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Abstract
Purpose  In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. 
As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment 
approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-
learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning 
and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons’ daily practice; however, 
the use of such tools remains to be time-consuming.
Methods: Narrative review and results  Computer-assisted methods for the prediction of postoperative alignment consist of 
a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. 
Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more 
personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of 
developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of 
advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment predic-
tion. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and 
using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-
assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, 
CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis 
data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real 
tailor-made solutions.
Conclusion  Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful 
computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional 
way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired 
level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their 
adaptation to spine surgery is of considerable interest.
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Introduction: why should we plan?

In past decades, the role of sagittal alignment has been 
widely demonstrated in the setting of spinal conditions. It is 
now well-established that sagittal alignment correlates with 
health-related quality of life scores (HRQOL). In adult spi-
nal deformity, numerous studies have stressed that postoper-
ative sagittal malalignment results in lower HRQOL, higher 
revision rates and residual pain [1, 2]. In degenerative condi-
tions, several studies have shown that correction of sagittal 
malalignment, quantified by the pelvic incidence-lumbar 
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lordosis (PI-LL) mismatch, was a predictor of success fol-
lowing short-segment fusions. On the other hand, a greater 
postoperative PI-LL mismatch leads to a higher risk of 
adjacent segment disease and decreased HRQOL scores 
[3, 4]. Moreover, restoration of sagittal alignment has been 
demonstrated to have several other favorable effects, such 
as decreasing the rate of pseudarthrosis and rod fracture [5].

Several parameters can be affected by spinal conditions, 
in isolation or combined, and lead to sagittal malalignment. 
Identifying the driver of the deformity is the cornerstone of a 
successful treatment approach. When surgery is performed, 
the correction of the driver of the deformity will lead to a 
global relaxation of the spino-pelvic axis and induce spon-
taneous correction of compensatory mechanisms. On the 
contrary, correcting parameters involved in compensatory 
mechanisms without correcting the driver will lead to poor 
outcome, as the patient will not be able to compensate for 
the deformity anymore. Such errors in surgical planning are 
to be avoided by any possible means.

Despite the importance of restoring sagittal alignment for 
optimizing outcome, this remains challenging. It has been 
demonstrated that in adult spinal deformity patients, surgical 
correction generally restores sagittal alignment in only 50% 
of the cases [6]. Preoperative planning is therefore of key 
importance to avoid postoperative sub-optimal alignment. In 
other fields of orthopedic surgery, computed-assisted meth-
ods are already well-established and are proven to increase 
accuracy due to better planning and simulation [7]. There-
fore, self-learning computers and optimized algorithms are 
of great interest in spine surgery, such that better plans and 
prediction of postoperative alignment can be employed.

Evolution of surgical planning

At the dawn of spine surgery, and as recently as the past 
several decades, little importance was given to sagittal align-
ment and therefore, no systematic approach existed for its 
correction. Sagittal parameters, such as thoracic kyphosis 
or lumbar lordosis, were poorly defined by mean normative 
values. The history of surgical planning is quite recent. In 
1986, Camargo et al. published an article stating that “The 
greater the deformity the lower the level of the osteotomy” 
[8]. Despite the simplicity of this statement, that was the 
first time such considerations (planning the level of the oste-
otomy) were introduced in the literature. Later in the 2000s, 
geometric constructions for the planning of subtraction oste-
otomies appeared, but still without taking into account the 
whole spine and individual variability [9, 10].

Currently, computer-assisted tools are part of surgeons’ 
daily practices. Every PACS system provides basic tools 
for analysis, such as angle and distance measurement. 
However, these tools have limited accuracy and should 

not be used for surgical planning [11]. Recently, the devel-
opment of spine dedicated software has given surgeons 
several tools for both diagnosis and treatment. These new 
tools are accurate and can take into account a combination 
of several parameters, to predict postoperative changes in 
sagittal alignment. However, the use of such tools remains 
time-consuming, with analysis times ranging from a few 
minutes for simple 2D analysis and up to 20 min for com-
plex 3D reconstructions [12, 13].

