÞ ð8Þ

Figure 5 implies that the MWAL algorithm converges

very fast. When t ¼ 1 (Figure 5(a)), the total deviation of

the expectation vector of the initial learned policy p1

related to the expert’s demonstration can be as large as

90%. However, after just one iteration, when t ¼ 2 (Figure

5(b)), the total deviation of that of p2 descends to a rather

low level and fluctuates in a small range less than 5%. So,

to guarantee the performance of the objective learned pol-

icy, equation (7) is modified to be equation (8) and p1

won’t be included.

Figure 4. The strategy of the algorithm application in carrier-borne aircrafts aviation operation scheduling.
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Figure 5. The total deviations of the expectation vectors of each iteration related to the expert’ demonstration. (a) When t� 1 and (b)
When t � 2.
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Experimental results

In group sortie condition. The program of MWAL algorithm

application in carrier-borne aircrafts aviation operation

scheduling was developed in MATLAB 2012b and per-

formed on a Lenovo Think Centre PC (3.4-GHz Intel I7

CPU, 16-GB RAM, Windows 7 64-bit operation system).

When scheduling 6 and 12 aircrafts in group sortie condi-

tion, it takes 10773 and 36928 s for the program to gain the

objective learned policy, respectively.

With the state features expectation vectors of the

expert’s 10 demonstrations and the objective learned pol-

icy’s 100 simulations (actually, 30 iterations are enough,

more simulations could improve the accuracy), the histo-

gram of their components is shown in Figure 6. Ocularly,

the objective learned policy is very close to the expert’s

performance. For 6 and 12 aircrafts scenarios, the total

deviations of the objective learned policy state features

expectations related to the expert’s demonstrations are

2.68% and 1.17%, respectively, corresponding to schedul-

ing 6 and 12 aircrafts. Considering the complexity of the

carrier-borne aircrafts aviation operation scheduling, the

MWAL algorithm application in this article is of high

precision.

When scheduling is being conducted, both combat effi-

ciency and safety should be considered, the mission time of

scheduling, number of crashed aircrafts, number of air-

crafts in special priority, and the average fuel consumption

of each aircraft are chosen as the four indexes to evaluate

the performance of the MWAL algorithm applied in

carrier-borne aircrafts aviation operation scheduling. With

the data of expert’s demonstration and the objective learned

policy, the box-whisker plot is drawn in Figure 7, presented

with 2-s error bars. The mean values of these performances

are shown in Table 1.

According to the data in Figure 7 and Table 1, these four

indexes show that when scheduling 6 and 12 aircrafts, both

these two objective learned policies are close to the

expert’s demonstrations, judging from no matter the mean

values or the variance. It indicates that the MWAL algo-

rithm applied in carrier-borne aircrafts launching and

recovery scheduling could obtain policies which are similar

to experts’ policies. In Figure 7, considering the time of

Figure 6. Expectations of the state features of the expert’s and the objective learned policies in the two simulation experiments in
group sortie condition.
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scheduling, the objective learned policy of scheduling 6

aircrafts is closer to the performance of the expert’s demon-

stration than that of scheduling 12 aircrafts. However, the

concentration ratio of the 12 aircrafts case is better than that

of the 6 aircrafts case. This shows that by the increase in

aircrafts number in the sortie operation process, the random

factors that affect the time of scheduling will weaken and

stabilize. When scheduling 6 aircrafts, the number of

aircrafts in special priority or crashed is pretty small. How-

ever, when scheduling 12 aircrafts, the crashed aircrafts

numbers of both learned policy and expert’s demonstration

increase a lot (about 1/3 of these aircrafts crashed, mean-

while, more than 1/2 of these aircrafts are in special prior-

ity). From a security point of view, the expert’s policy is not

suitable for the case of scheduling 12 or more aircrafts.

These aircrafts should be fueled to a higher level to insure
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Figure 7. Statistic data of the indexes of the expert’s demonstrations and the objective learned policies when scheduling 6 and 12
aircrafts in group sortie condition.
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the security. Considering the fuel consumption, when sche-

duling 12 aircrafts, each aircraft will consume more fuel in

average, in other words, these aircrafts spend more time in

queuing in the Marshal stack.

