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A cascaded multitask network with
deformable spatial transform
on person search
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Abstract
This article introduces a cascaded multitask framework to improve the performance of person search by fully utilizing the
combination of pedestrian detection and person re-identification tasks. Inspired by Faster R-CNN, a Pre-extracting Net is
used in the front part of the framework to produce the low-level feature maps of a query or gallery. Then, a well-designed
Pedestrian Proposal Network called Deformable Pedestrian Space Transformer is introduced with affine transformation
combined by parameterized sampler as well as deformable pooling dealing with the challenge of spatial variance of person
re-identification. At last, a Feature Sharing Net, which consists of a convolution net and a fully connected layer, is applied
to produce output for both detection and re-identification. Moreover, we compare several loss functions including a
specially designed Online Instance Matching loss and triplet loss, which supervise the training process. Experiments on
three data sets including CUHK-SYSU, PRW and SJTU318 are implemented and the results show that our work out-
performs existing frameworks.
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Introduction

Video surveillance1 is an important part of social security,

whose effectiveness depends on whether the specific per-

son can be found in the recording. As the complexity of

video surveillance networks grows, traditional manual

video monitoring method has been infeasible.2 Apparently,

it’s important to find a way to obtain information from

videos quickly and accurately. Thus, person search under

multi-camera video surveillance network is a very challen-

ging and practical issue. It is of great significance in real-

world applications like security surveillance,3 crowd flow

monitoring4 and human behaviour analysis.5

Nowadays, traditional person search in the field of

computer vision can be divided into two independent tasks,

pedestrian detection and person re-identification (Re-ID),6

and achieve good accuracy in each of the two problems

respectively. However, while the Re-ID works based on
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detection results, it is trained with manually well-calibrated

pedestrian bounding boxes,7,8 which reduces system relia-

bility.9 On the one hand, just as shown in Figure 1, the

person search task in a real-world application is always

searching for the location of a specified pedestrian directly

from the video frame containing several pedestrians as well

as the background, while traditional one searching in the

sequence of cropped pedestrian images. On the other hand,

a network of joint pedestrian detection and person Re-ID

can make full use of the correlation between two tasks and

improve the performance of features.10 And there is still

much room for improvement in the end-to-end pedestrian

search system.

Hence, an integrated network is needed, which can not

only avoid the defects above but also improve the perfor-

mance of feature extraction by making full use of the cor-

relation between two tasks.

Accordingly, in this article, we propose a unified frame-

work named Deformable Spatial Invariant Person Search

Network (DSIPN), a network integrating pedestrian detec-

tion and person Re-ID, to solve the problem of person

search.

First, the design of Deformable Pedestrian Space Trans-

former (DPST) offers a notable performance gain of person

search. On the one hand, as shown in Figure 2, the spatial

transformer equips framework with the ability to deal with

spatial issues by cropping, resizing and rotating images. On

the other hand, deformable pooling augments the spatial

sampling locations in the modules with additional learnable

offsets. What’s more, inspired by Faster R-CNN,11 which

saw heavy use in object detection area, the region proposal

net (RPN)-based Pedestrian Proposal Net with the spatial

transformer is proposed. All these modules form the DPST

to detect pedestrians and generate more robust feature after

eliminating spatial variance.

Next, pair-wise or triplet distance loss functions are

generally used to supervise the training process on per-

son Re-ID research. However, when the data set is of

giant scale, the sampling and computing will be complex

and difficult to perform. Online learning is preferred in

this case. So, we modified Online Instance Matching

(OIM) loss12 which can take into account unlabelled

individuals to improve the performance of matching.

Meanwhile, in order to make the most use of unlabelled

samples, we also designed a strategy to form triplet loss

for comparison.

To sum up, our work provides three main contributions:

First, we proposed an integrated network named DSIPN,

which takes panoramic images as input and outputs fea-

tures for both pedestrian detection and person Re-ID. At

the same time, a DPST is combined to correct the spatial

variance of feature maps extracted from person samples

and get more robust features with deformable pooling;

second, we have improved the OIM loss function for the

detection of person search tasks, which improves the

accuracy and efficiency of the model training process;

third, the triplet loss function for the person search prob-

lem is also proposed, which utilizes the unlabelled indi-

vidual samples and further improves the accuracy of

person search. Finally, notable performance gains are

obtained compared to state-of-art on two public data sets

CUHK-SYSU,13 PRW14 as well as a private data set

SJTU31815 collected by us.

This article is an extended version of our preliminary

work.15 Compared to our previous work, the framework

and training supervision are improved, while more experi-

ments are conducted, obtaining notable performance gains.

Related work

Pedestrian detection is an essential and significant task in a

surveillance system, aiming at detecting and locating

pedestrian from a complex background. Former methods

such as the Integrate Channel Features detector,16 which

Figure 1. The difference between traditional independent person
search task: searching in the sequence of cropped pedestrian
images; and unified person search task: searching for the location
of a specified pedestrian directly from the video frame containing
several pedestrians as well as the background. Figure 2. The spatial transformation in our DSIPN equips the

network with the ability to deal with spatial variance by the way of
cropping, resizing and rotating. DSIPN: Deformable Spatial
Invariant Person Search Network.
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extends the Viola–Jones framework,17 relies on hand-

crafted features with linear classifiers and has been

improved in several ways, including ACF,18 LDCF,19

SCF.20 Driven by the success of R-CNN21 in general object

detection, several deep learning based frameworks have

been proposed. First, it is accomplished by combining

hand-crafted features and boosted classifiers. Hosang

et al.22 use the SCF20 pedestrian detector to propose regions

and an R-CNN for classification; TA-CNN23 employs the

ACF detector18 to generate proposals and trains an R-CNN-

style network, exploits pedestrian and scene attribute labels

to jointly optimize pedestrian detection with semantic

tasks; the DeepParts method24 applies the LDCF detector19

to handle occlusion with an extensive part pool. Deep con-

volutional features are used to make an improvement as

well. CompACT25 proposes a complexity-aware boosting

algorithm on top of hybrid hand-crafted and deep convolu-

tional features. CCF detector26 uses no region proposals.

