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Abstract. In this paper we establish a relation between direct radiations (generally called radiation factor)
and reflected radiations (albedo) to show their effects on the existence and stability of non-collinear libration
points in the elliptic restricted three-body problem taking into account the oblateness of smaller primary. It is
discussed briefly when α = 0 and σ = 0, the non-collinear libration points form an isosceles triangle with
the primaries and as e increases the libration points L4,5 move vertically downward (α, σ and e represents
the radiation factor, oblateness factor and eccentricity of the primaries respectively). If α = 0 but σ �= 0, the
libration points slightly displaced to the right-side from its previous location and form scalene triangle with
the primaries and go vertically downward as e increases. If α �= 0 and σ �= 0, the libration points L4,5 form
scalene triangle with the primaries and as e increases L4,5 move downward and displaced to the left-side. Also,
the libration points L4,5 are stable for the critical mass parameter μ ≤ μc.

Keywords. Elliptic restricted three-body problem—radiation pressure—albedo effect—libration points—
stability.

1. Introduction

Albedo effect is a non-gravitational force having sig-
nificant effects on the motion of infinitesimal mass.
According to Harris and Lyle (1969), albedo is the frac-
tion of solar energy reflected diffusely from the planet
back into space. It is the measure of the reflectivity of
the planet’s surface. Rocco (2009) defined the albedo
as the fraction of incident solar radiation returned to the
space from the surface of the planet, i.e.

Albedo = radiation re f lected back to the space

incident radiation
.

Albedo is dimensionless quantity and measured on a
scale from 0 to 1. A body or surface has zero albedo
means the body is ‘black-body’ which absorbs all the
incident radiations while the unity albedo of a body
represents a ‘white-body’ which is a perfect reflector
that reflects all incident radiations completely and uni-
formly in all directions. A high albedo surface has the
lower temperature because it reflects the majority of
the radiation that hits it and absorbs the rest. On the

other hand a low albedo surface has the higher tem-
perature as it reflects a small amount of the incoming
radiation and absorbs the rest. For instance, fresh snow
has a high albedo of 0.95 as it reflects up to 95% of
the incoming radiations while water reflects about 10%
of the incoming radiation, resulting in a low albedo of
0.1. On an average the albedo of Earth is 0.3 as 30%
of Sun’s energy is reflected by the entire Earth. Gener-
ally, dark surfaces have a low albedo and light surfaces
have a high albedo. The albedo is studied by Anselmo
et al. (1983); Nuss (1998); McInnes (2000); Bhanderi
(2005); Pontus (2005); Mac Donald (2011), Gong and
Li (2015), Idrisi (2017), Idrisi and Ullah (2017), and
others.

In the previous studies, authors did not consider the
effect of reflected radiations upon the spacecraft in
restricted problem of three or more bodies. As this effect
is much lesser than the direct radiations effect known as
photogravitaional effect, so generally it was neglected
by the authors in the last decades. But if this effect
is neglected it means the primaries are considered as
black-bodies which is a contradiction to the fact that
there is no planet in our solar system whose albedo is
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zero or no planet in our solar system is a black-body.
The planets with their respective average albedo are as
follows:

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
Albedo 0.12 0.75 0.30 0.16 0.34 0.34 0.30 0.29

In the light of all above facts, we have decided to
develop a new model for elliptic restricted three-body
problem in which one primary be a source of radiation
and the other one a non-black oblate body. In this paper
we are interested in investigating the albedo effect on
the non-collinear libration points L4,5. This paper is
divided into seven sections. In Section 2, the equations
of motion are derived. In Section 3, a relation between
α and β has been established. The mean-motion of the
primaries is obtained in Section 4. In Section 5, this is
proved that there exist only two non-collinear libration
points L4,5 and are affected by albedo. In Section 6,
the stability of non-collinear libration points L4,5 has
been discussed. In our solar system the Sun is a source
of radiation, so we consider a real application to Sun–
Earth system in Section 7 in which we have studied
the albedo effect on the infinitesimal mass taking into
account the oblateness of the Earth which is a suitable
example as the real application concern.