In alternate sortie condition. When scheduling 6 and 12 air-

crafts in alternate sortie condition, it takes 7124 and 17599

s for the program to gain the objective learned policy,

respectively. The results are shown in Figure 9 and Table

2. It can be implied that when scheduling the same number

of aircrafts, the amount of calculation in alternate sortie

condition is much less than that in group sortie condition,

because only half of these aircrafts (such as Squadron B,

whereas Squadron A just lands and parks on deck until the

end of sortie operation) experience the whole scheduling

process as shown in Figure 4(b). The state features expec-

tation vectors of the expert’s demonstrations and the objec-

tive learned policy are shown in Figure 8.

Analysis of the experimental results

When the MWAL algorithm is applied to restore an

expert’s scheduling demonstration, the experimental

results show that the learned policy matches the expert’s

well, and the deviations of the state features expectations

are considerably small, which means that the MWAL algo-

rithm could achieve a strong matching between learned

policy and expert demonstration. It can be speculated that

the MWAL algorithm could deal with some uncertain

inherent events like a human expert.

The situation without human expert

In the third section, the MWAL algorithm generating pol-

icies based on expert’s demonstration was discussed. The

results indicate that the MWAL algorithm will achieve a

similar performance as the IRL projection algorithm intro-

duced by Ryan12 when applied to learn from an expert’s

demonstrations. However, the precondition of this work is

that there exists such an expert, and he is supposed to be

excellent and experienced enough. In fact, it is very possi-

ble that there is no expert available currently or the expert

performs not perfect when giving his demonstration so that

the performance of learned policy becomes worse. In this

section, the MWAL algorithm is adopted to gain policy

without an expert’s demonstration.

Modification of the original state features

Neu and Szepesvari20, the original article where the

MWAL algorithm was put forward, discussed the case

when there is no expert’s demonstrations available. As has

been described in “MWAL in carrier-borne aircraft

scheduling” section, the situation without expert’s demon-

strations could be treated as that the expectations of the

expert’s policy state features can be defined as

�̂
ðiÞ
E ¼0 j i¼1; 2; . . . ;m. Thus, equation (5) changes into

w
ðiÞ
tþ1 ¼ w

ðiÞ
t b

�̂
ðiÞ
t j i¼1; 2; . . . ;m(m is the number of state

features) in which the weight vector w will evolve with

iterating. It should be noted that the types of state features

will orient the final output of the MWAL algorithm in some

Table 1. Average values of the indexes of the expert’s demonstrations and the objective learned policies when scheduling 6 and 12
aircrafts in group sortie condition.

Number of aircrafts 6 12

Operator
Expert’s

demonstrations
Objective

learned policy
Expert’s

demonstrations
Objective

learned policy

Time of scheduling (min) 201.185 199.628 241.633 241.504
Number of crashed aircrafts 0.15 0.30 3.92 3.94
Number of aircrafts in special priority 1.03 0.98 6.43 6.55
Average fuel consumption of each aircraft (t) 3.4523 3.4512 4.1514 4.1692

Table 2. Average values of the indexes of the expert’s demonstrations and the objective learned policies when scheduling 6 and 12
aircrafts in alternate sortie condition

Number of aircrafts 6 12

Operator
Expert’s

demonstrations
Objective

learned policy
Expert’s

demonstrations
Objective

learned policy

Time of scheduling (min) 152.874 154.284 203.041 201.581
Number of crashed aircrafts 0.14 0.15 1.26 1.01
Number of aircrafts in special priority 0.24 0.40 3.55 3.5
Average fuel consumption of each aircraft (t) 1.9757 2.0210 2.6253 2.6165
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aspects. In order to gain the policy which could achieve

better performance in aspects that we concern, the state

features of the MDP can be changed as follows

f f ð1Þ ¼ 1000

Pm1

f f ð2Þ ¼ n� Pm2

f f ð3Þ ¼ n� Pm3

f f ð4Þ ¼ 10

Pm4

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

Where n represents the number of aircrafts, while Pm1

* Pm4 represent time of scheduling, number of crashed

aircrafts, number of aircrafts in special priority, and aver-

age fuel consumption of each aircraft, respectively, as four

major indexes used to evaluate scheduling policies. In an

operator’s view, a good scheduling should take less time,

has less crashed aircrafts and less aircrafts in special

priority, and the average fuel consumption of each

aircraft should be as little as possible. Thus, we define the

reward function as a linear combination of features

VðpÞ ¼ E½
Pm

l¼1 g
lRðslÞjp� ¼ wT � �ðpÞ, where, m¼ 4 is the

number of new state features. Obviously, the values of these

four new state features are expected to become higher but

restrict each other, as the robot control problem using Hier-

archical AL introduced by Kolter.22 The searching of objec-

tive policy can be treated as an optimization problem which

can be solved by cross entropy method efficiently.29 This

optimization problem can be shown as follows

maxw;p wT � �ðpÞ ¼ max
T

t¼1

Xm

i¼1

wi � f f ðiÞðptÞ

Xm

i¼1

wi � f f ðiÞðp�Þ �
Xm

i¼1

wi � f f ðiÞðptÞ 8pt

ð10Þ

Through T-time iteration, we can achieve the optimum

policy p� whose reward function is the maximum among

all policies produced by cross entropy method. This itera-

tion is essential to ensuring that the performance of the

scheduling policy generated by the MWAL without expert

is at least as good as the policy generated by experts’

demonstration.

