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Abstract
There are still some problems need to be solved though there are a lot of achievements in the fields of automatic driving.
One of those problems is the difficulty of designing a car-following decision-making system for complex traffic conditions.
In recent years, reinforcement learning shows the potential in solving sequential decision optimization problems. In this
article, we establish the reward function R of each driver data based on the inverse reinforcement learning algorithm, and r
visualization is carried out, and then driving characteristics and following strategies are analyzed. At last, we show the
efficiency of the proposed method by simulation in a highway environment.
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Introduction

Intelligent driving in intelligent vehicles is a technical high

point in industrial technology and is studied by various

countries and major technological companies. Car follow-

ing is one of the most significant and common conditions

for manual driving, assisted driving, or unmanned driving.1

With the rapid growth of urban traffic scale, car following

has become the most primary condition encountered by

drivers.2,3 Car-following models have been extensively

studied since 1950s,4 and the research currently focuses

on different fields, such as vehicle engineering, traffic

safety, big data and artificial intelligence, psychology, and

cognition. Research on car-following behavior gradually

extends from the original operation of acceleration, decel-

eration, and other specific operations to perception, psy-

chology, and physiology. The methodology for studying

such behavior has been extended from early mathematic

modeling to various fields, such as logistics, planning,

transportation, cognitive science, neuroscience, data

science, machine learning, and artificial intelligence.5,6

In 1950, Reuschel studied the car-following behavior of

drivers from an operational research perspective,7 whereas

Pipes proposed the first car-following problem in 1953.8,9

Existing car-following models (algorithms) can be divided

into two categories. The first category is explanatory car-

following model. First, the model predetermines some

physical quantities in the car-following process to describe
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the expression using parameters. Then, the unknown

parameters of the expression can be determined based on

statistics or experience. This type of car-following model

often requires assumptions and explanations of the car-

following process. The second category is nonexplanatory

car-following model. The car-following behavior of drivers

is based on a learning algorithm, namely, the fitting or

induction of a large number of data.

Explanatory models include linear car-following model,

distance inverse model, nonlinear car-following model,

memory function model, expected distance model, and

physiological–psychological model. In 1958 and 1959,

Chandler10 and Herman11,12 respectively proposed linear

car-following models. In 1959, Gazis et al. presented a

range inverse car-following model.13 After 2 years, Gazis

et al. further proposed a nonlinear car-following model.14

In 1967, May and Keller completed the fitting of the non-

linear model with actual vehicle data under highway and

tunnel conditions.15,16 In 1993, Ozaki divided driver

motion into four stages: acceleration start, deceleration

start, acceleration maximum, and deceleration maximum.

