
Sequential Integration of Fuzzy Clustering

and Expectation Maximization for Transcription

Factor Binding Site Identification

ALI YOUSEFIAN-JAZI1 and JINWOOK CHOI2

ABSTRACT

The identification of transcription factor binding sites (TFBSs) is a problem for which
computational methods offer great hope. Thus far, the expectation maximization (EM)
technique has been successfully utilized in finding TFBSs in DNA sequences, but inappro-
priate initialization of EM has yielded poor performance or running time scalability under a
given data set. In this study, we used a sequential integration approach that defined the final
solution as the set of solutions acquired from solving objectives in a cascade manner to
integrate the fuzzy C-means and the EM approaches to DNA motif discovery. The new
method is explained in detail and tested on the chromatin immunoprecipitation sequencing
(ChIP-seq) data sets for different transcription factors (TFs) with various motif patterns.
The proposed algorithm also suggests an efficient process for analyzing motif similarity to
known motifs as well as finding a target motif. A comparison of results with those of the well-
known motif-finding tool, MEME-ChIP, shows the advantages of our proposed framework
over this existing tool. Experimental results show that we were able to find the true mo-
tifs for all TFs, and that the motifs found by our proposed algorithm were more similar
to JASPAR-known motifs for the STAT1, GATA1, and JUN TFs than those found by
MEME-ChIP.

Keywords: chromatin immunoprecipitation sequencing, expectation maximization, fuzzy C-means,

motif discovery.

1. INTRODUCTION

Transcription factor binding sites (TFBSs), motifs, which generally reside in the noncoding regions

of the DNA, play important roles in regulating the gene expression. One of the major challenges

biologists face today is the identification of such binding sites. High-throughput assays generate significant

amounts of information on the sequence preferences of transcription factors (TFs). Chromatin immuno-

precipitation sequencing (ChIP-seq) technology ( Johnson et al., 2007) identifies ‘‘peaks’’ of (direct or

indirect) binding by the ChIP-ed factors. Moreover, ENCODE (Consortium, 2012) is a database that has
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made binding site sequences available for hundreds of different TFs. Because ChIP-seq experiments are slow,

expensive, and unable to find exact binding site locations, they cannot find patterns that are common across

all of the positive binding sites to give insight into why TFs bind to those locations (Chen et al., 2010). On the

contrary, good computational methods can potentially provide high-quality prediction of binding sites and

reduce the time needed for experimental verification. Thus, there is a need for large-scale computational

methods for accurate binding site classification and clear TFBS pattern representation.

The problem of de novo identification of TFBSs has been widely studied, and motif discovery algo-

rithms have been categorized as either search based or probabilistic. Search-based algorithms infer motifs

as consensus sequences, while algorithms based on probability infer motifs through position frequency

matrices (PFMs), which specify the frequency of nucleotides for each position in the binding site. While

the search-based methods are appropriate for finding short motifs, PFMs provide more information on the

TF’s binding specificity (Das and Dai, 2007). Bailey and Elkan (1994) presented a probabilistic motif

discovery program (MEME) that uses the expectation maximization (EM) technique to infer PFMs. It uses

a probabilistic model of the input data set and selects parameter values for the model that maximize the

likelihood value. Since its initial introduction in 1994, it has gone through several versions.

The MEME-ChIP tool (Machanick and Bailey, 2011), which is built to analyze ChIP-seq peak regions,

attempts to utilize MEME and DREME as two motif discovery algorithms and compare the results with a

database of known TF motifs using the TOMTOM (Gupta et al., 2007) algorithm. MEME scales poorly with

large data sets, and DREME is able to detect only very short motifs as a search-based algorithm. EXTREME

(Quang and Xie, 2014) is also one of the latest versions that uses an online EM algorithm to improve

MEME’s performance in dealing with large data sets. EXTREME can discover motifs in a practical amount

of time without discarding any sequences that could be a benefit for infrequent motif discovery. Recently,

Ibrikci and Karabulut (2010) proposed fuzzy C-means (FCM) for motif discovery and tested their algorithm

against DNA sequences extracted from the genome of Saccharomyces cerevisiae and Escherichia coli.

Today, with the development of new techniques and algorithms, new approaches to making algorithms,

such as integrating existing algorithms, have become more popular. The global objective and sequential

approach are the two frameworks exploiting existing integration approaches. In the global objective ap-

proach, a single global objective is defined using a combination of multiple objectives, and then the

solution is defined as an equilibrium point of the single objective (Gennert and Yuille, 1988). However,

sometimes merging the different objectives into a global objective and computing the actual weights are

hard to achieve, problematic, or computationally expensive. In the sequential approach (Xi and Fenton,

1993), the final solution is defined as the set of solutions acquired from solving the objectives in a cascade

manner. In this way, each module is permitted to influence other modules and take advantage of the benefits

of each module, which means a multiple-objectives problem is transformed into a stage-wise single-

objective problem.