2. Equations of motion

Let m1 and m2 (m1 > m2) be the masses of the pri-
maries such that m1 is spherical in shape and a source
of radiation while m2 is an oblate spheroid with axes
a′ and c′, are moving in the elliptic orbits around their
center of mass O . An infinitesimal mass m3 << 1,
is moving in the plane of motion of m1 and m2. The
distances of m3 from m1, m2 and O are r1, r2 and r
respectively. F1 and F2 are the gravitational forces act-
ing on m3 due to m1 and m2 respectively, Fp is the force
due to solar radiation pressure by m1 on m3 and FA is
the Albedo force due to solar radiation reflected by m2
on m3. Let the line joining m1 and m2 be taken as X -axis
and O their center of mass as origin. Let the line pass-
ing through O and perpendicular to OX and lying in the
plane of motion m1 and m2 be the Y -axis. Let us con-
sider a synodic system of co-ordinates Oxyz initially
coincide with the inertial system OXYZ, rotating with
angular velocity ḟ about Z -axis (the z-axis is coincide
with Z -axis). We wish to find the equations of motion
of m3 using the terminology of Szebehely (1967) in the
synodic co-ordinate system and dimensionless variables

i.e. the distance between the primaries is unity, the unit
of time t is such that the gravitational constant G = 1
and the sum of the masses of the primaries is unity, i.e.
m1 + m2 = 1.

The forces acting on m3 due to m1 and m2 are F1 (1−
Fp/F1) = F1 (1 − α) and F2 (1 − FA/F2) = F2(1 −
β) respectively, where α = Fp/F1 << 1 and β =
FA / F2 << 1. Also, α and β can be expressed as:

α = L1

2πGm1cσ ∗ ; β = L2

2πGm2cσ ∗ ;

where L1 is the luminosity of the larger primary m1,
L2 is the luminosity of smaller primary m2, G is the
gravitational constant, c is the speed of light and σ* is
mass per unit area.

The equations of motion of infinitesimal mass m3 <<

1 in terms of pulsating coordinates (ξ, η) are given by

ξ ′′ − 2η′ = �∗
ξ ,

η′′ + 2ξ ′ = �∗
η, (1)

where

�∗ = 1√
1 − e2

[
ξ2 + η2

2
+ �

n2

]
,

� = (1 − μ)(1 − α)

r1
+ μ(1 − β)

r2

(
1 + σ

2r2
2

)
.

n = mean-motion of the primaries,
e = common eccentricity of elliptic orbit
described by the primaries (0 < e < 1),
σ = a′2−c′2

5 is the oblateness factor,

r2
1 = (ξ − μ)2 + η2, (2)

r2
2 = (ξ + 1 − μ)2 + η2, (3)

0 < μ = m2
m1+m2

< 1
2 ⇒ m1 = 1 − μ; m2 = μ,

α is radiation factor and β is the albedo factor.

Note: For β = 0, i.e. m2 is non-luminous, then the
problem reduces to elliptic photogravitational restricted
three body problem when smaller primary is an oblate
spheroid. If α and β both are zero, then the problem
becomes elliptic restricted three-body problem, when
the smaller primary is an oblate spheroid.
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Figure 1. α versus β; k = 0.001.

Table 1. β in the interval 0 < α < 1; k = 0.001.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β μ = 0.1 0.0009 0.0018 0.0027 0.0036 0.0045 0.0054 0.0063 0.0072 0.0081 0.0090
μ = 0.2 0.0004 0.0008 0.0012 0.0016 0.0020 0.0024 0.0028 0.0032 0.0036 0.0040
μ = 0.3 0.0002 0.0004 0.0007 0.0009 0.0011 0.0014 0.0016 0.0018 0.0021 0.0023
μ = 0.4 0.0001 0.0003 0.0004 0.0006 0.0007 0.0009 0.0010 0.0012 0.0013 0.0015

3. Relation between β and α

In previous studies, many authors have taken both
primaries as source of radiations and denoted these radi-
ations factors as ‘q1’ and ‘q2’ but they did not establish
any relation between these two factors. In this study we
have shown a relation between these two factors and its
effect on non-collinear libration points. Therefore,

β

α
= m1

m2

L2

L1
⇒ β = α

(
1 − μ

μ

)
k,

k = L2

L1
= constant, 0 < α < 1 and 0 < k < 1. (4)

From the relation given by equation (4), a graph between
β and α is plotted (Figure 1) and the effect of α and
μ is remarkable. It is observed that as α increase, β

also increases for different values of μ but if α and μ

increases simultaneously, β decreases. Also, β is eval-
uated for different values of μ and α in Table 1.