When separately fitted, the reaction time is strongly depen-

dent on the stage of driving action. In particular, the reac-

tion times are quite different in the acceleration and

deceleration stages. Ozaki suggested that the possible rea-

son for this difference is the use of the taillight of a front car

during deceleration stages.17 Lee introduced a memory

function model in 1966, in which he thought that drivers

responded to the integral of the relative speed of the front

vehicle rather than the instantaneous value. He then ana-

lyzed its stability. In 1972, Darroch and Rothery used spec-

tral analysis methods. The shape of the memory function

was estimated based on the experimental data. They found

that Dirac delta function can approximate experimental

data; in fact, it corresponds to the linear following model.18

In 1961, Helly suggested that the driving strategy of drivers

not only minimized relative speed but also the difference

between real and expected vehicle distances. In 1982,

Gabard et al. used Helly’s model in SITRA-B (microscopic

traffic flow model).19 In 1974 and 1988, Weidmann and

Leutzbach proposed two unreasonable points of the

traditional car-following model: (1) In the previous

car-following model, even with a large distance to a front

vehicle, testing vehicle will also keep following. (2) The

previous car-following model assumed that the drivers had

the perfect perception and reaction, even if the external

incentive was very small. Therefore, they introduced a per-

ceptual threshold to define the minimum environmental

incentive, which can be reacted to by the drivers. Evidently,

the perceived threshold increased monotonically with the

distance to the car. At the same time, they also found that

the perception threshold is different during the acceleration

and deceleration phases.20 Explanatory model can gener-

ally guarantee the safety of the following process of the car,

but accurately describing the highly nonlinear car-

following behavior is difficult. Moreover, the model does

not have adaptive adjustment ability for different drivers or

different conditions.21,22

With the development of artificial intelligence research,

a variety of machine learning methods are the most promi-

nent. These methods have outstanding advantages in deal-

ing with nonlinear problems,2,7 such as convolutional

neural network, reinforcement learning (RL), and inverse

reinforcement learning (IRL). A considerable number of

researchers have begun to focus on the car-following model

based on machine learning methods.2,7 Richard S Sutton

proposed a temporal-difference learning (TD) method.23

Bradtke and Andrew G Barto established two algorithms

which were called least-squares TD (LSTD) and recursive

least-squares TD (RLSTD) with the help of the theory of

linear least-squares function approximation.24 Michail G

Lagoudakis and Ronald Parr proposed an approach called

least-squares policy iteration (LSPI) by combining value

function approximation with linear architectures and

approximate policy. Xu et al. proposed a kernel-based

least-squares policy iteration (KLSPI).25 Wei Xia et al.

proposed a new control strategy of self-driving vehicles

using the deep RL model, in which learning with an expe-

rience of professional driver and a Q-learning algorithm

with filtered experience replay are proposed.26 Pyeatt and

Howe applied RL to learning racing behaviors in Robot

Auto Racing Simulator, precursor of the The Open Racing

Car Simulator (TORCS) platform.27,28 Daniele et al. used

the tabular Q-learning model to learn the overtaking stra-

tegies on TORCS.29 Riedmiller proposed a neural RL

method, namely neural fitted Q-iteration (NFQ), to gener-

ate control strategy for the pole balancing and mountain car

task with least interactions.30 Zheng et al. established a 14-

Degree of Freedom (DOF) dynamic model of an autono-

mous vehicle and use R to build a decision-making system

for autonomous driving.31 The nonexplanatory model, rep-

resented by artificial neural network (ANN), fully demon-

strates the high nonlinearity of car-following behavior and

has been proven by some researchers to be stable and safe

under certain conditions (such as slope input and sinusoidal

input). However, the model treats the drivers as a “black

box” because such models are not interpretative. Theoreti-

cally analyzing whether or not the model is stable or has

existing “bad spots” is difficult. Meanwhile, such models

are more capable of “cloning” rather than “learning” driv-

ing strategies and thus have difficulty in intuitively reflect-

ing “adaptability”. With the change in working conditions

and drivers, the change of the model itself is only the

weight between nodes, but a direct relationship between

the weights and driving behaviors is difficult to establish.

As a result, further analysis is also difficult to perform. The

lack of flexibility is another major problem with car-

following models based on ANNs. A network trained by

a data set may not be well applied to another data set. Thus,

this present work proposes a learning algorithm with a

certain interpretation for car-following model and estab-

lishes an anthropomorphic following model. The vital RL

2 International Journal of Advanced Robotic Systems



and its associated IRL in machine learning provide us a

novel idea. Analyzing the car-following behavior of drivers

by the following model and proposing the intelligent fol-

lowing algorithm have great value and significance in

many fields, such as road safety, driving assistance system,

and intelligent driving. The explanatory model is too sim-

ple to accurately describe the highly nonlinear car-

following behavior and cannot adapt to different drivers

and working conditions. Although the nonexplanatory

model represented by ANN can fit complicated nonlinear

relations, such models are not interpretable. Moreover, the

theoretical analysis on the stability or the establishment of

the relationship between driving behaviors and neural net-

work structure for further analysis becomes difficult

because the drivers are treated as “black box.” Therefore,

to implement the anthropomorphic car-following model,

the machine learning-based method is used to optimize

auto-following algorithm, which is of great value for

research. The contribution of this article is briefly described

as follows: (1) A learning car-following algorithm with a

certain explanation by using IRL combined with the car-

following data of driving simulator. (2) The IRL algorithm

is designed to learn the reward function R of drivers from

driving simulator data. (3) The reward function R of differ-

ent drivers is visualized under different conditions. (4) The

similarities and differences are analyzed, and the IRL algo-

rithm is optimized.

The remaining part of this article is organized as fol-

lows: The second part is “Reinforcement learning and

inverse reinforcement learning.” The third part is “Design

of IRL algorithm.” The fourth part is the “Experiment and

analysis” based on the simulation platform and the rest part

is “Conclusion and future work.”

Reinforcement learning and inverse
reinforcement learning

Reinforcement learning

RL is a vital branch of machine learning, and a typical RL

task is usually described by the Markov decision process.