The rationale behind the fuzzy clustering lies in the reality that an object or data point could be assigned

to different classes by degree of membership (Asyali and Alci, 2004). On the contrary, it has been

demonstrated that initializing the parameters of EM with different values has a significant effect on

performance (Chen, 2006). In this article, the sequential integration of fuzzy clustering and EM techniques

(SIFEM) has been proposed as a de novo motif discovery algorithm. SIFEM identifies novel sequence

patterns (motifs) in the ChIP-seq regions that may represent direct or indirect TFBSs. We utilize a thorough

quantitative methodology to examine the potential values and limitations of the proposed method. In motif

enrichment analysis, we consider both standard and central enrichments of discovered motifs for finding the

direct DNA-binding affinity of the ChIP-ed TF, and in motif identification we compare the ab initio motifs

to known TF binding motifs as well. As a result, our algorithm is tested with five different ChIP-seq

experiment data sets and had some improvements over the previous existing work. The source codes along

with some ChIP-seq data used in this study can be found in the Supplementary Material.

2. METHODOLOGY

FCM and EM are the most popular clustering algorithms for solving several problems in computational

biology (Do and Batzoglou, 2008; Jin and Wang, 2009). Both methods include iterative steps repeated until

a satisfactory objective is reached. In FCM, a membership value for each input is first calculated, and then,

the center of each cluster with the given vectors is updated by using the membership values as weighting
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factors in the next step. Likewise, the EM technique iteratively improves the parameters in the E-step and M-

step. A sequential integration method is proposed here to take advantage of the benefits of both methods,

casting motif identification as a stage-wise single-objective problem. Let Y = (Y1, Y2,.,YN) denote the data set

of ChIP-seq peaks, where N is the number of sequences in the data set. The proposed method divides the data

set into n (overlapping) subsequences of length W, then converts each subsequence to a W · 4 binary array.

We refer to this new data set X = (X1, X2,.,Xn) as the input vectors, and c = {1,.,C0} represents the

cluster centers. The membership of each input Xn to each cluster C0 in (t + 1)th iteration is given in Equation

(1), and can be considered the posterior probability by adding the following constraint on the total

membership values of an individual input vector (Asyali and Alci, 2004):

n(t + 1)
ij =

1

(d(t)
ij

)
2

� �1=(q - 1)

PC0
j = 1

1

(d(t)
ij

)
2

� �1=(q - 1)
‚
XC0
j = 1

nij = 1‚ t � T = 1‚ 2‚ . . . ‚ t1f g (1)

where dij corresponds to the distance between the input and the cluster center, and q denotes the fuzziness

value. In this problem, dissimilarity between the DNA subsequences and position probability matrices

(PPMs) is given as follows:

d(t)
ij = 1 -

X
k2A

Xw

s = 1

I(xi‚ s‚ k)xj‚ s‚ k‚ A = A‚ G‚ C‚ Tð Þ (2)

and

I(k‚ a) = 1
0

� if a = k
otherwise

where xj,s,k is probability of nucleotide k at position s of cluster j in the PPM. Once the membership matrix

has been constructed, the PPMs can be updated according to Equation (3). Ibrikci and Karabulut (2010)

updated each cluster center with a selected group of subsequences by selecting some elements from the

membership matrix using a certain threshold rather than with all the subsequences, resulting in better

predictive performance. Thus, the function Sel(xi) is utilized in updating the cluster centers:

c(t + 1)
j =

Pn
i = 1

(n(t + 1)
ij )

q
Sel(xi)

Pn
i = 1

(n(t + 1)
ij )

q
(3)

Sel(xi) = nij 2 top(sort(nij)‚ B)! nij

otherwise! 0

� �

where B stands for the number of top subsequences to be considered and top(Z,B) shows a subset of the

first B samples of Z. In this algorithm, n and c are iteratively improved until the change (Euclidean

distance) in nij falls below a threshold (d = 10-6) or reaches the maximum number of iterations

(t1 = 100).