4. Mean-motion of the primaries

In the elliptic case, the distance between the primaries

is r = a(1−e2)
1+e cos f ,and the mean distance between the

primaries is given by 1
2π

∫ 2π

0 rd f = a(1−e2)√
1+e2 , where

a is semi-major axis of the elliptic orbit of one pri-
mary around the other. Since the orbits of the primaries
with respect to centre of mass with semi-major axes
a1 = am2 and a2 = am1 have the same eccentricity
(Szebehely 1967), their equations of motion are given
by

n2a1(1 − e2)√
1 + e2

= Gm1m2

(
1 + 3

2
σ

)
and

n2a2(1 − e2)√
1 + e2

= Gm2m1

(
1 + 3

2
σ

)
.

The addition yields n2 =
√

1+e2

a(1−e2)

(
1 + 3

2σ
)
. m1 +m2 =

1 and we choose the unit of time such that the gravita-
tional constant G = 1. Consider a = 1 and only terms
of e2, and neglecting their product, we have

n2 = 1 + 3

2

(
σ + e2) . (5)

The mean-motion curve with respect to eccentricity
‘e’ for different values of oblateness factor ‘σ ’ is plotted
in Figure. 2 and it is observed as ‘e’ and ‘σ ’ increases
the mean-motion also increases.
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Figure 2. e versus n.

5. Non-collinear libration points

The non-collinear libration points are the solution of the
equations for �∗

ξ = 0and�∗
η = 0, η �= 0, i.e.,

ξ − 1

n2

{
(1 − μ)(ξ − μ)(1 − α)

r3
1

+μ(ξ + 1 − μ)(1 − β)

r3
2

(
1 + 3σ

2r2
2

)}
= 0, (6)

1 − 1

n2

{
(1 − μ)(1 − α)

r3
1

+μ(1 − β)

r3
2

(
1 + 3σ

2r2
2

)}
= 0. (7)

On substituting σ = 0, α = 0, β = 0 and e = 0,
the solution of equations (6) and (7) is r1 = 1, r2 = 1
and from equation (3), n = 1. Now we assume that the
solution of equations (6) and (7) for σ1 �= 0, σ2 �= 0,
α �= 0 and β �= 0 as r1 = 1 + ε1, r2 = 1 + ε2, ε1,
ε2 << 1. Substituting these values of r1 and r2 in the
equations (4) and (5), we get

ξ = μ − 1

2
+ ε2 − ε1

η = ±
√

3

2

[
1 + 2

3
(ε2 + ε1)

]
(8)

Now, substituting the values of r1 = 1+ε1, r2 = 1+ε2
and ξ , η from equations (8) to the equations (6) and
(7) and neglecting second and higher order terms, we

obtain

ε1 = −1

3
α − 1

2
e2 − 1

2
σ,

ε2 = −1

3
β − 1

2
e2.

Thus, the coordinates of the non-collinear libration
points L4,5 are

ξ = μ − 1

2
+ (α − β)

3
+ σ

2
,

η = ±
√

3

2

[
1 − 2

3

{
(α + β)

3
+ e2 + σ

2

}]
Using the relation (4), i.e. β = α (1−μ) k /μ , we have

ξ = μ − 1

2
+ α

3

[
1 − (1 − μ)k

μ

]
+ σ

2
, (9)

η = ±
√

3

2

[
1 − 2

3

{
α

3

(
1 + (1 − μ)k

μ

)
+ σ

2
+ e2

}]
(10)

Thus, there exist two non-collinear libration points L4,5
forming a scalene triangle with the primaries as r1 �= r2.
The analytical solution of the equations (9 and 10) is
given in Table 2.

• For e = 0, the results are in conformity with
Idrisi et al. (2017).

• For e = 0 and σ = 0, the results are in confor-
mity with Idrisi (2017).

• For k = 0, the results are agreed with Singh et
al. (2012).
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Table 2. Non-collinear libration points L4,5 (ξ,±η) for μ = 0.1 and
k = 0.001.