The machine (or agent) is in environment E, defining a

state space S, where each state is a description of the envi-

ronment that the agent can perceive. The actions that an

agent can perform constitute action space A; a 2 A is an

action can be taken by an agent. After taking the action, the

state transition probability P enables the environment to be

transferred from the current state to another state with

certain probability. At the same time, as the state transi-

tions, a reward r is the feedback of the environment to

the agent according to the potential reward function R.32

A RL task corresponds to the tetrad E ¼ hS;A;P;Ri;
P : S � A� S 7! R, which represents the probability of

state transition; and R : S � A� S 7! R, which represents

the reward function. As shown in Figure 1, the agent

observes state s and then performs action a, s transfers to

the next state based on the state transition probability P,

and simultaneously an instant reward r is obtained. In RL,

agents continuously interact with the environment and

update strategies to learn policer a ¼ pðsÞ.
The relative merits of the strategy depend on the cumu-

lative reward of long-term execution, rather than the instant

reward for performing an action. Consequently, the RL task

maximizes the long-term cumulative reward generated by

the policer. Therefore, this work uses the “g-discounted

cumulative reward” to estimate the long-term cumulative

reward, as shown in equation (1)

max
p

E
Xþ1
t¼0

gtrtþ1

" #
ð1Þ

g is the discount rate, a positive number less than 1, and

represents the degree of emphasis that the agent has on

future rewards. The greater the value of g, the more the

attention is paid to the future received rewards. rt is the

instant rewards of the tth step, and E is the expression of

the expectation of all random variables.

Inverse reinforcement learning

The reward function R plays a crucial role for a determi-

nistic RL task. The setting of R directly determines which

strategy the agent will adopt. However, for many RL tasks,

the reward function R cannot be predetermined, or the suit-

able state (strategy) for an agent is unknown. For the car-

following decisions studied in this work, different explicit

R values for different driver models are difficult to deter-

mine, and distinguishing which state (strategy) is good or

bad is unclear. Although the relative merits of a strategy are

known, specific reward function values are difficult to

quantify. IRL is based on a sample data provided by

experts, which is reversely introduced as the reword func-

tion.33 The basic idea is to define the strategy with the

sample data as p� and another strategy as p. The reward

function is expressed as a linear function of the state s, that

is, RðsÞ ¼ !Ts. Given the coefficient !T, r represents the

cumulative reward, the cumulative reward for the strategy

p is shown in equation (2)

rðp j!TÞ ¼ E
Xþ1
t¼0

gtRðstÞ jp
" #

¼ E
Xþ1
t¼0

gt!Tst jp
" #

ð2Þ

Figure 1. Illustration of RL. RL: reinforcement learning.
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The goal of IRL is to calculate !�. When the difference

between the optimal and other samples is maximized, some

parameters are computed to ensure that the strategy with

example data p� can be better than any strategy p. The

objective function is shown in equation (3)

! � ¼ arg max
!

min
p
!T½rðp � j!TÞ � rðp j!TÞ�

s: t: jj!jj � 1
ð3Þ

Design of IRL algorithm

The main purpose of IRL is to obtain the reward function

R of drivers. In this work, an IRL algorithm based on the

max-margin algorithm is proposed.34 As shown in equa-

tions (2) and (3), the algorithm is divided into the following

steps:

1. Determine the state space and implement the trans-

formation of the kernel function.

2. Obtain the various components Rij for R and calcu-

late the cumulative reward of each component V ij.

3. Determine the weight of Rij and eventually solve R.

Determine the state space and transform kernel
function

The physical quantities that reflect the process of car-

following method are as follows: car-following distance d

(which is the leading distance between the front vehicle and

testing vehicle, and the unit is m), velocity of the testing

vehicle v (in unit of km=h), velocity of front vehicle v front,

acceleration of the testing vehicle a, and acceleration of

front vehicle a front. For data visualization, this work

chooses velocity of the testing vehicle v and car-

following distance d to form a 2-D variable as the state

space, which constitutes the S in the quadruple

E ¼ hS;A;P;Ri. The 2-D features are transformed by the

Gaussian radial kernel function and mapped into the high-

dimensional feature space to denote the strong nonlinear

relationship in the car-following process. After data pre-

processing, the range of the testing vehicle velocity v is

limited to ð0; 130 km=h), and the range of the car-

following distance d is ð0; 350 mÞ. According to such

range of the velocity and distance, velocity v is divided into

equal intervals ðv1; v2; � � � v15Þ by the interval 9 km=h, as

shown in equation (4)

