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1.  Introduction

Water vapor plays a major role in fluctuations in 
energy and water cycles. Furthermore, water vapor 
is the source of clouds and precipitation, which are 
essential components of the water cycle, and it induc-
es variation in downward shortwave radiation at the 
surface. Water vapor is also a major greenhouse gas 
that affects the radiation budget, particularly that for 
downward longwave radiation at the surface.

Previous studies have examined long-term trends 
and interannual variation in water vapor. For example, 
Trenberth et al. (2005) investigated the trends and 
variability in column-integrated atmospheric water 
vapor (or precipitable water; PW) using a dataset from 

the NASA Water Vapor Project (NVAP; Randel et al. 
1996), and found that PW increased over the tropical 
ocean in association with increases in sea surface 
temperatures (SSTs) from 1988 to 2001. The trend in 
PW over the tropical ocean (7.8 % K−1) is governed 
by the Clausius-Clapeyron (CC) equation under the 
assumption of fairly constant relative humidity. In an 
earlier study, Wentz and Schabel (2000) reported a 
similar result (9.2 % K−1) based on shorter observa-
tions of water vapor. These trends and variability were 
common in Coupled Model Intercomparison Project 
Phase 3 (CMIP3) climate models (e.g., Allan 2009).

Many studies have evaluated the reproducibility 
of clouds and precipitation in climate models (e.g., 
Jiang et al. 2012; Su et al. 2013). However, only a few 
studies have evaluated the reproducibility of water 
vapor in climate models. To improve the reproducibil-
ity of clouds and precipitation in global and regional 
climate models, it is important to understand the 
source of clouds and precipitation (i.e., water vapor). 
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Abstract

This study investigated the absolute values of column-integrated water vapor (precipitable water; PW) in the 
climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5), in terms of the relation-
ships between PW and precipitation characteristics. We identified that global mean PW values are systematically 
much lower in CMIP5 models than in observations. This dry bias is most profound over the tropical ocean. The 
dry bias is partly due to biases in sea surface temperatures in the CMIP5-coupled climate models. However, the 
dry bias is also present in Atmospheric Model Intercomparison Project (AMIP) experiments, which implies the 
existence of other factors. The relationship between PW and rainfall characteristics shows that rainfall occurs 
when water vapor levels are lower than in observations, particularly in models with a relatively strong dry bias. 
This suggests that the reproducibility of rainfall characteristics may be associated with the dry bias.
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Mears et al. (2007) examined the relationship between 
temperature and PW in climate models and found that 
the CC equation explained the long-term changes and 
interannual variation in the relationship fairly well. Su 
et al. (2013) discussed the reproducibility of clouds in 
climate models using related variables, such as SST 
and PW. In addition, John and Soden (2007) evaluated 
vertial profiles of the CMIP3 climate models, which 
indicates a large moist bias in the free atmosphere but 
a dry bias in the boundary layer. Tian et al. (2013) 
reported the similar characteristics also in CMIP5 
climate models.

Trenberth et al. (2005) found an inconsistency in 
PW between the National Centers for Environmental 
Prediction/National Center for Atmospheric Research 
(NCEP/NCAR) and the 40-year Reanalysis (ERA40) 
of the European Centre for Medium-range Weather 
Forecasts (ECMWF). Takahashi et al. (2012) reported 
that PW was underestimated in seven reanalyses, ex-
cluding ERA40. This suggested the existence of water 
vapor biases in the climate models of the CMIP5 used 
for the Fifth Intergovernmental Panel on Climate 
Change assessment report (IPCC-AR5). To reiterate, 
PW in climate models has been poorly assessed.

Therefore, the primary purpose of this study was 
to investigate the bias in PW in the climate models 
of the CMIP5, based on a comparison with available 
global-scale PW observations. This study also inves-
tigated the causes of the bias in PW in the climate 
models, focusing on the relationship between water 
vapor and rainfall characteristics. Section 2 details the 
CMIP5 and observation datasets. Section 3 describes 
the common biases in column-integrated water vapor 
data. Possible explanations for these biases are pro-
vided in Section 4 and the conclusions are presented 
in Section 5.