e σ = 0, α = 0 σ = 0.1, α = 0 σ = 0.1, α = 0.2
ξ ± η ξ ± η ξ ± η

0 −0.4 0.866025 −0.35 0.837158 −0.283933 0.798321
0.1 −0.4 0.860252 −0.35 0.831384 −0.284594 0.792936
0.2 −0.4 0.842931 −0.35 0.814064 −0.286576 0.776781
0.3 −0.4 0.814064 −0.35 0.785196 −0.289879 0.749855
0.4 −0.4 0.773649 −0.35 0.744782 −0.294504 0.712159
0.5 −0.4 0.721688 −0.35 0.692821 −0.300451 0.663693
0.6 −0.4 0.658179 −0.35 0.629312 −0.307717 0.604456
0.7 −0.4 0.583124 −0.35 0.554256 −0.316306 0.534451
0.8 −0.4 0.496521 −0.35 0.467654 −0.326216 0.453673
0.9 −0.4 0.398372 −0.35 0.369504 −0.337447 0.362125
1.0 −0.4 0.288675 −0.35 0.259808 −0.35 0.259808

• For e = 0 andα = 0, the results are in conformity
with those of Bhatnagar and Hallan (1979).

• For e = 0, σ = 0 andk =0, the results are in
agreement with Bhatnagar and Chawla (1979).

• For e = 0, σ = 0 and α = 0, the results are
totally agreed with Szebehely (1967).

When we consider the only effect of eccentricity e
on the non-collinear libration points L4,5, it is observed
that the non-collinear libration points form an isosce-
les triangle with the primaries and as e increases the
libration points L4,5 move vertically downward (Fig-
ure 3(a)). Figure 3(b) shows the effect of oblateness
and eccentricity on L4,5, when we include the oblate-
ness effect, the libration points slightly displaced to the
right-side from its previous position (when σ = 0)
and form scalene triangle with the primaries and as
e increases the libration points L4,5 move vertically
downward. Figure 3(c) shows the albedo and oblate-
ness effect on libration points L4,5 with respect to e and
it is observed that the libration points L4,5 are forming
scalene triangle with the primaries and as e increases
the abscissa (ξ ) and ordinate (η) of libration points L4,5
decreases resultingL4,5 move downward and displaced
to the left-side.

6. Stability of libration points L4,5

The variational equations are obtained by substituting
ξ = ξo + ε and η = ηo + δ in the equations of motion
(equation 2), where (ξo, ηo) are the coordinates of libra-
tion points and ε, δ << 1, i.e.

ε′′ − 2δ′ = ε�∗0
ξξ + δ�∗0

ξη,

δ′′ + 2ε′ = ε�∗0
ξη + δ�∗0

ηη. (11)

Here we have taken only linear terms in ε and δ. The
subscript in �∗ indicates the second partial derivative
of �∗ and superscript o indicates that the derivative
is to be evaluated at the libration point (ξo, ηo) .The
characteristic equation corresponding to equation (11)
is

λ4 +
(

4 − �∗0
ξξ − �∗0

ηη

)
λ2 + �∗0

ξξ�
∗0
ηη −

(
�∗0

ξη

)2 = 0.

(12)

where

�∗0
ξξ = 3

4

[
1 − 2

3
(1 − 3μ)α + 2

3
(2 − 3μ)β

]

−3

4

[
1 − 4μ + 1

6
(3 − 19μ) + 1

3
μβ

]
σ

+9

8

[
1 − 1

9
(5 − 17μ)α + 1

9
(12 − 17μ)β

]
e2,

�∗0
ξη = 3

√
3

2

[
μ − 1

2
+ 1

9
(1 + μ)α − 1

9
(2 − μ)β

]

+
√

3

4

⌈
1 + 4μ − 1

2
(1 − μ)

α − 1

3
(4 − 21μ) β

⌉
σ −

5
√

3

8

[
(1 − 2μ) + 1

15
(9 − 13μ)α

+ 1

15
(4 − 13μ)β

]
e2,
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Figure 3. (a) L4, 5 in 0 ≤ e ≤ 1; μ = 0.1, k = 0.001, σ = 0, α = 0. (b) L4, 5 in 0 ≤ e ≤ 1; μ = 0.1, k = 0.001, σ = 0.1,
α = 0. (c) L4, 5 in 0 ≤ e ≤ 1; μ = 0.1, k = 0.001, σ = 0.1, α = 0.2.

�∗0
ηη = 9

4

[
1 + 2

9
(1 − 3μ)α − 2

9
(2 − 3μ)β

]

+3

4

[
1+ 1

18
(29−45μ)α− 1

9
(8−39μ)β

]
σ

+3

8

[
1+ 1

9
(19−39μ)α− 1

9
(20 − 39μ)β

]
e2.