vi ¼ 9ði� 1Þ; 1 � i � 15 ð4Þ

The car-following distance d can be divided into equal

intervals, and the interval is ðd1; d2; � � � d36Þ, as shown in

equation (5)

dj ¼ 9ðj� 1Þ; 1 � j � 36 ð5Þ

Given that the data size of vehicle speed v and distance

d is inconsistent, the normalization of all these data is

required. The state vector s ¼ 25
9

v; d
� �

and kernel vector

�sij ¼ 25
9

vi; dj

� �
are defined, and the Gaussian radial kernel

function is shown in equation (6)

KðS; Si;jÞ ¼ exp � jjs� �si;jjj22
s2

 !
; 1 � i � 15; 1 � j � 36

ð6Þ

If s2 is selected, then the space expanded by the kernel

function can be neither overfitting nor underfitting. After

experimental verification, s2 ¼ 5 is defined to ensure that

the kernel function can obtain a relative equilibrium

between underfitting and overfitting.

Calculate reward function and cumulative reward

The requiring reward function R can be written by a linear

combination of 540 kernel functions based on the kernel

function with state vector, as shown in equation (7)

Rðv; dÞ ¼
X15

i¼1

X36

j¼1

qi;jRi;jðv; dÞ ¼
X15

i¼1

X36

j¼1

qi;j Kðs;�si;jÞ

s ¼ 25

9
v; d

0
@

1
A;�sij ¼

25

9
vi; dj

0
@

1
A ð7Þ

Next, the value of each component Ri; jðv; dÞ at each

state s of Rðv; dÞ should be calculated, that is, for the action

sequence of drivers fs1; s2; � � � ; sNg, Ri; jðslÞ; 1 � l � N is

calculated. The solving process is demonstrated in Figure 2.

Ri; jðsÞ is an instant reward, and the cumulative reward

V i; jðsÞ of each state measures the long-term rewards of the

state s. Equation (8) shows the calculation of the cumula-

tive reward

V i;jðslÞ ¼
XN

t¼l

gt�1rt ¼
XN

t¼l

gt�1Ri;jðstÞ ð8Þ

where g is the discount factor, which evaluates the discount

rate of drivers. In this work, the value is selected as

g ¼ 0:9.

Determine the weights of reward function

After calculating Ri; jðsÞ, the next step is to determine the

parameters qi; j. Under driving strategy p�, the long-term

cumulative reward Vðsjp�Þ is superior to the rewards under

other strategies VðsjpÞ, as shown in equation (9)

q � ¼ arg max
q

min
p

XN

t¼1

X15

i¼1

X36

j¼1

qi;j½V i;jðstjp �Þ � V i;jðstjpÞ�

s: t: jjqjj22 � 1

ð9Þ
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where q is the vector expanded by qi; j, s�t represents the car-

following state sequence under the optimal strategy p�, s
ðiÞ
t

represents the car-following state sequence under other

strategy, a�t is the action sequence under the optimal strat-

egy p�, and a
ðiÞ
t is the action sequence under other strate-

gies. The corresponding relationship between these

variables is shown in Figure 3.

Equation (9) can be transformed into the optimization

problem under the inequality constraint, as shown in equa-

tion (10)