Prediction of postoperative alignment

Predicting changes in sagittal alignment is complex. Of note, 
Ailon et al. reported difficulties for surgeons to predict post-
operative alignment: among 17 surgeons devoted to deform-
ity surgery, actual postoperative radiographic parameters 
were accurately predicted in only 42% of the cases [14]. 
This study thus highlights the need for predictive formulas to 
improve surgeons’ ability to predict postoperative alignment. 
Several authors attempted to develop formulas predicting 
postoperative radiographic parameters. These mathematical 
tools ranged from very simple formulas, such as Lumbar 
Lordosis > Thoracic Kyphosis +20°, to more complex ones 
taking a combination of several parameters into account. 
The more complex ones, by considering compensatory 
mechanisms, seem to provide more accuracy, but are prob-
ably less easy to use in daily practice. In 2012, Smith et al. 
compared five mathematical formulas for the prediction of 
postoperative sagittal alignment after pedicle subtraction 
osteotomy [15]. They found that the most accurate formula 
for the prediction of SVA was one developed by Lafage 
et al.: SVA = − 52.87 + 5.90(PI) − 5.13 (LLmax) − 4.45 
(PT) − 2.09 (TKmax) + 0.57 (age) [16]. While this formula 
may be cumbersome to employ in daily practice, results were 
reported with 75% accuracy on SVA prediction. Neverthe-
less, the use of computer-assisted methods could probably 
help to improve the accuracy of prediction, as demonstrated 
by Langella et al [17]. In this retrospective study, the authors 
aimed to determine the accuracy of a spine dedicated soft-
ware in predicting postoperative alignment of 40 patients 
undergoing surgery for sagittal malalignment. A failure of 
prediction was defined as an actual postoperative alignment 
including a pelvic tilt > 21° or an SVA > 50 mm. With com-
puter-assisted methods, they reported a failure in prediction 
of less than 20% of the cases. By adding the prediction of 
changes in pelvic tilt into the surgical planning, the chance 
for postoperative unsatisfactory alignment dropped down to 
12%. This supports the ability of computer-assisted methods 
to provide an accurate prediction of postoperative alignment 
(Fig. 1 and Table 1).
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Current state of the art

Computer-assisted methods for the prediction of postop-
erative alignment consist of a three step analysis: identi-
fication of anatomical landmark, definition of alignment 
objectives (and thus surgical objectives), and simulation of 
surgery. The prediction of final alignment is then based on 
geometric transformations. This process contains multiple 
sources of potential error. First, the identification of all ana-
tomical landmarks is tedious work and can lead to errors of 
measurement [18]. Then, rules for the definition of surgical 

objectives are needed. The use of the SRS-Schwab classifi-
cation can be an appropriate tool, as it provides a universal 
language to describe and categorize patients, with strong 
correlations between radiographic parameters and HRQOL 
[19]. It has the advantage of being easy to remember but 
could be more precise. More recently, more complex rules 
have been proposed, such as age-related alignment or the 
GAP system [20, 21]. However, the complexity of these 
tools requires the use of computers. For example, Lafage 
et al. reported 30 normative values for traditional radio-
graphic parameters (6 age-related values for 5 parameters) 
(Table 2). Even though this kind of work leads to more per-
sonalized objectives and a better understanding of sagittal 
alignment, the number of parameters involved renders it dif-
ficult for clinical use, stressing the importance of developing 
computer-assisted tools. Finally, simulation of surgical pro-
cedure can be the source of several errors as well. Software 
will not delineate what is realistic from what is improbable 
or impossible. For example, a surgeon will be able to plan 
a 50°-PSO at a single level without being restrained by the 
software. The software does not offer feedback on what a 
surgeon can actually achieve.

Fig. 1   Case example of a preop-
erative planning performed with 
a spine dedicated software. a 
Baseline. b Planning. c Postop-
erative. The planning consisted 
in the simulation of an L4 
pedicle subtraction osteotomy, 3 
Smith-Peterson osteotomies and 
a L3-L4 interbody cage. Sagittal 
parameters are presented in 
Table 1

Table 1   Case example of a preoperative planning performed with a 
spine dedicated software

Parameters Baseline Planning Postoperative

Pelvic tilt 39° 15° 15°
Thoracic kyphosis 16° 22° 24°
Lumbar lordosis 31° − 38° − 39°
PI-LL mismatch 74° 4° 6°
SVA 223 mm 32 mm − 1.3 mm

Table 2   Age-ajusted normative 
values for sagittal parameters, 
from the work by Lafage et al

Age group ODI Pelvic tilt PI-LL LL-TK SVA T1-PA

< 35 9.49 11.1 − 11.3 29.2 − 29.1 4.4
35–44 11.77 15.5 − 6.2 21.9 − 4 10
45–54 15.43 18.9 − 1.7 16.4 16.5 14.5
55–64 20.87 22.1 3.3 11.1 37 18.8
65–74 24.62 25.2 7.5 6.1 55.6 22.8
> 74 32.54 28.8 13.7 0.2 79.9 27.8



S126	 European Spine Journal (2018) 27 (Suppl 1):S123–S128

1 3

What can be done to improve planning?