Zhang et al.27 have no pyramid and are much faster and

more accurate than Yang et al.26 Early R-CNN28 proposes

proposals first and then applies classification and regres-

sion while Faster R-CNN11 is proposed to greatly reduce

the computational complexity and improves the detection

accuracy. Subsequent researches find that the RPN network

is quite effective in extracting pedestrian proposals, while

the followed detection network is not performing well.

Therefore, a series of improvements such as SA-

FastRCNN,29 HyperLearner30 and so on are produced,

basing on Faster R-CNN’s framework. Another well-

known network is the YOLO,31 which considers detection

as a regression problem and returns the targets’ multiple

locations and categories directly in the image. It is fast but

incapable to deal with small and overlapping pedestrian

targets.

Person Re-ID aims at matching the query person among

numerous gallery samples from video sequences or static

images collected from varies scenes.32,33 It is widely used

in video surveillance to perform crime prevention, cross-

camera person tracking and person activity analysis, which

makes it worth researching yet still challenging.13,34–39

Existing works generally focus on three aspects:

some11,40–45 solve the problem with hand-crafted discrimi-

native features; some13,35,46–49 learn high-level features

based on deep learning method; some13,46–48 do innovation

in the structure to gain performance. Two novel layers are

designed by Ahmed et al.46 to obtain relationships between

two input person pair features; some36,37,39,41,50–56 learn

distance metrics for Re-ID; Koestinger et al.50 proposes

KISSME learning from equivalence constraints. Zhang

et al.54 learn a discriminative null space. Meanwhile, some

researches addressed on abnormal images: Li et al.51 learn a

shared subspace across different scales dealing with the

low-resolution person Re-ID problem. Zheng et al.57

focuses on partially occluded images. Traditional deep

learning methods for Re-ID mainly employs pair-wise or

triplet distance loss functions13,46,55,58 to supervise the

training process. Li et al.13 and Ahmed at al.46 input a pair

of cropped pedestrian images and employ a binary verifi-

cation loss function. Ding et al.46,58 exploit triplet samples

to minimize the feature distance between the same person

and maximize the distance between different people. But it

can be considered complex if the data set is of a greater

scale. Another approach is regarding Re-ID problem as a

multi-classification problem and learning to classify iden-

tities with the Softmax loss function,35 which effectively

compares all samples at the same time. Also, as the number

of classes increases, training the large Softmax classifier

matrix would become much slower or even cannot

converge.

Multitask learning is explored to improve the perfor-

mance of some deep learning frameworks for Re-ID,59

salient object detection60 and deep cropping.61 Also in our

work, person search can be regarded as an integrated task

combined two cascaded steps: pedestrian detection and

person Re-ID. Given a query person, person search aims

to match and locate all the same person that have appeared

among a series of whole scene images sequence. A pedes-

trian detection system usually ignores the identification

information of pedestrian samples in popular data sets like

Caltech62 and ETH63 and only classifies the detected boxes

as either positive or negative ones. Thus, simply combining

them can’t get perfect search results once the detection

results are not good enough. There are only a few research-

ers devoting to handle person search task. Xu et al.64 jointly

models the commonness of people and the uniqueness of

the queried person, using a sliding window searching strat-

egy, which leads to low efficiency. Xiao et al.12 and Zheng

et al.14 adopt two-stage strategies by fusing person Re-ID

and detection into an integral pipeline and searching the

interaction between the two tasks as well as overall perfor-

mance. Xiao et al.12 develops an end-to-end person search

framework to jointly handle both aspects in a single CNN

with OIM loss to train the network effectively. In some

researches,13,65–68 the Re-ID gallery only contains manu-

ally cropped pedestrian bounding boxes. Zheng et al.14 con-

tribute a novel large-scale data set PRW for person search

and propose ID-discriminative Embedding (IDE) and Con-

fidence Weighted Similarity (CWS) to improve the perfor-

mance. Neural person search machines (NPSM)10 coins an

LSTM-based attention model, regarding person search as a

detection-free process of gradually removing interference

or irrelevant target persons for the query person.

Proposed method

In this section, we introduce the unified DSIPN framework

which produces features for pedestrian detection and per-

son Re-ID jointly. To share information and propagate gra-

dients better, the DenseNet56 architecture is utilized.

DenseNet69 contains densely connected layers even

between the first layer and the last layer. Such structure

allows each layer in the network to make use of the input
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and propagates the gradients from loss function directly to

the initial layer to avoid gradient vanish. Then a DPST is

incorporated into our model to improve the spatial invar-

iance and extract more robust feature maps. In addition, an

improved OIM loss is applied to supervise the training, as

well as a designed strategy to form triplet samples for

comparison.

Model structure

The unified person search framework consists of four

main steps: image feature generation, pedestrian proposal

generation, region feature extraction (pooling) and finally

recognition(classification) or matching by metric learn-

ing. In our work, just as shown in Figure 3, the DSIPN

model consists of three main parts. The first part is the

Pre-extracting Net which extracts the low-level semantic

features from the input panoramic image. The second part

is the DPST which generates both pedestrian proposals

and proposal features based on the low-level semantic

information, performs deformable spatial transformation

and scales the feature map to a fixed size. Finally, we have

a Feature Sharing Net which further extracts high-level

semantic features for both pedestrian detection and person

Re-ID.

The Pre-extracting Net starts with a 7� 7 convolution

layer (stride ¼ 2), batch normalization, rectified linear unit

and a 2� 2 max-pooling layer (stride ¼ 2). Three dense

blocks with 6, 12 and 24 dense layers are added behind,

respectively. We set the growth layer as 32. In order to

ensure that the input image would be pooled for four times

(by 2� 2 max pooling layer), the initial maximum pooling

layer at the forefront of the pre-extracting is removed. The

resolution of the output feature map with 512 channels is 1/

16 of the original input image.

The DPST part starts with Pedestrian Proposal Net to

generate pedestrian proposals. The following modules are a

spatial transformer and a deformable pooling to implement

deformable spatial transformation to the generated

proposals. The structure of DPST will be further illustrated

in the next subsection.