Figure 8. Expectations of the state features of the expert’s demonstrations and the objective learned policies in the two simulation
experiments in alternate sortie condition.
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Experiments and comparison

The calculation of the mixed policy is the same as equation

(8). The experimental conditions are set the same as those

in the third section, those are the group sortie condition and

the alternate sortie condition. To evaluate the quality of the

output scheduling policy, three kinds of experts’ operations

will be compared. The first kind of expert mainly considers

the safety, while the second kind mainly considers the effi-

ciency. They are just like the “safety expert” and “risky

expert” in the study by Michini and How.15

6 aircrafts 12 aircrafts
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Figure 9. Statistic data of the indexes of the expert’s demonstrations and the objective learned policies when scheduling 6 and 12
aircrafts in alternate sortie condition.
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Safety expert: Refueling all aircrafts fully before

launching, however, landing aircraft paying more

attention to priority aircrafts.

Risky expert: Refueling all aircrafts with minimum

fuel level before launching, while, landing aircraft

as soon as they arrive in the Marshal stack, paying

no attention to priority aircrafts.

The third kind of expert is the same as that in the third

section, considering both safety and efficiency. Generally,

the last kind of expert is supposed to be the most reasonable

one.

In group sortie condition. It takes 12536 and 27424 s for the

program to gain the policy for scheduling 6 and 12 aircrafts

in group sortie condition, respectively. The expectations of

four state features are shown in Figure 10 and it can be seen

that the four state features are in the same order of magni-

tude. For comparison, the average values of the four

indexes of 1000 simulations of the generated policy and

those of 100 simulations of the experts’ demonstrations are

listed together in Table 3.

It implies that the MWAL algorithm could generate

policy performing quite satisfying in Table 3. When sche-

duling 6 aircrafts, the generated policy spends slightly less

time than the Expert 3, but causes only half number of

crashed aircrafts and consumes the least fuel. When sche-

duling 12 aircrafts, the generated policy performs even

more outstanding and exceeds all the three experts in all

the four indexes. While the crash rates of these three human

experts are relatively high, the generated policy still keeps

it at a fairly low level.

This research case shows that in the precondition of the

modified state features, the MWAL algorithm is able to

generate a policy for group sortie that is both acceptable

and feasible, performing even better than some human

experts. With the number of the aircrafts increases, the

complexity and workload also increase, and superiority of

the generated policy is enlarged.

In alternate sortie condition. It takes 11,065 and 32,238 s for

the program to generate the policy for scheduling 6 and 12

aircrafts in alternate sortie condition, respectively, and the

state features expectation are shown in Figure 11. The

comparison between human experts and the generated pol-

icy is shown in Table 4.

As discussed in “Experimental results” section, there is

more randomness in the alternate sortie condition than that

in the group sortie condition. Therefore, the performance of

the three experts is a little different than that in the group
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Figure 10. Expectations of state features of the generated policy with no expert in group sortie condition.

Table 3. The comparison between the feature expectations of the experts and the generated scheduling policy.

Number of aircrafts 6 12

Operator
Expert 1
(safety)

Expert 2
(efficiency)

Expert 3
(balanced)

Generated policy
with no expert

Expert 1
(safety)

Expert 2
(efficiency)

Expert 3
(balanced)

Generated policy
with no expert

Time of scheduling (min) 214.108 175.799 201.185 194.9626 280.157 203.165 241.633 194.2897
Number of crashed

aircrafts
0 1.16 0.15 0.069 2.36 5.51 3.92 0.434

Number of aircrafts in
special priority

0.05 2.75 1.03 0.333 3.95 8.57 6.43 2.38

Average fuel consumption
of each aircraft (t)

3.481 3.272 3.4523 3.1608 4.537 3.6025 4.1514 2.908
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sortie condition. For example, when scheduling 6 aircrafts,

the expert 2 spends the least scheduling time but consumes

the largest amount of fuel. When scheduling 12 aircrafts, the

expert 3 loses nearly as few aircrafts as the expert 2 does but

still causes obviously more aircrafts in special priority when

arranging the landing operation.