The evolution of our current technology will provide 
powerful tools that could be useful in improving surgi-
cal outcomes and alignment prediction. Machine learn-
ing and other types of advanced algorithms are part of 
these powerful tools. Machine learning is defined as an 
algorithm that is able to be learned by a computer and 
self-improves from experience. This type of solution is 
already used in many other fields: facial detection in pic-
ture analysis software, personalized website recommenda-
tion or advertising, etc. Machine learning can use a com-
bination of different types of advanced technologies, such 
as image recognition and shape modeling [22]. Using this 
technique, computer-assisted methods are able to predict 
spinal shape. With only ten landmarks manually identified, 
software can accurately predict the position of more than 
70 anatomical landmarks on standard radiographs with an 
error of < 5%, thus automatically drawing the shape of the 
spine (Fig. 2). Technology such as image recognition can 
also be developed to identify possible pathologic areas 
(i.e., driver of deformity) and compensatory mechanisms 
and then to propose adequate surgical solutions.

While current predictive models require working with 
restricted hypotheses, machine learning methods can inte-
grate many more variables. Information can be prioritized 
and thus influence decisions at different levels. In this way, 
there is no need to discard any information and the process 
is much closer to the human decision process.

An interesting potential pathway for software develop-
ment would be the creation of algorithms representative 
of individual surgeon’s practice. Surgical objectives could 
be refined based on the usual correction that a particular 
surgeon is able to achieve or his postoperative outcomes. 
The same process can be achieved with complication pre-
diction. Based on a surgeon’s complication rate, HRQOL 
or radiographic outcomes, computer-assisted prediction 
tools could adapt the surgical strategy and provide realis-
tic surgical objectives. These tools could also be used for 
educational purposes. Clinical research delivers ongoing 
information and guidance that can be difficult for surgeons 
to integrate in their practice. The development of com-
puter-assisted tools will allow the integration of relevant 
research findings on an ongoing basis, making it easily 
available for users.

Computer-assisted tools are emerging in spine surgery. 
Recently, the ISSG has reported accurate predictions of 
major complications following ASD surgery, with the use of 
patient-specific predictive models [23]. Prediction of align-
ment is following the same trend with promising results [24].

The development of powerful computer-assisted predic-
tive models can involve the integration of several sources 
of information:

–	 Radiographic parameters from supine and standing 
X-rays, MRI, CT scan, etc.

–	 Demographic information such as age, sex and BMI.
–	 Unusual non-osseous parameters (muscle quality, pro-

prioception, gait analysis data).

Fig. 2   Automated identification of radiographic landmarks (From Moal et al.). The computer was able to replace 60 landmarks based on the 
manual identification of ten landmarks
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Using a larger set of data, these methods will aim to 
mimic what is actually done by spine surgeons. This way, 
objectives can be fine-tuned for each patient, based on 
personalized thresholds such as age-adjusted alignment, 
and thus lead to real tailor-made solutions.

Who could benefit from automated 
preoperative planning?

First and foremost, patients will be the clearest benefi-
ciary from the development of automated planning. Bet-
ter planning and prediction of outcome will influence a 
surgeon’s decision making and lead to better postopera-
tive outcomes. If these tools are efficient, one can expect 
a decrease in complications, and particularly in revisions 
due to mechanical failure. Moreover, being able to predict 
the complication rates associated with a procedure, based 
on different postoperative objectives, is of major interest 
for patient counseling and decision making. Improvement 
in surgical planning will also impact hospital costs, by 
decreasing operative time and reducing complication rates. 
Finally, industry will also benefit from this technology, by 
being able to develop patient-specific implant trays and 
decreasing the amount of surgical tools to be sterilized. 
By decreasing the number of unused implants or tools 
spent per surgery, the logistics/procurement costs can be 
reduced as well, which will have a meaningful impact on 
healthcare costs.

Conclusion

Preoperative planning is now well-recognized as a cru-
cial step of surgical treatment, as it allows for decreasing 
unfavorable outcomes. Integrating newer technology can 
change the current way of planning/simulating surgery. 
The use of powerful computer-assisted tools, which are 
able to integrate several parameters and learn from experi-
ence, can change the traditional way of selecting treatment 
pathways and counseling patients. However, there is still 
much work to be done to reach a desired level as noted in 
other orthopedic fields, such as hip surgery. Many of these 
tools already exist in non-medical areas and their adapta-
tion to spine surgery is of great interest.
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