Let λ2 = �, therefore equation (12) becomes

�2 + q1� + q2 = 0 (13)

which is a quadratic equation in � and its roots are given
by

�1,2 = 1

2

(
−q1 ± √

D
)

(14)
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Figure 4. (a) e versus μc; k = 0.001; α = 0.1; σ = 0.01. (b) α versus μc; k = 0.001; e = 0.01; σ = 0.01. (c) σ versus
μc; k = 0.001; α = 0.1; e = 0.01.

where q1 = 4 − �∗0
ξξ − �∗0

ηη; q2 = �∗0
ξξ�

∗0
ηη −(

�∗0
ξη

)2 ; D = q2
1 − 4q2.

The motion near the Libration point (ξo, ηo) is said
to be bounded if D ≥ 0, i.e.

[
1 − 27μ + 27μ2 +

(
9k − 3

k

μ
− 6μ − 12kμ

+6μ2 + 6kμ2)α
]
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+
[
−42μ + 36μ2 +

(
13

3
− 130

3
k + 7

3μ
k − 67

2
μ

+82kμ + 53

2
μ2 − 41kμ2

)
α

]
σ

+
[
−3− 45μ+45μ2+

(
17

3
− 11

3
k − 23

6μ
k − 63

2
μ

+22kμ + 49

2
μ2 − 29

2
kμ2

)
α

]
e2 ≥ 0 (15)

For α = 0, σ = 0 and e = 0, μc = 0.03852089650
4551. . .. is the critical value of mass parameter in clas-
sical case (Szebehely 1967). When α �= 0, σ �= 0,

Table 3. Non-collinear
libration points L4,5 (ξ,± η)
in Sun–Earth system.

α ξ ± η

0.0 −0.499997 0.865864
0.1 −0.466665 0.846619
0.2 −0.433333 0.827373
0.3 −0.400001 0.808127
0.4 −0.366671 0.788881
0.5 −0.333338 0.769635
0.6 −0.300006 0.750389
0.7 −0.266674 0.731143
0.8 −0.233342 0.711897
0.9 −0.200001 0.692652
1.0 −0.166678 0.673406

e �= 0, we suppose that μc = μ∗ + γ1α + γ2σ +
γ3− e2 as the root of the equation (15), where, μ∗ =
0.0385208965. . . and γ1, γ2, γ3 are to be determined in
a manner such that D = 0. Therefore, we have

γ1 = −k − 3kμo + 2μ2
o + 2kμ2

o

9μo(1 − 2μo)
,

γ2 = 2(7μo − 6μ2
o)

9(1 − 2μo)
, γ3 = −1 + 15μo − 15μ2

o

9(1 − 2μo)
.

Thus, μc = 0.0385208965. . . − (0.00891747

+2.78224 k)α + 0.0627796σ

−0.187267e2 (16)

The critical mass parameter μc decreases as the
eccentricity of the orbits of the primaries and lumi-
nosity factor α increase and is valid only in the range
0 ≤ e ≤ 0.45033 and 0 ≤ α ≤ 1 respectively (Fig-
ure 4(a) and (b)), but μc increases uniformly as the
oblateness factor σ increases (Figure 4(c)).

7. Application to real systems

Let us consider an example of the Sun–Earth system in
the restricted three-body problem in which the smaller
primary m2 (oblate spheroid) is taken as the Earth and
the bigger one m1 as Sun. From the astrophysical data
we have: Mass of the Sun (m1) = 1.9891 × 1030 kg;
Mass of the Earth (m2) = 5.9742 × 1024 kg; axes of
the Earth: a = 6378.140 km and c = 6356.755 km;
mean distance of Earth from the Sun = 1 = 1.5 ×

Figure 5. L4,5 in Sun–Earth system; 0 ≤ α ≤ 1.
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Figure 6. �1,2 in Sun–Earth system.

Figure 7. μc in Sun–Earth system.

1011 m; luminosity of Sun = 3.9×1026W; eccentricity
of Earth = 0.0167; flux received by Earth from the
Sun = 1379 W/m2; albedo of Earth = 0.3, i.e. 30% of
energy reflected back to space by the Earth, therefore
the luminosity of Earth = 5.2 × 1016 W.

In dimensionless system, μ = 0.00000300346, a =
0.0000426352, c = 0.0000424923, e = 0.0167, k =
1.3 × 10−10. Therefore, σ = 2.43294 × 10−12, β =
0.0000443931 α, and n = 1 + 0.75 e2.

From the equations (9) and (10), the non-collinear
libration points obtained for various values of α in Sun-
Earth system are given in Table 3.