The overall performance of the generated policy with no

expert is as good as that in group sortie condition, which

has been discussed in “In group sortie condition” section. It

keeps the lowest crash rate compared to the three experts

and consumes slightly less fuel than any expert. It shows

that the generated policy with no expert can still conduct

the scheduling well in the alternate sortie condition and the

four indexes are even better balanced than human experts.

Analysis of the experimental results

The comparison between three different human experts and

the generated policy shows that with the application of the

MWAL algorithm, through iterations, can generate a sche-

duling policy that performs at least as good as these

experts’ demonstrations. With more aircrafts being sched-

uled, the generated policy performs even better. Compared

with the work of Michini and How15 and the third section in

this article which try to restore a human expert’s action, a

further step is made that a feasible and robust policy for

carrier-borne aircrafts aviation operation scheduling can be

generated without learning from an expert. The possible

reason can be analyzed as follows:

1. When a decision is making, the habits and prefer-

ences of operator are not so explicit enough that the

decision is of randomness. In other words, there is

no “pure” safety expert or efficiency expert, on the

contrary, every human operator is a mixture expert.

2. When random events occur, human experts need

more time to understand the situation and make a

suitable decision, however, computers could gain

policy and conduct scheduling faster than human

under the condition of predefining the state features

and reward functions.

Conclusion and discussion

1. With the application of the MWAL algorithm, the

method for generating optimized policies for

carrier-borne aircrafts scheduling was put forward.

When there is an expert available, the method can

learn from the expert’s demonstration to produce
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Figure 11. Expectations of state features of the generated policy with no expert in alternate sortie condition.

Table 4. The comparison between the feature expectations of the experts and the generated scheduling policy.

Number of aircrafts 6 12

Operator
Expert 1
(safety)

Expert 2
(efficiency)

Expert 3
(balanced)

Generated policy
with no expert

Expert 1
(safety)

Expert 2
(efficiency)

Expert 3
(balanced)

Generated policy
with no expert

Time of scheduling (min) 164.569 142.201 152.874 138.8355 213.939 175.894 203.041 191.986
Number of crashed

aircrafts
0.07 0.25 0.14 0.045 1.29 2 1.26 1.128

Number of aircrafts in
special priority

0.16 0.79 0.24 0.224 2.41 5.42 3.55 2.979

Average fuel consumption
of each aircraft (t)

1.906 2.1105 1.9757 1.7291 2.583 2.5175 2.6253 2.4639
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the scheduling which could perform quite close to

the expert’s demonstrators according to the statistic

values of the four indexes. When there is no expert

available or the expert’s capability is not convincing

enough, MWAL algorithm can also generate sche-

duling policy which performs as good as (or even

better than) some experts by modifying the initial

state features. In both situations, the output policy

shows to be highly acceptable and reliable. This

result is a little like what the IRL algorithm achieves

in the study by Michini and How.15

2. According to the experimental results, it can be

implied that if the task of scheduling is relatively

easy, human experts can handle the situation well

and their demonstrations can be restored by the

MWAL algorithm. However, with the increase in

the scheduling task complexity, it becomes difficult

for human experts to deal with all the random influ-

encing factors. Thus, the generated policy without

experts’ demonstrations performs even more excel-

lent than humans. It should be noticed that, this

algorithm could achieve wonderful policies without

any human expert, improving the practicability of

this algorithm. Especially in complex scenarios, this

algorithm could also generate proper policies, as an

obvious difference with the projection method used

in the study by Michini and How.15

3. The method in this article can be used to construct a

data base of optimized scheduling policies. Such a

data base can not only guide the training of carrier

deck operators, but also improve the working-

efficiency of deck operators in complex operation

situations. Based on MWAL algorithm, an auto-

mated deck operation scheduling tool could be

developed, providing an efficient decision-making

system for deck operators, reducing failure rate.

4. The computational expense of the MWAL method is

relatively less than IRL; however, the iteration time is

not less than 3 h. It is difficult to shorten the iteration

time of Monte Carlo simulation. If other analytical

and numerical methods can be introduced to obtain

state features, the MWAL algorithm will run more

efficiently. On the other hand, the Compute Unified

Device Architecture (CUDA)-enabled NVIDIA

GPUs could also accelerate the iteration to some

extent. However, the original MATLAB codes should

be modified, which is left as an area of future work.
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