The Feature Sharing Net is composed of the final dense

block of DenseNet containing 16 dense layers and a growth

rate of 32, followed by a global average pooling layer to

sample the feature map into a 1024-dimensional vector and

three fully connected layers to map the vector to 2D, 8D,

256D respectively for classification (pedestrian or back-

ground), pedestrian position coordinate information and

person Re-ID.

At the end of the model, a Softmax classifier is used

to deal with 2D vector, which outputs the classification

of pedestrian detection. The 8D vector is fine-tuned by

linear regression to generate the corresponding refined

localization coordinates. As for the 256-dimensional

vectors, they will be L2-normalized first and then to

compare with corresponding feature vectors of the target

person for person Re-ID. Here we apply triplet loss and

OIM loss for supervision separately for comparison.

Deformable Pedestrian Space Transformer

As Figure 1 shows, the spatial variance exists between

pedestrian samples, which is caused by viewpoints, occlu-

sions, and resolution, etc.

Though general CNN defines an exceptionally powerful

class of models, it can only guarantee the translation invar-

iance of the input samples. Also, handcrafted design of

invariant algorithms cannot meet the demand of dealing

overly complex transformations, known or unknown, let

alone large unknown ones.

So, in our work, we introduce a new learnable module:

The DPST, which brings our framework the ability to

actively apply deformable spatial transformations on fea-

ture maps, conditional on the feature map itself, without

any extra training supervision or modification to the opti-

mization process.

The first step is applying a Pedestrian Proposal Net to

generate pedestrian proposals. Inspired by Faster R-CNN, k

kinds of scales as well as aspect ratios of anchors (k2 kinds

Figure 3. The structure of DSIPN. DSIPN is a cascaded structure based on DenseNet for processing pedestrian detection and person
Re-ID jointly. It consists of three parts: Pre-extracting Net, DPST and Feature Sharing Net. Low-level features extracted by Pre-
extracting Net are fed into DPST to generate pedestrian proposals and apply deformable spatial transformations. Feature Sharing Net
extracts further down-sampled features to output results for both detection and Re-ID. DSIPN: Deformable Spatial Invariant Person
Search Network; Re-ID: re-identification; DPST: Deformable Pedestrian Space Transformer.
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in total) are present in the DPST to predict the pedestrian

position. We first apply a 3� 3 convolution layer (stride ¼
1) and get a feature map of 512 channel, for every position

in which k2 anchors were predicted. Then the feature map is

feed into three kinds of 1� 1 convolutional layers (stride¼
1) to generate feature maps with channel dimensions of

2k2, 4k2 and 6k2, respectively, which have the same size

as the output feature map of the pre-extracting network.

These three kinds of features generated correspond to bin-

ary categories, location information and spatial transforma-

tion coefficients, respectively.

After these steps, we have predicted k2 candidate boxes

at each position of the feature map. Given the input image

of size H �W , the feature map size of the pre-extracting

network output is approximately 1
16

H � 1
16

W , and the num-

ber of candidate frames generated is approximately
1
16

H � 1
16

W � 9. Assuming H is 560 and W is 1000, the

amount of anchors is 36� 63� 9 � 20k. However, for an

image, it is unnecessary to use all these anchors. Therefore,

according to the predicted category scores and non-

maximum suppression method, 128 candidate anchors are

selected as the final output proposal boxes. Coordinate off-

sets and transformation parameters are selected

correspondingly.

Spatial transformer. Then the DPST will implement spatial

transformation to these proposals with transformation para-

meters generated before. Let the input pedestrian feature

map be U 2 RH�W�C , where W,H and C denotes the width,

height and channel of the input feature map. And the output

feature map is V 2 RH
0�W

0 �C. The spatial transformation is

accomplished by a parameterized sampling grid

Gt ¼ fGt
ig ¼ fðxt

i; y
t
iÞg representing the target location set

of the output feature map. As an element of a genetic fea-

ture map, each output pixel coordinate ðxt
i; y

t
iÞ is computed

by applying a sampling kernel centred at a corresponding

position Gs
i ¼ ðxs

i ; y
s
i Þ in the input source feature map. So

the transformation Tq used in this article is a 2D affine

transformation described as

Gs
i ¼

xs
i

ys
i

� �
¼ TqG

t
i ¼

q11 q12 q13

q21 q22 q23

� � xt
i

yt
i

1

0
B@

1
CA ð1Þ

Here we use normalized coordinates, such that

�1 � xi; yi � 1.

Parameterized sampler. After getting the transformation

parameter, the parameterized sampler is applied with a set

of sampling points Gs
i to sample the origin feature into the

transformed feature.

Since the location of Gs
i ¼ ðxs

i ; y
s
i Þ may not be integers,

in order to perform such a spatial transformation in our

network which allows applying cropping, translation, rota-

tion and scaling operations to the input feature maps, a

sampler must take the set of sampling points Gs
i ¼ ðxs

i ; y
s
i Þ

then output the sampled transformed feature map V. This

can be written as

V c
i ¼

XH

n

XW
m

Uc
nmkðxs

i � m;�xÞkðys
i � m;�yÞ

8i 2 ½1; :::;H 0
W
0 �; 8c 2 ½1; :::;C�

ð2Þ

kðÞ defines the sampling kernel applying image interpola-

tion where �x and �y are the parameters. U c
nm is the value at

location ðn;mÞ in channel c of the input feature, while U c
i is

the output value at location ðxt
i; y

t
iÞ in the target feature map.

In this article, we choose the bilinear sampling kernel,

giving

V c
i ¼

XH

n

XW
m

U c
nmmaxð0; 1� jxs

i � mjÞmaxð0; 1� jys
i � njÞ

ð3Þ

For this kind of sampling, in order to allow back propa-

gation of the loss through the optimization, we define the

gradients with respect to U c
nm and xs

i ; y
s
i

@V c
i

@U c
nm

¼
XH

n

XW
m

maxð0; 1� jxs
i � mjÞmaxð0; 1� jys

i � njÞ

ð4Þ

@V c
i

@xs
i

¼
XH

n

XW
m

Uc
nmmaxð0; 1� jys

i � njÞ

0; jm� xs
i j � 1

1; m � xs
i

�1; m < xs
i

8>><
>>:

ð5Þ

@V c
i

@ys
i

¼
XH

n

XW
m

Uc
nmmaxð0; 1� jxs

i � njÞ

0; jm� ys
i j � 1

1; m � ys
i

�1; m < ys
i

8>><
>>:

ð6Þ

Obviously, for transformation parameters q, @xs
i

@q and
@ys

i

@q
can also be delivered. So, the sampling process is differ-

entiable and able for gradients to flow back to the transfor-

mation parameters q and localization network.