2.  Datasets

2.1  Model output
We used the output from 21 different fully coupled 

ocean-atmosphere climate models (CGCM) in this 
study; the models are given in Fig. 1) The model 
results are available via the CMIP5 of the World 
Climate Research Programme (WCRP) (Taylor et al.  
2012). The simulations considered here are of his-
torical experiments that include historical changes in 
anthropogenic and natural forcing. This study used the 
monthly mean PW ( prw), and precipitation ( pr). The 
analysis period was from 1989 to 2005, because both 
observation datasets and model outputs are available 
for this period. Before calculating the multi-model 
mean (MMM), the spatial resolution of all values was 

unified in a 2.5° × 2.5° grid.
To examine the bias in SSTs in the CMIP5 climate 

models, we also used the output from 10 Atmospheric 
Model Intercomparison Project (AMIP) runs sim-
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Fig. 1. (a) Global mean precipitable water (PW) amounts of the obser-
vations and simulations. Multi-model mean (MMM) indicates a 21
model-ensemble mean. The light-blue dashed line indicates the NVAP-
M Climate (NVAP-C) observations. The upper (lower) red dashed lines
indicate -5% (-10%) of the NVAP-C observations in (a). (b) Tropical
oceanic mean PWs of the observations and simulations. The tropics
were defined as the region from 30◦S–30◦N. Again, MMM indicates a
21 model-ensemble mean. The three observations (NVAP-C, NVAP-
M Ocean [NVAP-O], and remote sensing systems [RSS]) are shown.
The light-blue dashed line indicates the ensemble mean of the three
observations over the tropical ocean. The upper (lower) red dashed
line indicates -5% (-10%) of the three-ensemble mean over the tropical
ocean in (b).
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Fig. 1.  (a) Global mean precipitable water (PW) 
amounts of the observations and simulations. 
Multi-model mean (MMM) indicates a 21 mod-
el-ensemble mean. The light-blue dashed line 
indicates the NVAP-M Climate (NVAP-C) ob-
servations. The upper (lower) red dashed lines 
indicate −5 % (−10 %) of the NVAP-C obser-
vations in (a). (b) Tropical oceanic mean PWs 
of the observations and simulations. The tropics 
were defined as the region from 30°S – 30°N. 
Again, MMM indicates a 21 model-ensemble 
mean. The three observations (NVAP-C, NVAP- 
M Ocean [NVAP-O], and remote sensing sys-
tems [RSS]) are shown. The light-blue dashed 
line indicates the ensemble mean of the three 
observations over the tropical ocean. The upper 
(lower) red dashed line indicates −5 % (−10 %) 
of the three-ensemble mean over the tropical 
ocean in (b).
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ulated by atmosphere-only global climate models 
(AGCMs), with the prescribed SST and sea ice data. 
Ten AMIP runs were obtained: CCSM4, CNRM-CM5, 
GFDL-CM3, IPSL-CM5A-LR, MIROC5, MPI-ESM-
LR, MPI-ESM-MR, MRI-CGCM3, bcc-csm1-1, and 
inmcm4.

To calculate the average of PW over only the tropi-
cal ocean, the land area fraction (sftlf ) for each model 
was used. This fraction was also converted in the 2.5° 
× 2.5° grid. When the land area fraction of a grid was 
less than 50 %, the grid was deemed an oceanic grid.