In the next step, the expected number of times nucleotide k appears at position s in cluster j is calculated,

and then, the position probability matrix elements are updated as follows:

c(t + 1)
j‚ s‚ k =

Xn

i = 1

n(t)
ij I(Xi‚ s‚ k)‚ fork 2 A‚ s = 1‚ 2‚ . . . ‚ W‚ t � T 0 = t1‚ t1 + 1‚ . . . ‚ t2f g (4)

f (t + 1)
j‚ s‚ k =

c(t + 1)
j‚ s‚ k + bkP

k2A

(c(t + 1)
j‚ s‚ k + bk)

(5)

where bk are pseudocounts to prevent any nucleotide frequency fj,s,k from becoming 0. After calculating the

PPMs, the membership values with hj = (fj,1,fj,2,.,fj,W) are updated.
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n(t + 1)
ij =

Pr (Xijh(t + 1)
j )k(t + 1)

j

PC0
l = 1

Pr (Xijh(t + 1)
l )k(t + 1)

l

(6)

k(t + 1)
j =

Xn

i = 1

n(t)
ij

n
(7)

where kj parameterizes the probability that any subsequence with the length of W is generated by the PPM

of jth cluster.

SIFEM iteratively minimizes the following energy function, E, which sequentially integrates the ob-

jective functions for both FCM and EM. The above parameters are iteratively improved until

kE(t + 1Þ - E(t)k < d.

E(t) =
XC

j = 1

Xn

i = 1

nq
ij d

(t)
ij -

XC

j = 1

Xn

i = 1

n(t)
ij log ( Pr (xi j h(t)

j )k(t)
j (8)

where t E T = {1,2,.,t1} and t E T 0 = {t1, t1 + 1,., t2} for the first and second summation. Moreover,

kT X T 0k = 1 and k.k denotes the cardinality. The first and second terms are minimizing the total dissim-

ilarity and log likelihood as the objective functions for FCM and EM, respectively. Table 1 shows the

complete scheme of the algorithm.

In conclusion, the procedure and parameters for SIFEM can be summarized in the following steps. First,

the number of clusters (C0 = 10), membership values (x), and pattern length (W, with the values shown in

Table 2) are initialized. Then, for each subsequence Xi (i = 1,., n), the algorithm calculates the mem-

bership values (nij, j = 1,., C0) with the specified fuzziness value (q = 2) and allows the inputs to be a

member of any class with a certain possibility or ‘‘degree of membership,’’ a value between 0 and 1. In the

next step, PPMs (cj) are updated with a selected group of subsequences based on a certain threshold.

Performance improvements were seen by choosing a value of 350 for parameter K that was close to the

number of TFBS instances residing within the data sets used in this study. Finally, the PPM elements for

each cluster, fj,s,k, and the probability of each cluster, (kj), are updated, and the above process repeated until

the termination criteria are met.

3. RESULTS

3.1. Experimental setup

We used five TF ChIP-seq experiments from the ENCODE project (Consortium, 2012) to benchmark the

performance of our model. The ChIP-Seq data included analyses of STAT1, GATA1, JUN, NFYA, and

Table 1. Pseudocode for SIFEM Algorithm

SIFEM algorithm

Input: C0, x, X

Output: g
1. repeat

2. if t < t1
3. updating membership values, nij, in view of Eq. (1)

4. updating the distance measure, dij, in view of Eq. (2)

5. updating PPM for each cluster, cj, in view of Eq. (3)

6. else

7. updating cj,s,k in view of Eq. (4)

8. updating PPM elements, fj,s,k, in view of Eq. (5)

9. updating membership values, nij, in view of Eq. (6)

10. updating kj in view of Eq. (7)

11. end

12. until kE(t+1) – E(t)k < d or t > t2

PPM, position probability matrix.
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REST performed on the K562 cell line, and peaks were already called and organized into BED files. The

details of the data sets used for this study are given in Table 2. The motifs are detected as simple or

complex patterns that include short or long motifs with highly or slightly conserved cores (Das and Dai,

2007). Therefore, the selection of motif patterns from a variety of TF families of different lengths within

data sets of different sizes allows us to measure the performance of the proposed algorithm. We processed

the data using the 101 bp sequences centered at the point source called for each ChIP-seq peak and using

shuffled sequences with matching dinucleotide composition as the background set. This is the same data

preprocessing procedure used in most motif discovery work (Quang and Xie, 2014; Alipanahi et al., 2015).

3.2. Comparison methodologies

As MEME-ChIP is one of the most popular packages used to analyze ChIP-seq ‘‘peak regions’’ for

evaluation in recent motif discovery studies (Weirauch et al., 2013), we exploited it for the evaluation and

comparison of our results. It has been a valuable tool still in use for the ongoing challenge of identifying

regulatory elements and runs two complementary motif discovery algorithms on the input data: MEME and

DREME. In this article, both quantitative and visual measures are utilized for result evaluation and

comparison. p Values are used as quantitative measures to show PPM enrichment and similarity. Moreover,

sequence logo and Two Sample Logo are also two visual measures analyzed in this section for evaluation

of results.