For each proposal, the sampler outputs a transferred

feature map for the proposal as well as the whole scene

image.

Deformable pooling. In order to convert the input regions of

arbitrary size into features with a fixed size, Region of

interest pooling (also known as RoI pooling) is widely used

in regular region proposal-based object detection

methods.11,21,28,70

In spatial invariant person search network (SIPN),15 by

setting the sampled feature V to a fixed size, the parameter-

ized sampler plays a similar role with RoI pooling. How-

ever, the Space Transformer just applied a single kind of
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offset for all sampling points in the feature map, which is

less likely to take advantages of the spatial information.

What’s more, after pedestrian proposal’s generation, the

background information is not well used either.

Therefore, on the basis of regular pooling, a deform-

able pooling containing two stages is designed. At the

first stage, we apply general pooling to the transformed

feature of a proposal. Then, in the second stage, the

pedestrian proposal is regarded as an RoI. During the

pooling, for each bin, an offset is learned, then added to

the bin centre.

For general RoI pooling, given the input transformed

feature map V and a RoI b, the features W is generated as

W ¼ RegionFeatðV ; bÞ ð7Þ

Specifically, in the current RoI pooling practice, RoI b is

divided into k � k bins. After pooling, the output is a k � k

feature map W. For ði; jÞth bin ð0 � i; j < kÞ, we have

Wði; jÞ ¼ 1

Nij

X
p2ði;jÞthbin

VðpÞ ð8Þ

where Nij is the number of pixels in the bin.

Similarly as in equation (8), offsets Dpij
, where

0 � i; j < k, are added to the spatial bins positions then

Wði; jÞ ¼ 1

N ij

X
p2ði;jÞthbin

V ðpþDpij
Þ ð9Þ

For the same reason that Dpij
may not be an integer, it is

implemented via bilinear interpolation as in equation (3).

Figure 4 illustrates how the offsets are obtained. For

every proposal in an image, space transformation is applied

to it to generate the transformed feature. Then a general

pooling is applied to the transformed feature of the pro-

posal, followed by a fully connected layer (FC) which gen-

erates the normalized offsets Dp̂ ij
.

Finally, the offsets Dp̂ ij
are transformed to Dpij

by

element-wise product with the pedestrian’s width and

height, as Dpij
¼ gDp̂ ij

� ðw; hÞ. The FC layer is learned

by back propagation, the gradient with respect to the offset

Dpij
can be computed by

dyði; jÞ
dDpij

¼ 1

Nij

X
p2ði;jÞthbin

dVðpþDpij
Þ

dpij

ð10Þ

here VðpþDpij
Þ is computed via bilinear interpolation as

equation (3). And the gradient w.r.t., the normalized offsets

Dp̂ ij
can be easily obtained via computing derivatives in

Dpij
¼ gDp̂ ij

� ðw; hÞ.
As stated above, in DSIPN, we use such a pedestrian

transformation network to prevent spatial variance of

detected proposals and a deformable pooling to extract

more robust feature for Re-ID in person search.

Loss function

The training of DSIPN can be divided into two main parts:

the training of pedestrian detection and person Re-ID.

For pedestrian detection, the result outputs by two fully

connected layers: classification layer and regression layer,

whose output dimension is 2 and 4, respectively. Therefore,

we use Softmax loss Lcls and smooth L1 loss Lloc together

to supervise detection learning

Ldet ¼ Lcls þ lLloc ð11Þ

where l is the hyper-parameter of the network that balances

the two loss functions.

For person Re-ID, the loss functions can be roughly

divided into classification-based loss functions and

comparison-based loss functions. However, in person

search task, pedestrians are divided into two categories:

one is Labelled Identity who occurs more than once and

can be used as the matching target; the other is Unlabelled

Identity who appears only once in the entire data set. Since

it is not possible to treat Unlabelled Identity as a category,

simply adopting a classification loss function is

unachievable.

To deal with the problem, we propose an improved OIM

loss, which contains directional constraints and is capable

of taking advantages of unlabelled identities features.

Taking OIM for example, when using classification-

based RE-ID loss function for pedestrian search tasks, the

training progress is regarded as a multi-classification task.

However, in the test progress, since there is no pedestrian

intersection between the test set and the training set, the

trained model cannot be used directly in the test set. Hence,

the final fully connected layer should be removed and

pedestrian identification is performed by measuring the

distance or the similarity between them. Thus, training and

testing use different judging methods. So, our work also

considers a unified approach, which uses the Re-ID loss

Figure 4. The details of deformable space transform: For every
proposal generated by Pedestrian proposal Net, first we apply
spatial transform to the origin proposal features extracted from
the whole image feature, then a general pooling layer with an FC
layer to get the offsets of every grid for deformable pooling.
Finally, we apply deformable pooling at the transformed whole
scene image to extract the final size-fixed features of the corre-
sponding proposal by regarding it as a RoI.

6 International Journal of Advanced Robotic Systems



function based on comparison to supervise the pedestrian

search network.

The details of the two algorithms are introduced in the

following subsections. In summary, the overall loss func-

tion used by DSIPN is

L ¼ Lcls þ lLloc þ hLreid ð12Þ

where h is the hyper-parameter of the equilibrium Re-ID

loss function which is set according to the Re-ID loss func-

tion we used.

Improved OIM in person search

OIM loss is first presented by Xiao et al.12 By making full

use of non-labelled individual samples in the data set as

negative samples, and basing on the overall samples instead

of the samples in the current small patch, the loss function

becomes much easier to converge.