2.2  Observations
The NVAP-MEaSUREs (NVAP-M; Vonder Haar 

et al. 2012) dataset was used for the PW observations. 
NVAP-M includes NVAP-M Climate (NVAP-C), 
NVAP-M Ocean (NVAP-O), and NVAP-M Weather 
(NVAP-S). NVAP-C is produced from input data and 
algorithms used consistently over time, and is the most 
suitable for climate research. NVAP-O is also suitable 
for climate research. However, NVAP-O covers only 
oceans. We did not use NVAP-S because its focus is 
not on climate, and therefore its long-term consistency 
is uncertain. NVAP-M covers the 22-year period from 
1988 to 2009, although there are many missing PW 
values in 1988. Therefore, this study used the 17-year 
period from 1989 to 2005. NVAP-C PW is based on 
the Special Sensor Microwave Imager (SSMI), High- 
resolution Infrared Radiation Sounder (HIRS), and 
Atmospheric Infrared Sounder (AIRS) PW. An ad-
ditional PW observation over the ocean, the remote 
sensing systems’ (RSS) PW, was also used (Wentz 
1997; Wentz et al. 2007) to qualify the uncertainty 
among the observations. The RSS PW was based on 
the SSMI and the Special Sensor Microwave Imager 
Sounder (SSMIS), which are satellite passive micro-
wave radiometers. As discussed in Schröder et al. 
(2016), sources of data sets were different. In addition, 
the different merging processes were performed. To 
evaluate the simulated rainfall characteristics, we used 
monthly precipitation data from the Global Precipita-
tion Climatology Project (GPCP) (ver. 2.2; Adler et al. 
2003). This study used only the vertically integrated 
water vapor data because there are few vertically re-
solved observation datasets on water vapor at a global 
scale.

3.  Results

3.1  Systematic dry bias of absolute value of PW
To understand the bias in annual PW, we calculated 

the global mean PW, as simulated by the CMIP5 
climate models and from observations. The clima-

tological global mean PWs simulated by the CMIP5 
climate models over the 17-year period from 1989 to 
2005 were typically much lower than the observations 
(Fig. 1a). The 17-year climatological global mean 
PW of the NVAP-C observation was approximately 
25.4 mm. This value is similar to the NVAP value (not 
shown), although the averaged period differs from that 
of NVAP-C. The MMM PW was approximately 23.9 
mm, which was approximately 5.9 % drier than the 
observations. MMM PW and 12 of the 21 models had 
a dry bias exceeding 5 %. The deviation in the simu-
lated PW ranged from approximately 22 to 25.5 mm. 
The observed value was almost outside this range, 
indicating that the dry bias is significant and common 
to the CMIP5 climate models.

Over the tropical ocean, the dry biases in the 
CMIP5 climate models were distinct (Figs. 1b, 2). 
RSS PW was much drier than NVAP-C, which indi-
cates that the uncertainty among the PW observations 
is not small. Even considering the uncertainty of the 
observations between NVAP-C and RSS PWs (See  
also Section 3.2), the systematic dry bias in the CMIP5 
climate models cannot be ignored, particularly over 
the tropical ocean (Fig. 1b).

3.2  Spatial pattern of model biases in PW
This subsection examines the spatial distribution of 

the simulated and observed PW (Figs. 2a, b). Peaks 
in PW were observed around the Maritime Continent, 
equatorial North Pacific, and equatorial North Atlantic 
(Fig. 2a). The spatial maxima of the MMM simulated 
PW by the CMIP5 climate models agreed with the 
observations (Fig. 2b). The spatial distribution of PW 
simulated by each CMIP5 model was also similar to 
the observations (not shown).

To understand the spatial distribution of the bias in 
the simulated PW, we produced a spatial map of the 
differences in PW between the simulated and observed 
PWs (Fig. 2c). Dry biases in MMM were found over 
the entire tropics, and particularly over the higher SST 
regions (i.e., the warm pool region). Wet biases were 
observed over both the northeastern and southeastern 
Pacific in the tropics, where the SST was relatively 
low. This anomalous pattern of PW biases has been 
reported by Su et al. (2013). This study found that 
the absolute values of PW have strong dry biases. To 
further assess the spatial pattern of model biases in 
PW, that relative to RSS PW is also shown in Fig. 2d. 
The similar spatial pattern of model bias in PW can 
be found on the difference between MMM and RSS 
PWs, although the magnitude is smaller. The results 
in the previous studies and this study imply that the 
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robust model bias in PW over the higher SST regions 
where large amount of rainfalls are also observed. In 
addition, wet biases are simulated over the mid- and 
high-latitudes, which apparently reduce the global 
mean values of the dry bias. Therefore, the dry bias in 
the tropics is profound (Fig. 1b). Moreover, the biases 
near high mountain regions can be associated with the 
discrepancy between the smoothed orography in the 
climate models and the actual orography.