In SIFEM, we trim positions for each discovered motif that show low levels of probability in the start

and end of the PPM before calculating its p value. The p values are calculated using the AME package

from the MEME-suite (Bailey et al., 2009). This motif enrichment significance measure is the number of

motifs with the same width and number of occurrences that could have generated an equal or higher log

likelihood ratio if the data set had been generated according to the background model. The usual way is

to assume the binding affinity of the most highly ‘‘enriched’’ motif as the direct DNA-binding affinity of

the ChIP-ed TF (Bailey and Elkan, 1994; Quang and Xie, 2014); this can be problematic in some cases,

including instances of poor ChIP-seq data quality due to poor antibody performance or sample prepa-

ration issues, as well as highly enriched cofactor binding sites. ChIP-seq data sets are known to contain

binding sites for unrelated TFs (Teytelman et al., 2013). Our main criterion for choosing a ChIP-based

model was that its motif detectors should respond to binding sites for the TF of interest, and not respond

to binding sites for unrelated or cofactor TFs. To deal with this challenge, we also used the central motif

enrichment analysis package, CentriMo (Bailey and Machanick, 2012), to consider all discovered motifs

and find candidates for the direct ChIP-ed TF binding motif.

Figure 1 shows the comparison results between both measures for motif enrichment. When we applied

AME (McLeay and Bailey, 2010) to the (100 bp) STAT1 and REST ChIP-seq regions, the consensus

sequence of the motifs found by SIFEM, HASTTTCRKTTYCYB and GCTGTCCAWGGTGCTGAA,

respectively, rank second in terms of enrichment among the discovered motifs (Fig. 1a, e). However,

GCTGTCCAWGGTGCTGAA has a worse central enrichment p value (4.2e-291) than the other motifs

discovered by SIFEM in the REST ChIP-seq regions; it has a unimodal curve with a narrower region of

maximum central enrichment (w = 36 bp). Moreover, it achieves a higher maximum site probability in the

center of the ChIP-seq regions. In Figure 1d, the width of the region of maximum enrichment (w = 202) is quite

large, suggesting that the resolution of the ChIP-seq peaks is not as good as in typical ChIP-seq experiments. In

addition, the relative number of ChIP-seq regions containing the discovered motif is also rather small (1045/

Table 2. Data Sets Utilized in This Study Extracted from the ENCODE

Project and JASPAR Database

Cell line Factor Pattern length Data set size (sequences)

K562 STAT1 15 1476

K562 GATA1 11 1704

K562 JUN 14 1708

K562 NFYA 18 7647

K562 REST 21 6406
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7647 = 13.6%), possibly due to an imperfect motif, indirect binding of NFYA to DNA, low ChIP antibody

specificity, or other experimental issues.

SIFEM identified several discriminative motifs for each TF, which provide new insights regarding co-

factors of STAT1 and JUN. As shown in Figure 2, the found consensus sequences TTTCWGTTTCCYNKB

and ATGASTCAT closely match the PPM for IRF1 and NFE2, respectively. This can be also seen in a study

by Lehtonen et al. (1997) that characterized the expression of STAT and IFN regulatory factor (IRF) family

TFs in primary human blood mononuclear cells, and in a study by Zhang et al. (2006) that concluded

hyperactivation of IRF-1 and elevated STAT1 dimer formation may be two general switches that contribute to

a much more robust antiviral symphony against virus replication when type I and type II IFNs are coad-

ministered.

FIG. 1. Comparison of central enrichment and TFBS enrichment results for ChIP-seq of five TFs. On the left is the

distribution of the best predicted sites for the three most centrally enriched motifs discovered by SIFEM. Each curve

shows the density (averaged over bins of 20-bp width) of the best strong site for the named motif at each position in the

ChIP-seq peak regions. The legend shows the consensus, its central enrichment p value, the width of the most enriched

central region (w), and the number of peaks that contain a motif site. On the right are the sequence logos and enrichment

p values for the binding sites. ChIP-seq, chromatin immunoprecipitation sequencing; TF, transcription factor; TFBS,

transcription factor binding site.