For all labelled identities, OIM created a Look-Up

Table (LUT) to store the normalized features of each

pedestrian identity. Assume we have L labelled identities

in the training set, and the final output feature map of

DSIPN has the dimension of D, then we will have LUT

as V 2 RD�L. Each column of the matrix vt represents a

feature vector of a labelled identity. Given an output fea-

ture x 2 RD, the similarity between the labelled identity

and all pedestrians in the data set can be computed as VT x.

If x represents a sample of labelled identity t, the tth col-

umn will be updated as

vt  gvt þ ð1� gÞx ð13Þ

where g 2 ½0; 1�. Then vt will be L2-normalized.

For unlabelled identities, OIM creates a Circular Queue

which stores the normalized features to represent them. As

the length of the queue is specified to Q, it can be defined as

U 2 RD�Q. During propagation, we insert samples of unla-

belled identity x into the tail of the queue while popping the

out-of-date feature out to update Q. Meanwhile, the simi-

larity between the identity vector x and the samples in the

Circular Queue U can be expressed as UT x. Then we super-

vise the training by minimizing distance between same

identities VT x while maximizing UT x.

The DPST will produce 128 proposals during the

process. Although some of the proposals have relatively

high intersection-over-union (IoU) with ground truth

(GT), which seems suitable for updating LUT, the noise

caused by background or missing information still

exists. Their overlapping with the real box is mislead-

ing. Taking such multiple-target candidate boxes as pos-

itive samples may results in identity feature vector’s

disorder and lack of representation.

Therefore, in our work, more restrictive restrictions are

added: just as shown in Figure 5, we only update LUT with

ground truth feature xt, t 2 G. Here t 2 G denotes the

ground truth bounding boxes of the identity t. The update

process of LUT is

vt  gvt þ ð1� gÞx ; if t 2 G ð14Þ

In this way, LUT will be more robust and calculation

cost will be reduced while updating. As Xiao et al.12

declare the probability of x being identified as a sample

of identity i is defined by a Softmax function

pi ¼
expðvT

i xÞXL

j¼1

expðvT
j xÞ þ

XQ

k¼1

expðuT
k xÞ

ð15Þ

while the probability of being a sample of the ith unlabelled

individual in the Circular Queue is

qi ¼
expðuT

i xÞXL

j¼1

expðvT
j xÞ þ

XQ

k¼1

expðuT
k xÞ

ð16Þ

Finally, we maximize the log-likelihood, the improved

OIM loss function is expressed as

Lreidoim
¼ Ex½logðptÞ� ð17Þ

The overall loss function is

L ¼ Lcls þ lLloc þ hLreidoim
ð18Þ

Pedestrian triplet loss in person search

The previous section mentions that person search can be

supervised with the improved OIM loss function. However,

through experiments, we find that changing the size of

the Circular Queue or even removing it has little effect

on the result of person search, which means that the design

Figure 5. The strategy of improved OIM loss function. There are
four kinds of bounding boxes in a whole scene image: GT is used
to update the Look-up Table by equation (13); proposals regarded
as a sample of labelled identity is used to compute the similarity
and loss for back propagation; proposals regarded as a sample of
unlabelled identity is going to be inserted at the tail of the Circular
Queue while popping the head feature out; proposals regarded as
a background is ignored in the loss function. OIM: Online Instance
Matching; GT: ground truth.
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of the Circular Queue does not make full use of unlabelled

individuals, and it necessitates a number of redundant

learnable parameters. To make better use of unlabelled

identities in person search data set, we propose a triplet

loss that regards all unlabelled identities as negatives.

The triplet loss function is first proposed by Schroff

et al. in FaceNet71 and has been widely used in image

retrieval tasks. Chen et al.72 also explored triplet loss to a

deep quadruplet network for person Re-ID. It is formulated

as following

Ltriplet ¼
X

i

½Dðxa
i ; x

p
i Þ � Dðxa

i ; x
n
i Þ þ m�þ ð19Þ

here xa
i ; x

p
i ; x

n
i represents feature of an anchor image of a

specific person, a positive image of the same person and a

negative image of any other person, respectively. ½x�þ rep-

resents maxð0Þ. In FaceNet,71 Dðx; yÞ ¼ jjx� yjj22. And in

some Re-ID works,10,14 cosine similarity is used to measure

the similarity between features of target person and candi-

date person, contrary to the distance measurement like

Euclidean distance, which is used in our experiment

Dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

ðxj � yjÞ2
s

ð20Þ

However, different from normal face recognition or per-

son Re-ID, we are not sure how many pedestrians there in a

whole scene image so the pedestrians cannot be directly

utilized for triplet or divided into batches of triplets. To

solve this problem, we developed a strategy that utilizes

the whole scene image to form a triplet. Specifically, as

shown in Figure 6, we select a whole scene image first to be

an anchor image and choose one pedestrian with its GT

location from the image to be an anchor pedestrian called

query. Then for the positive gallery, we select images

which contain samples of the same identity as the query.

The rest images make up the negative gallery. For each

query image, we traversed each image from the positive

gallery as a positive sample, along with a randomly chosen

image from the negative gallery as a negative sample.

Finally, we collect the output pedestrian proposals, divide

them into positive samples and negative samples according

to their real labels to form triplets. The triplet loss function

of the current network parameters is defined as

Ltrpð!Þ ¼
X
p; n

ia ¼ ip 6¼ in

½mþ Da;p � Da;n�þ ð21Þ

where the parameter ! that minimizes Ltrpð!Þ is to be esti-

mated during optimization. ia; ip; in represent the identity

label (person ID) of the anchor samples, positive samples

and negative samples, respectively. Da;p and Da;n are cor-

responding distances. m is a manually designed margin

between them which means Da;n is supposed to be at least

m bigger than Da;p. However, simply throwing all samples

may cause explosive calculation. For an anchor, assuming

there are Np positive samples and Nn negative samples, then

we will have N pN n triplets. Therefore, we apply a strategy

of hard mining with samples to find the ‘hardest’ samples

whose loss would be computed to optimize the net work.