3.3  Dry biases caused by the SST bias
As shown in Fig. 2c, there were negative PW biases 

over the warm SST regions and positive biases over 
the cold SST regions. In general, it is expected that 
PW is closely associated with SST since PW samples 
mainly low-level moisture that is strongly constrained 

to SST by the CC equation. To examine the simulated 
SST biases in the CGCMs, we also show the bias in 
PW simulated in the AMIP runs (Figs. 3, 4). The major 
differences in SST between CGCMs and AGCMs 
are arised from the air-sea interaction in CGCMs via 
Bjerknes feedback (e.g., Li and Xie 2014).

In the AMIP runs, the global mean dry bias of the 
MMM PW was reduced (Fig. 3a). Regarding the 
global mean values, the simulations by some of the 
models were wetter than the observation. To under-
stand the reduction in the global mean dry bias, we 
examined the spatial distribution of the difference 
in PW (Fig. 4). In the AMIP runs, the dry bias of the 
MMM PW was partially reduced (Fig. 4) compared 
with the difference in PW in the coupled models 
(Fig. 2c), which indicates that the dry bias of PW was 

Fig. 2.  (a) Climatology of the observed PW (NVAP-C) over the 17-year period from 1989 to 2005. (b) As for 
(a), but the MMM of the CMIP5 models. (c) Difference in PW between the MMM of the CMIP5 models and 
observed PW (MMM minus the NVAP-C observation). (d) As for Fig. 2c, but difference in PW between the 
MMM of the CMIP5 models and another observed PW (MMM minus the RSS observation). PW was averaged 
over the 17-year period from 1989 to 2005. Both the historical simulations and observations are available.

Fig. 2. (a) Climatology of the observed PW (NVAP-C) over the 17-year
period from 1989 to 2005. (b) As for (a), but the MMM of the CMIP5
models. (c) Difference in PW between the MMM of the CMIP5 models
and observed PW (MMM minus the NVAP-C observation). (d) As for
Fig. 2c, but difference in PW between the MMM of the CMIP5 models
and another observed PW (MMM minus the RSS observation). PW
was averaged over the 17-year period from 1989 to 2005. Both the
historical simulations and observations are available.

23
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partially associated with the biases of SST. Neverthe-
less, the spatial distribution of the common dry bias 
of AMIP remained over the high PW regions in the 
tropics, which implies that there is still a distinct dry 
bias in the tropical regions, although the observed 
SSTs are prescribed (Fig. 3b). In addition, the AMIP 
models simulated stronger wet biases over the mid- 
and high-latitude regions, which contributed to can-
cellation of the global mean dry bias.

The spatial pattern of dry bias in the CMIP5 is 
very similar to that in AMIP runs, which implies that 
there is a common error of a physical process in both 
CMIP5 and AMIP runs. Therefore, it is possible that 
other factors contribute to the systematic dry biases in 
the CMIP5 climate models as well as AMIP runs.

3.4 � Relationship between PW and rainfall  
characteristics

We also investigated the biases of MMM PW as 
a function of the observed PW over the tropics, to 
quantify the characteristics of the simulated PW bias 
(Fig. 5a). The negative PW biases increased with the 
absolute values of the observed PW. When PW was 
larger than approximately 35 mm, dry biases were ob-
served in most tropical grids. This result agreed with 
the spatial pattern of the PW bias (Fig. 2c). Note that 
the PW bias was significant over the wet region where 
PW values exceeded 35 mm. Apart from the major 
cluster in the scatterplot, a strong dry bias of 10 to 5 
mm was sometimes observed when the PW value was 
approximately 20 mm, as seen over and around the 
Sahara. However, this strong dry bias over the Sahara 
was not certain because the observed PW values were 
very uncertain in that region due to a lack of observa-
tions.