From Table 3 and Figure 5, this is observed that the
non-collinear libration points move towards the bigger
primary m1 as α increases in the interval [0, 1]. Also,
as α increases the abscissa (ξ ) of L4,5 increases while
the ordinate (η) decreases and hence, the shape of the
scalene triangle formed by L4,5 from the primaries m1
and m2 reduces.

Since �1 < 0 in the interval 0 ≤ α ≤ 0.00723894
and �2 < 0 in 0 ≤ α ≤ 1 (Fig. 6), the roots of the
characteristic equation (13) are pure imaginary in the
interval 0 ≤ α ≤ 0.00723894. Thus, the non-collinear
libration points L4,5 in Sun–Earth system are stable for
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0 ≤ α ≤ 0.00723894 and the value of critical mass
parameter μc decreases as α increases (Figure 7).

8. Conclusion

In this paper we have established a relation between β

and α and it is shown that as α increase, β also increases
for different values of μ but if α and μ increases simul-
taneously, β decreases (Figure 1). The mean-motion
of the primaries depends upon the eccentricity ‘e’ of
the primaries and oblateness factor ‘σ ’ and as e and σ

increases the mean-motion also increases (Figure. 2).
There exist two non-collinear libration points L45, and
the equations (9) and (10) represent the location of non-
collinear libration points L4,5 (ξ, ±η), i.e.

ξ = μ − 1

2
+ α

3

[
1 − (1 − μ)k

μ

]
+ σ

2
,

η = ±
√

3

2

[
1 − 2

3

{
α

3

(
1 + (1 − μ)k

μ

)
+ σ

2
+ e2

}]
and it is verified that for k = 0, the results are

agreed with Singh et al. (2012); for e = 0, the results
are in conformity with Idrisi et al. (2017); for e = 0
and σ = 0, the results are in conformity with Idrisi
(2017); for e = 0, σ = 0 and α = 0, the results are
in total agreement with Szebehely (1967); for e = 0,
σ = 0 and k = 0, the results are in agreement with
Bhatnagar and Chawla (1979); for e = 0 and α = 0,
the results are in conformity with those of Bhatnagar
and Hallan (1979). When we consider the only effect
of eccentricity e on the non-collinear libration points
L4,5, it is observed that the non-collinear libration points
form an isosceles triangle with the primaries and as
e increases the libration points L4,5 move vertically
downward (Figure 3(a)). Figure 3(b) shows the effect of
oblateness and eccentricity on L4,5, when we include
the oblateness effect, the libration points slightly dis-
placed to the right-side from its previous position (when
σ = 0) and form scalene triangle with the primaries
and as e increases the libration points L4,5 move ver-
tically downward. Figure 3(c) shows the albedo and
oblateness effect on libration points L4,5 with respect
to e and it is observed that the libration points L4,5 are
forming scalene triangle with the primaries and as e

increases the abscissa (ξ ) and ordinate (η) of libration
points L4,5 decreases resulting L4,5 move downward
and displaced to the left-side. Finally, the libration
points L4,5 are stable for the critical mass parameter
μc = 0.0385208965. . . − (0.00891747 + 2.78224 k)

α + 0.0627796 σ − 0.187267 e2 and the critical mass
parameter μc decreases as the eccentricity of the orbits
of the primaries and luminosity factor α increase and
is valid only in the range 0 ≤ e ≤ 0.45033 and
0 ≤ α ≤ 1 respectively (Figure 4(a) and (b)) but μc
increases uniformly as the oblateness factor σ increases
(Figure 4(c)). Also, an example of Sun-Earth system is
taken in the previous section as a real application and
this is observed that the non-collinear libration points
move towards the bigger primary m1 as α increases
in the interval [0, 1]. Also, as α increases the abscissa
(ξ ) of L4,5 increases while the ordinate (η) decreases
and hence, the shape of the scalene triangle formed
by L4,5 from the primaries m1 and m2 reduces. Since
�1 < 0 in the interval 0 ≤ α ≤ 0.00723894 and
�2 < 0 in 0 ≤ α ≤ 1 (Figure 6), the roots of the
characteristic equation (13) are pure imaginary in the
interval 0 ≤ α ≤ 0.00723894. Thus, the non-collinear
libration points L4,5 in Sun–Earth system are stable for
0 ≤ α ≤ 0.00723894 and the value of critical mass
parameter μc decreases as α increases (Figure 7).
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