‘Hardest’ positive sample p	 is the positive sample with the

largest distance among all positive samples from the anchor

pedestrian, while ‘hardest’ negative sample n	 is the closest

negative sample. The final loss function is defined as

L ¼ Lcls þ lLloc þ hLreidtrp
ð22Þ

where

Lreidtrp
¼ ½mþ Da;p	 � Da;n	 �þ ð23Þ

Experiments

To demonstrate the effectiveness of our approach and study

the impact of various factors on person search performance,

we conduct several comprehensive experiments on three

person search data sets.

In this section, we first introduce the data sets we used.

Then evaluation metrics and training settings are shown in

the next two subsections. In the following subsection, we

reveal the performance of our DSIPN and compare our

work with previous separate and joint works for person

search. At last, we discuss the influence of various factors,

including DPST, improved OIM, triplet loss and different

backbone network structures.

Data sets

Currently, the problem of person search is not widely con-

sidered. The images in traditional person Re-ID data sets

Figure 6. The strategy of triplet loss: (1) A whole scene image is
selected first to be a query image and a query with its GT location
from the image is chosen subsequently to be an anchor pedes-
trian. (2) Images which contain samples of the same identity as the
query make up positive gallery with positive samples to be tra-
versed. (3) The rest images make up the negative gallery, from
which a hardest negative sample is finally chosen. GT: ground
truth.
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are cropped in advance, makes them unable to be utilized in

person search. Our work is tested on two public person

search data sets: CUHK-SYSU,13 PRW14 and a private data

set SJTU31815 collected by ourselves.

CUHK-SYSU is composed of two parts: pedestrian pic-

tures in urban area taken by hand-held cameras and screen-

shots of movies. It contains 18,184 images with 96,143

pedestrians bounding boxes, 8432 labelled identities in

total. We take 5532 identities as the training set. The left

is used for testing. In CUHK-SYSU, pedestrian samples

with most parts blocked by obstacles or poor postures (sit-

ting, kneeling, etc.) are not labelled. Additionally, the same

pedestrian with a large change in appearance (such as dif-

ferent clothes or decorations) is labelled as different iden-

tities. Samples with an image of height less than 50 pixels

are not labelled as well, due to identification difficulty. In

conclusion, this data set is quite suitable for person search.

PRW (Person Re-identification in the Wild) data set is

built from 10 h of surveillance video recorded in Tsinghua

University. Five 1080 � 1920 HD and one 576 � 720 SD

cameras are used. It contains 11,816 images with 43,110

pedestrians bounding boxes, 933 labelled identities in total.

We take 483 identities as the training set. The left 450

identities are used for testing. Multiple-source cameras and

diverse filming angles bring challenges when applying.

There are fewer pedestrians in this data set, but more sam-

ples for each individual. However, if different cameras are

taken as another data dimension, searching target range can

be expanded to 2057. The person recorded in the current

camera will be searched in images taken by different cam-

eras. This cross-camera searching is closer to the actual

application scenario, while much more difficult.

SJTU318 is another large-scale person search data set

collected by ourselves. It is transferred from raw uptown

surveillance videos. There are twelve 1200 � 1600 HD

cameras in total. As shown in Figure 7, these twelve cam-

eras distribute on the gates and roads of the uptowns. We

not only sampled daytime surveillance videos but also

involved some nightly scene. Our data set consists of

14,610 whole scene images including 63,755 pedestrian

bounding boxes, among which 13,067 pedestrians are

annotated with 621 IDs. We picked 244 identities for train-

ing and 202 identities for testing. There are samples of the

same identity wearing different clothes or hairstyle. So, it is

a rather challenging data set due to the lower resolution of

the person in the image, changes of light, scenes and pedes-

trian appearances. In general, the data set is much closer to

real-life scenarios.

Evaluation metrics

Our work divides the above three data sets into training sets

and test sets, ensuring no same identities shared. During

testing, a target pedestrian picture or panoramic picture

with target pedestrian location information is given, called

a query. Our target is to match all the present identities of

query in the gallery of whole scene images as well as detect

every other pedestrian. Considering the difficulty of the

experiment, we set multiple gallery sizes to evaluate the

performance of person searches for each data set: 100 for

CUHK-SYSU and SJTU318, 1000 for PRW. The following

results are reported using the protocol with such gallery

sizes if not specified.

Similar to the person Re-ID task, person search is a

branch of retrieval task. So, we use the Cumulative Match-

ing Characteristics (CMC top-K) and mean Average Preci-

sion (mAP) to evaluate the performance of our framework.

CMC top-K calculates the probability that the results can

do correct prediction which overlaps the GT with IoU� 0.5

within the top-K predicted bounding boxes. An average

precision (AP) is computed for each target person image

based on the precision–recall curve. mAP is the average of

APs and focuses on the entire output list, which means that

with higher mAP the last one of the positive samples is

more likely to be placed in the front of the list.

Training settings

The experiments are all implemented on PyTorch with

Python3.6, the operating system is Ubuntu16.04 with

1080Ti. We use the Stochastic Gradient Descent to train

DSIPN; random horizontal flipping is used to apply data

augmentation; batch size is set to 1. We initialize the learn-

ing rate to 0.0001 then reduce it to 1
10

of the original after the

whole data set being iterated for 3 times and 6 times; the

entire data set is trained and iterated 10 times. VGG, ResNet

and DenseNet are used as backbone network for comparison.

Figure 7. Several samples from our private data set SJTU318; (a)
Outdoor cameras are distributed on the gates and roads of the
uptowns, which brings changes of light and scene. (b) Challenging
pedestrian samples in the data set, some pairs of pedestrians have
different appearances.
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When experimenting with the performance of improved

OIM, we set different sizes of Circular Queue: 5000 for

CUHK-SYSU, 500 for PRW and 250 for SJTU318.

Performance of DSIPN

In order to illustrate the robustness of DSIPN, we test it

against some existing works.