X15

i¼1

X36

j¼1

qi;jV i;jðs �2 Þ �
1

M

XM
m¼1

X15

i¼1

X36

j¼1

qi;jV i;j

�
s
ðmÞ
2

�
� p1

X15

i¼1

X36

j¼1

qi;jV i;jðs �3 Þ �
1

M

XM
m¼1

X15

i¼1

X36

j¼1

qi;jV i;j

�
s
ðmÞ
3

�
� p2

� � �X15

i¼1

X36

j¼1

qi;jV i;jðs �N Þ �
1

M

XM
m¼1

X15

i¼1

X36

j¼1

qi;jV i;j

�
s
ðmÞ
N

�
� pN�1

max
q

XN�1

t¼1

pt

s: t: jjqjj22 � 1

ð10Þ

Furthermore, equation (10) can be simplified to equation

(11) if only one strategy for each state is present

X15

i¼1

X36

j¼1

qi;jV i;jðs�2Þ �
X15

i¼1

X36

j¼1

qi;jV i;j

�
s
ð1Þ
2

�
¼ p1

X15

i¼1

X36

j¼1

qi;jV i;jðs�3Þ �
X15

i¼1

X36

j¼1

qi;jV i;j

�
s
ð1Þ
3

�
¼ p2

� � �X15

i¼1

X36

j¼1

qi;jV i;jðs�N Þ �
X15

i¼1

X36

j¼1

qi;jV i;j

�
s
ð1Þ
2

�
¼ pN�1

max
q

XN�1

t¼1

pt

s:t:jjqjj22 � 1

ð11Þ

The number of samples is sufficient (for each test, N

	 60000); therefore, equation (11) is taken into account

in the calculation. For each optimal car-following state,

one of the other car-following actions is randomly

selected for the solution. The effect of traversing the

other strategies for an average performance can be

achieved. The selection of the other car-following action

is based on the statistics of acceleration of the testing

vehicle, which can provide the range of acceleration

½a min; a max�. Then, the interval is divided into 10 points

as the action set, so other strategies are randomly

selected from nine nonoptimal car-following actions.

The parameter qi; j is solved by Lagrange multiplier

Figure 2. Solving process of Ri; jðslÞ.

Figure 3. Relationship between variables of max-margin algorithm based on IRL. IRL: inverse reinforcement learning.

Gao et al. 5



method or “linprog” function in MATLAB, as shown in

equation (12)

qi;j ¼

XN

2
V i;j

�
s
ð1Þ
t

�
� V i;j

�
s
ð �Þ
t

�h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX15

i¼1

X36

j¼1

�XN

2

�
V i;j

�
s
ð1Þ
t

�
� V i;j

�
s
ð �Þ
t

�	
2
s

ð12Þ

Experiment and analysis

Experiment setup

Hardware and software. The working conditions of vehicle

and the road environment must be precisely controlled

to study the car-following behavior of drivers under

given conditions. Therefore, this work is based on the

dynamic driving simulation test bench of Tsinghua Uni-

versity. The dynamic driving simulation test bench is

shown in Figure 4, and its system components are

shown in Figure 5.

The hardware part of the simulator consists of five parts:

simulation cockpit, external visual environment simulation

system, vehicle motion simulation system, sound environ-

ment simulation system, and operation tactile sensation

simulation system.35 The software part of driving simulator

consists of six parts: system control module, environment

control and scene creation module, simulation calculation

module, input and output module, graphics calculation and

rendering module, and actuator control module.36,37

Environment modeling. This work is about the car-following

behavior of drivers under a single lane (no lane change, no

overtaking, and no traffic light); therefore, the freeway is

selected as a road scene. A two-lane road of 200 km in

length is designed. The road includes a fast lane, a slow lane,

and an emergency lane with widths of 3.75, 3.75, and 2.5 m,

respectively. The road model is shown in Figure 6.

Vehicle model. The most common vehicle is chosen as the

front car (BMW 3 Series as a template), and the dynamics

model of the vehicle was generated by CarSim. In addition,

the brake lights turn red when the vehicle is decelerating,

which is consistent with the real situation. The road scene

of the actual testing process is shown in Figure 7. Three

computer screens correspond to three projection screens

Figure 4. Dynamic driving simulation test bench.

Visual
Environment
Simulation

System

Sound
Environment
Simulation

System

Operation
Feeling

Simulation
System

Vehicle Motion
Simulation

System

Simulation and Central Control Platform

Road 
Environment 

Database

Simulation 
& Control 

Library

Instrument 
Panel

Driving Seat

Figure 5. System components of the dynamic driving simulation test bench.
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(middle, left, and right) of the external virtual environment

system. These screens constitute the front view of the

drivers.

In order to intuitively demonstrate the effectiveness and

generalization ability of the IRL algorithm, the experimen-

tal data are obtained by selecting two subjects who have

been driving for more than 5 years as drivers A and B.

According to two different operating conditions of the New

European Driving Cycle (NEDC) and Japan’s 10–15, the

following experiments are carried out on the driving simu-

lator, the following data of drivers A and B are recorded,

and the reward function r of drivers A and B is visualized,

giving the NEDC and Japan’s 10–15. For each working

condition, two randomly selected tests are performed to

verify the reproducibility of the test results.