We also examined the bias of the simulated precip-
itation over the tropics, as a function of PW (Fig. 5b). 
The positive precipitation biases increased with the 
absolute value of PW. Compared with the PW biases, 
the precipitation biases were less systematic, because 
the spatiotemporal distribution of precipitation is more 
complicated than that of PW. Nevertheless, positive 
precipitation biases were apparent when PW exceeded 
35 mm. Moreover, the positive biases seemed to be 
reduced when PW exceeded 50 mm. The physical 
processes underlying the relationship between PW and 
precipitation biases are discussed in Section 4.

4.  Discussion

Water vapor is the source of rainfall. The amount 
of water vapor and related moisture transport may 
affect the rainfall characteristics, which may be due to 

Fig. 4.  As for Fig. 2c, but for the MMM of the 
AMIP runs (10 models) and observed (NVAP-C) 
PWs (MMM minus the NVAP-C observations). 
Unit is mm.

Fig. 3.  As for Fig. 1, but for the Atmospheric 
Model Intercomparison Project (AMIP) simu-
lations. MMM indicates a 10 model-ensemble 
mean of the AMIP climate models. Unit is mm.
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Fig. 3. As for Fig. 1, but for the Atmospheric Model Intercomparison
Project (AMIP) simulations. MMM indicates a 10 model-ensemble
mean of the AMIP climate models.
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Fig. 4. As for Fig. 2c, but for the MMM of the AMIP runs (10 models) and
observed (NVAP-C) PWs (MMM minus the NVAP-C observations).
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modulation of the development of tropical disturbanc-
es at various spatiotemporal scales, particularly over 
the tropics. On the other hand, rainfall characteristics 
affect the water vapor in the atmosphere. It may be 
significant how much water vapor is converted to 
rainfall. The two-dimensional histograms presented in 
Fig. 6 illustrate the relationship between water vapor 
(PW) and rainfall characteristics. For standardization, 
the occurrence frequency in each box is divided by 
the total occurrence frequency. To calculate the occur-
rence frequency, we used monthly mean values over a 
204-month (17-year) period.

Higher frequencies are observed along the boxes 
with PW and rainfall of 45 mm and 1 mm day−1, 50 
mm and 3.5 mm day−1, and 55 mm and 5 mm day−1. 

Rainfall increases substantially when PW is greater 
than approximately 50 mm.

In most of the CMIP5 climate models used in this 
study, rainfall increases when PW is in the range 30 
to 40 mm (Fig. 6). Rainfall increases dramatically 
when PW exceeds 40 mm. Although the pattern of the 
two-dimensional histograms is similar, the peak occur-
rence frequencies in the simulations are shifted in the 
direction of the lower PW values, and the curves are 
steeper when PW is in the range of 40 to 50 mm. Note 
that this tendency is common in the CMIP5 climate 
models.

Here, we propose two possible mechanisms. The 
first is that rainfall occurs in the CMIP5 climate 
models under lower PW conditions. Trenberth et al. 
(2011) showed that premature precipitation was dom-
inant in CCSM4, which suggests that rainfall occurs 
under lower water vapor conditions. Rainfall onset 
in the CMIP5 climate models may be too sensitive 
to moist static energy (MSE). For CMIP5 climate 
models, the atmosphere is unable to hold as much 
water as the real atmosphere before precipitation 
occurs. Note that the bias of rainfall onset can be also 
associated with reproducibility of clouds, which may 
lead additional model biases.

Second, the CMIP5 climate models consume 
excessive water vapor or MSE for rainfall, which can 
be understood as the impact of rainfall characteristics 
on water vapor. This effect may decrease the amount 
of mean water vapor on a monthly time-scale. This 
explanation is also consistent with Trenberth et al. 
(2011). In addition, both of the mechanisms proposed 
here can occur simultaneously within a single climate 
model.