When dealing with person search problem, some choose

to use a two-phase model, which detects pedestrian first,

Re-ID later. ACF, CCF and Faster CNN (FRCN) are used

in the first phase. DenseSIFT-ColorHist, Bag of Words

(BoW), and Local Maximal Occurrence (LOMO) are used

in the second phase. Distance metrics involved are Eucli-

dean, Cosine Similarity, KISSME and XQDA. Integrated

models similar to our work are proposed as well. Such as

one based on Faster R-CNN and ResNet-50 proposed by

Xiao et al.,12 one adding artificial design features proposed

by Yang et al.,9 and another attention model based on

LSTM proposed by Liu et al.10

Tables 1 and 2 show the performance and comparison of

DSIPN with improved OIM loss on CUHK-SYSU and

PRW with CMC top-1 and mAP, respectively. Especially,

in Table 1, we also use the GT bounding boxes as the

results of a perfect detector in CUHK-SYSU data set. The

results show that the performance of our cascaded frame-

work is extremely close to the results even with the perfect

detector, which further proved that the performance of

detection has little effect.

Meanwhile, as shown in Table 3, we measure the detec-

tion ability by recall (%) and AP (%) on the three data sets

too. DSIPN outperforms previous frameworks. It also has a

good detection performance as well, which demonstrates

that by spatially transforming and deformable pooling fea-

ture maps of pedestrians, the performance of person search

can be improved.

Comparison and impact of factors

Impact of DPST. The DSPT from our work achieves the

same function as RPN network in Faster R-CNN with a

sampler capable of deformable spatial transforming. At the

same time, the pedestrian feature map is spatially trans-

formed to prevent or correct the spatial variation caused

Table 1. Searching performance of DSIPN with improved OIM
loss on CUHK-SYSU data set with CMC top-1 and mAP
comparing with previous related work.

CCF ACF FRCN GT

CMC top-1 (%)
DSIFT þ Euclidean12 11.7 25.9 39.4 45.9
DSIFT þ KISSME12 13.9 38.1 53.6 61.9
BoW þ Cosine12 29.3 48.4 62.3 67.2
LOMO þ XQDA12 46.4 63.1 74.1 76.7
IDNet12 57.1 63.0 74.8 78.3
OIM (baseline)12 – – 78.7 80.5
Yang et al.9 – – 80.6 –
NPSM10 – – 81.2 –
SIPN15 – – 84.0 84.2
Ours – – 84.1 84.3

mAP (%)
DSIFT þ Euclidean12 11.3 21.7 34.5 41.1
DSIFT þ KISSME12 13.4 32.3 47.8 56.2
BoW þ Cosine12 26.9 42.4 56.9 62.5
LOMO þ XQDA12 41.2 55.5 68.9 72.4
IDNet12 50.9 56.5 68.6 73.1
OIM (baseline)12 – – 75.5 77.9
Yang et al.15 – – 77.8 –
NPSM10 – – 77.9 –
SIPN15 – – 84.2 84.5
Ours – – 84.5 84.6

DSIPN: Deformable Spatial Invariant Person Search Network; OIM:
Online Instance Matching; GT: ground truth; CMC: Cumulative Matching
Characteristics; map: mean Average Precision; BoW: Bag of Word;
LOMO: Local Maximal Occurrence; DSIFT: Dense Scale-invariant feature
transform. The best results are marked in bold.

Table 2. Searching performance of DSIPN with improved OIM
loss on the PRW data set with CMC top-1 and mAP comparing
with previous related work.

Method mAP (%) Top-1 (%)

DPM-Alex þ LOMO þ XQDA10 13.0 34.1
DPM-Alex þ IDEdet

10 20.3 47.4
DPM-Alex þ IDEdet þ CWS10 20.5 48.3
ACF-Alex þ LOMO þ XQDA10 10.3 30.6
ACF-Alex þ IDEdet

10 17.5 43.6
ACF-Alex þ IDEdet þ CWS10 17.8 45.2
LDCF þ LOMO þ XQDA10 11.0 31.1
LDCF þ IDEdet

10 18.3 44.6
LDCF þ IDEdet þ CWS10 18.3 45.5
OIM12 21.3 49.9
NPSM10 24.2 53.1
SIPN15 28.2 57.8
Ours 34.3 68.4

DSIPN: Deformable Spatial Invariant Person Search Network; OIM:
Online Instance Matching; CMC: Cumulative Matching Characteristics;
map: mean Average Precision; LOMO: Local Maximal Occurrence; CWS:
Confidence Weighted Similarity; IDE: ID-discriminative Embedding; DPM:
Deformable Parts Model. The best results are marked in bold.

Table 3. Detection performance of DSIPN on CUHK-SYSU,
PRW and SJTU 318 data sets with recall and AP comparing with
previous related work.

CUHK-SYSU PRW SJTU318

Recall
(%)

AP
(%)

Recall
(%)

AP
(%)

Recall
(%)

AP
(%)

OIM (baseline)12 79.49 74.93 90.20 84.26 73.97 60.03
SIPN15 78.45 75.14 89.91 85.60 72.46 59.98
Ours 79.54 75.35 89.64 85.72 73.91 61.60

DSIPN: Deformable Spatial Invariant Person Search Network; OIM:
Online Instance Matching; AP: average precision. The best results are
marked in bold.
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by different resolutions or viewing angles. And with

deformable pooling, more robust feature vectors which

facilitate the determination of pedestrian identity would

be extracted. The baseline model12 proposed by Xiao

et al. is applied with OIM loss and ResNet-50. In Table

4, we compare the baseline model12 without DPST with our

model. Here backbone network ResNet-50 and OIM loss

were applied in our model in order to demonstrate the

compact of DPST. The comparison accomplished on PRW

and CUHK-SYSU data sets shows that DPST makes a

notable improvement on the performance of the network.

Comparison of different backbone networks. DenseNet-121 is

used as backbone network in our work. To analyse the

influence of different network structures on pedestrian

searching performance, we also applied VGG16, ResNet-

34 and ResNet-50 as backbone. VGGNet is very appealing

because of its uniform architecture. ResNet (Residual

Neural Network) can easily enjoy accuracy gains from

greatly increased depth, producing high-quality results.

And in DenseNet, all layers have direct access to every

feature map from all preceding layers, while exhibiting

no optimization difficulties. We compare the performance

of these architectures to extract deeper features for person

search. Table 5 shows the comparison between multiple

backbone network structures on PRW data set, where

DPST is combined in the backbone. The results show that

DenseNet outperforms the others.