FIG. 2. Unrelated or cofactor TF motifs identified by SIFEM. Bottom: motifs found by SIFEM. Top: matched motifs

in JASPAR. (a) Unrelated motif found for STAT1, and (b) unrelated motif found for JUN in ChIP-seq data.
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The motifs in the JASPAR database were used as a reference to benchmark the model performance. The

similarity of the discovered motifs in the ChIP-Seq data sets to known motifs was assessed using the

TOMTOM package from the MEME suite (Bailey et al., 2009). Table 3 presents E values, measures of

similarity between the discovered and known motifs, where lower E values representing more similar

results were found for STAT1, GATA1, and JUN in the proposed model. Moreover, simultaneously finding

more TFBSs and also more similar motifs to the reference for JUN and STAT1 shows the superiority of our

model in discovering more TFBSs than MEME-ChIP did. In addition to the quantitative evaluation of the

proposed method, the sequence logos used for visualization were generated. In the sequence logos, the

relatively large letters are the core components of the sought pattern, whereas positions with no distin-

guished letter indicate that there is ambiguity and any nucleotide can take this specific position. Figure 3

shows the alignments of each direct ChIP-ed TF binding motif to known motifs chosen based on central

motif enrichment using TOMTOM. The sequence logos in Figure 3 also prove the proficiency of SIFEM in

finding the target motif patterns, since the logos produced by this method closely resemble those of the

known motif patterns.

Moreover, the motifs discovered by SIFEM for STAT1 and REST have highly significant matches to

known motifs in JASPAR. Two Sample Logo (Vacic et al., 2006) is another interesting visualization tool

Table 3. Comparison Results for Five Different Transcription Factors

Transcription factors

STAT1 GATA1 JUN NFYA REST

Proposed method

E value (TOMTOM) 2.59e-11 4.27e-08 4.07e-08 8.21e-03 1.36e-14

Overlap 15 11 11 14 21

No. of sites 236 271 354 304 141

MEME-ChIP

E value (TOMTOM) 2.87e-05 3.89e-07 9.90e-05 5.00e-03 5.52e-17

Overlap 13 11 13 7 19

No. of sites 232 460 296 337 560

FIG. 3. Comparison of motifs proposed by SIFEM (bottom) versus JASPAR (top) for five different TFs. Motifs are

shown as information content in bits.
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that can concisely show the salient differences between two aligned motifs. In this study, the Two Sample

Logo was constructed to present the sequence characteristics of the discovered TFBSs in SIFEM versus

MEME-ChIP. As can be seen in Figure 3, there is no significant difference in the highly enriched

positions and most differences are in the noninformative positions. In STAT1, we observed that the

enriched residues were G and T (position 9 in Fig. 3a), while A and C were depleted. The third position of

the GATA1 TFBSs enriches G and C, while T is depleted in this position. Other detailed features are

presented in Figure 4.

The overlap and bold values indicate the number of overlapping positions between the discovered motif

and reference alignment and the best E value for a single TF, respectively.

4. DISCUSSION

In this article, we have proposed SIFEM a new clustering method for finding motifs that infers the motif

as a PPM and relies on the overrepresentation of motif instances within the DNA sequence. Unlike current

motif discovery algorithms (Alipanahi et al., 2015; Zeng et al., 2016), SIFEM does not require classified

input sequences known in advance to contain the motif being sought. Instead, the proposed algorithm, like

most de novo motif discovery algorithms, estimates the number of motif appearances from the data. This

capability is quite robust, as the results showed that even when only 13.6% of the NFYA ChIP-seq peak

regions contain a motif, the motif is still characterized well (Fig. 1d). We also overcame the problem of

finding several existing motifs in the ChIP-seq data set in a single pass. Our idea can be considered a

sequential integration of FCM and EM methods and demonstrated improvement over the performance of

the existing relative method, the MEME-ChIP, for finding motifs in ChIP-seq experiments.

Regarding the comparison results, and as can also be seen in previous studies (Ibrikci and Karabulut,

2010; Zeng et al., 2016), a method may not always produce perfect predictions, possibly due to low

information content of the target pattern or a very low number of TFBSs with respect to the sequence in

which they reside. However, while the similarity measure for SIFEM was not able to outperform MEME-

ChIP results for NFYA and REST TFs, the proposed algorithm found the true motifs for all TFs. On the

contrary, SIFEM was able to determine the direct DNA-binding motif of ChIP-ed TFs using the central

enrichment method. In conclusion, we have proposed a motif discovery algorithm that can characterize

ChIP-seq data with different kinds of pattern characteristics in an efficient manner.

FIG. 4. Two Sample Logo for motifs proposed by SIFEM and MEME-ChIP for five different TFs. The upper and

lower sections display sets of symbols that are enriched or depleted, respectively, in the proposed motif, and the middle

section displays consensus symbols.
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The proposed algorithm is implemented in MATLAB. Each pass through the data set with the FCM

and EM algorithm has a time complexity of O(nWC2) and O(nW), respectively. Therefore, the overall

time complexity is proportional to the number of clusters, the width of the motif, and the size of the

data set.
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