To understand the relationship between PW and 
rainfall characteristics, similar examination on the 
various time-scales and related regional moisture 
transport are necessary (e.g., Holloway and Neelin 
2010; Liu et al. 2014; Allan et al. 2014) as a future 
study. Note that the understanding of the relationship 
may be related to changes in rainfall characteristics 
due to global warming (e.g., Trenberth et al. 2003).

5.  Conclusions

This study assessed PW in the CMIP5 climate 
models using the NVAP-M global water vapor dataset. 
We also examined the relationship between water 
vapor and rainfall characteristics.

The results show that a systematic dry bias of PW is 
common in the CMIP5 climate models. The deficiency 
in PW is significant over wet regions where PW ex-
ceeds approximately 35 mm, mainly in the warm pool 

Fig. 5.  (a) Scatterplot between the observed PW 
and the bias in PW over the tropics (30°S – 30°N). 
(b) As for (a), but between the observed PW 
and the bias in precipitation. In both panels, 17-
year climatological and annual mean values are 
plotted.
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Fig. 5. (a) Scatterplot between the observed PW and the bias in PW over
the tropics (30◦S–30◦N). (b) As for (a), but between the observed PW
and the bias in precipitation. In both panels, 17-year climatological
and annual mean values are plotted.
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Fig. 6.  Two-dimensional histogram between PW and precipitation over the tropics (30°S – 30°N). The class width 
of PW is 2 mm from 0 to 80 mm. The class width of precipitation is 1 mm day−1 from 0 to 20 mm day−1. The 
green contours in each panel show the histogram between the observed PW and observed precipitation. The 
black contours in each panel show the histogram between the simulated PW and simulated precipitation. The 
name of the specific CMIP5 model is shown in each panel. In all panels, the occurrence frequency was calcu-
lated from monthly mean values over 204 months (17 years) on 2.5° × 2.5° grids over the tropics. The contour 
intervals are 0.2 %, from 0.2 % to 1.4 %. The smallest value of the contours is 0.2 %. The values are shown as 
percentages.
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Fig. 6. Two-dimensional histogram between PW and precipitation over the
tropics (30◦S–30◦N). The class width of PW is 2 mm from 0 to 80
mm. The class width of precipitation is 1 mm day−1 from 0 to 20 mm
day−1. The green contours in each panel show the histogram between
the observed PW and observed precipitation. The black contours in
each panel show the histogram between the simulated PW and simu-
lated precipitation. The name of the specific CMIP5 model is shown in
each panel. In all panels, the occurrence frequency was calculated from
monthly mean values over 204 months (17 years) on 2.5◦ × 2.5◦ grids
over the tropics. The contour intervals are 0.2%, from 0.2% to 1.4%.
The smallest value of the contours is 0.2%. The values are shown as
percentages.
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region. The dry biases are strong over climatologically 
warm SST regions, whereas wet biases are seen over 
climatologically cool SST regions. In addition, the dry 
biases are profound for all fields of water vapor, par-
ticularly over the tropical ocean. These systematic dry 
biases were reduced slightly in the AMIP runs, which 
indicates that the SST biases in the CMIP5 coupled 
climate models partially induce the dry biases. Never-
theless, profound dry biases remain over the tropics.

In most of the CMIP5 climate models used in this 
study, rainfall tends to occur under lower PW condi-
tions compared with the observations. This situation 
may cause problems in the reproducibility of rainfall 
characteristics, e.g., rainfall consumes too much of 
the water vapor in the atmosphere. These possible 
mechanisms may explain the systematic dry bias. The 
results imply that the deficiency in simulated PW over 
the tropics is associated with the reproducibility of the 
rainfall characteristics in the CMIP5 models. More-
over, the spatial pattern of dry bias in the CMIP5 is 
very similar to that in AMIP runs, which can suggest 
the unrealistic rainfall characteristics, particularly 
over tropical regions. To understand the dry bias, the 
examinations of the reproducibility of rainfall charac-
teristics on an event by event basis are required.
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