Loss function comparison. Two loss functions are conducted in

our work: an improved OIM loss function and triplet loss

function. Tables 6 and 7 show the experiment results of the

two loss functions with OIM loss function, both of which

contribute to the person search task. Moreover, during the

training process, with improved OIM loss, the optimization

is easier to converge. Triplet loss takes more time, but it has a

slightly higher precision on the PRW and SJTU318, and the

performance on CUHK-SYSU is similar to that of OIM loss.

Conclusion

In this article, we propose a DenseNet-based cascaded net-

work structure DSIPN to solve the problem of person

search. A DPST is introduced in DSIPN, in which pedes-

trian proposals are generated and pedestrian feature maps

are spatially transformed. With the deformable pooling

after it, more robust and spatially invariant features are

extracted in the subsequent network. We also compare two

Table 4. The contribution of DPST: Comparison between OIM
baseline and DPST (with OIM loss function and Resnet50 for
backbone) on PRW and CUHK-SYSU data sets.

mAP
(%)

Top-1
(%)

Top-5
(%)

Top-10
(%)

PRW OIM (baseline)12 21.3 49.9 72.9 81.5
DSIPN 33.4 64.6 83.7 89.6

CUHK-SYSU OIM (baseline)12 75.5 78.7 82.1 85.8
DSIPN 83.7 80.0 84.4 88.3

DPST: Deformable Pedestrian Space Transformer; DSIPN: Deformable
Spatial Invariant Person Search Network; OIM: Online Instance Matching;
mAP: mean Average Precision.The best results are marked in bold.

Table 5. Comparison of searching performance of DSIPN
between multiple backbone network structures on PRW and
CUHK-SYSU data sets.

mAP
(%)

Top-1
(%)

Top-5
(%)

Top-10
(%)

PRW VGG16 21.8 33.3 63.8 75.3
Res34 32.9 79.1 82.5 85.2
Res50 34.1 63.6 84.3 89.9
Dense121 34.31 68.35 86.92 91.69

CUHK-
SYSU

VGG16 44.4 42.4 64.5 72.0

Res34 58.7 59.7 76.3 81.5
Res50 83.9 80.9 85.1 88.9
Dense121 84.49 84.10 88.34 90.76

DSIPN: Deformable Spatial Invariant Person Search Network; mAP: mean
Average Precision. The best results are marked in bold.

Table 6. Comparisons of searching performance of DSIPN
between using OIM loss and our improved OIM loss function
for supervision on PRW, CUHK-SYSU and SJTU318 data sets.

mAP
(%)

Top-1
(%)

Top-5
(%)

Top-10
(%)

PRW OIM loss12 33.6 55.7 75.2 81.9
Improved OIM 34.3 68.4 87.0 91.7

CUHK-SYSU OIM loss12 84.2 83.9 87.5 90.6
Improved OIM 84.5 84.1 88.3 90.8

SJTU318 OIM loss12 31.2 66.0 72.6 74.5
Improved OIM 32.3 67.8 76.7 78.7

DSIPN: Deformable Spatial Invariant Person Search Network; OIM:
Online Instance Matching; mAP: mean Average Precision.The best results
are marked in bold.

Table 7. Comparisons of performance of DSIPN between using
OIM loss and triplet loss for supervision on PRW, CUHK-SYSU
and SJTU318 data sets.

mAP
(%)

Top-1
(%)

Top-5
(%)

Top-10
(%)

PRW OIM loss12 29.6 55.7 75.2 81.9
Triplet loss 34.5 68.8 87.9 93.1

CUHK-SYSU OIM loss12 84.2 83.9 87.5 90.6
Triplet loss 84.3 83.8 87.6 89.6

SJTU318 OIM loss12 31.2 66.0 72.6 74.5
Triplet loss 34.6 69.1 77.2 79.2

DSIPN: Deformable Spatial Invariant Person Search Network; OIM:
Online Instance Matching; mAP: mean Average Precision.The best results
are marked in bold.
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loss functions: improved OIM loss, which reduces the

amount of computation while considering unlabelled sam-

ples; triplet loss, which makes better use of unlabelled

samples in the data set. All in all, DSIPN is able to solve

the person search problem end-to-end, and simultaneously

output the results of pedestrian detection and person Re-ID.

Its performance is also improved compared to state-of-art

works.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was supported in part by National Natural Science Founda-

tion of China (NSFC, grant nos 61771303 and 61671289), Science

and Technology Commission of Shanghai Municipality (STCSM,

grant nos 17DZ1205602 and 18DZ1200102) and SJTU-Yitu/

Thinkforce Joint laboratory for visual computing and application.

Director Fund of PSRPC.

ORCID iD

Yuan Hong https://orcid.org/0000-0001-7333-4499

References

1. Wang X. Intelligent multi-camera video surveillance: a

review. Pattern Recogn Lett 2013; 34(1): 3–19.

2. Loy CC, Xiang T, and Gong S. Multi-camera activity corre-

lation analysis. In: 2009 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR 2009),

Miami, Florida, USA, 20–25 June 2009, pp. 1988–1995.

3. Gong S, Cristani M, Loy CC, et al. The re-identification

challenge. In: Gong S, Cristani M, and Yan S, et al. (eds)

Person re-identification. London: Advances in Computer

Vision and Pattern Recognition, Springer, 2014, pp. 1–20.

4. Zhang J, Zheng Y, Qi D, et al. Predicting citywide crowd

flows using deep spatio-temporal residual networks. Artif Int

2018; 259: 147–166.

5. Gong S and Xiang T. Visual analysis of behaviour – from

pixels to semantics. London: Springer, 2011.

6. Gong S, Cristani M, Yan S, et al. (eds) Person re-identifica-

tion. London: Advances in Computer Vision and Pattern Rec-

ognition, Springer, 2014.

7. Chen S, Guo C, and Lai J. Deep ranking for person re-

identification via joint representation learning. IEEE Trans

Image Proc 2016; 25(5): 2353–2367.
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