Experiment result

The entire space ðv; dÞ is traversed, and the test driver’s

reward function is shown in Figure 8. The reward informa-

tion of the drivers can be obtained by analyzing the shape

of the reward function surface in Figure 3. A high surface

height corresponding to any point on the plane ðv; dÞ indi-

cates great instant reward value at the same point.

The 3-D graphics are transformed into a 2-D plan, as

shown in Figures 9 to 12. Figure 9 shows the diagram of the

reward function of driver A under NEDC conditions (two

randomly selected trials), and Figure 10 shows the reward

function of driver A under Japan 10–15 condition. Simi-

larly, Figure 11 shows the diagram of the reward function

of driver B under NEDC conditions (two randomly selected

trials), and Figure 12 shows the reward function of driver B

under Japan 10–15 condition.

Experiment analysis

The comparison of the results presented in Figures 9 to 12

obtained the following conclusions:

1. For the different tests of the same driver under the

same condition, the shapes of reward functions are

basically identical. This finding proves that the IRL

algorithm has certain repeatability and can extract

the characteristics of the car-following strategy of

drivers.

2. For the same driver, the shapes of reward functions

under different working conditions are the same,

mainly due to the inconsistent state space under

different conditions. For different conditions, the

main part and the trend of the reward function of

the same driver are basically the same. This finding

indicates that the IRL algorithm does not depend on

the specific conditions and can effectively extract

the car-following characteristics.

3. The reward functions have completely different

shapes for different drivers. The comparison of

drivers A (Figures 9 and 10) and B (Figures 11 and

12) shows that as velocity increases, the distances

C
arriagew

ay

O
vertaking lane

E
m

ergency lane

3.75m 3.75m 2.5m

Around
vehicle

Self 
vehicle

Front 
vehicle

Figure 6. Road model.

Figure 7. Road scene of the actual test.
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corresponding to the peaks of two reward functions

increase. For constant speed, the distance corre-

sponding to the peak of the reward function of A

is large, whereas the distance to the peak of the

reward function of B is small. Therefore, the

reward function of A is generally close to the coor-

dinate axis of distance, and that of B is close to the

axis of speed. This finding indicates that the car-

following distance of the driving strategy of A is

large, and that of B is small. In addition, the gra-

dient of the reward function of A is small, and that

of B is large. The reward function of driver A is

shown in Figure 13, the reward function of driver

B is shown in Figure 14, This finding indicates that

A is less sensitive to changes in vehicle distance

and speed, but B is more sensitive to the changing

information.Figure 8. Diagram of the reward function.

Figure 9. Driver A (female): diagram of the reward function under NEDC condition. (a) The result of randomly selected trial 1. (b) The
result of randomly selected trial 2. NEDC: New European Driving Cycle.

Figure 10. Driver A (female): diagram of the reward function under Japan 10–15 condition. (a) The result of randomly selected trial 1.
(b) The result of randomly selected trial 2.
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Figure 11. Driver B (male): diagram of the reward function under NEDC condition. (a) The result of randomly selected trial 1. (b) The
result of randomly selected trial 2. NEDC: New European Driving Cycle.

Figure 12. Driver B (male): diagram of the reward function under Japan 10–15 condition. (a) The result of randomly selected trial 1. (b)
The result of randomly selected trial 2.

Figure 13. Reward function of driver A. Figure 14. Reward function of driver B.
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Conclusions and future work

This work proposes the reward function R for drivers under

different conditions by basing on the IRL algorithm and by

combining the car-following data of two drivers. In addi-

tion, the visual verification and analysis of the reward func-

tions are presented. First, preprocessing, analysis, and

visualization of the car-following data are achieved. Sec-

ond, the reward function is obtained in three steps: (1) The

state space is determined, and the kernel function is trans-

formed. (2) The reward function Ri; j and the cumulative

reward V i; j are calculated. (3) The weights of each reward

function Ri; j are determined, the IRL algorithm is designed,

and the reward function R is obtained. Finally, the R of the

two drivers under two conditions are visualized and ana-

lyzed, which proves the validity of the proposed algorithm.

Through the analysis presented above, the characteristic of

different people following a driving strategy is completely

different. Thus, the specific car-following algorithm for

each person should be designed according to their own

characteristics. Based on the experimental verification in

this article, IRL can obtain the reward function by evaluat-

ing the car-following data of drivers, analyzing their

car-following characteristic, and achieving the specific

car-following effect.

In future works, using the obtained reward function R,

RL method is carried out to verify the car-following

experiment.
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