
Research Article

Drone challenge: A platform
for promoting programming
and robotics skills in K-12 education

Aurelio Bermúdez , Rafael Casado, Guillermo Fernández,
Marı́a Guijarro and Pablo Olivas

Abstract
The development of skills related to computer programming and robotics and the introduction of computational thinking
principles in high schools are worldwide trends today. An effective way of initiating young students in this world consists in
proposing them stimulating challenges. This work presents a robotic platform that has been successfully used to develop a
competition (called Drone Challenge) in which students had to program the navigation system for a simulated unmanned
aerial vehicle (or drone). Both the competition and the supporting platform are described in detail. In particular, the article
provides a deep technical description of the main components of the platform, namely the drone simulator and the
navigation development framework. The results of the survey conducted after the challenge point to the suitability of the
working platform deployed.

Keywords
Engineering education, computational thinking, K-12 education, STEM education, ICT/computing skills, educational
robotics

Date received: 28 February 2018; accepted: 29 November 2018

Topic: Service Robotics
Topic Editor: Marco Ceccarelli
Associate Editor: Erwin-Christian Lovasz

Introduction

In the literature, many works can be found proposing ways

to teach computer programming and, in general, to engage

K-12 students with Science, Technology, Engineering, and

Mathematics (STEM) subjects. Most of them are focused

on robotics programming. For example, He et al.1 describe

a summer K-12 robotics course. Bower2 discusses strate-

gies for teaching beginner students how to program mobile

robots for autonomous operation. In the study by Ilori and

Watchorn,3 a robotics mentorship program mixes under-

graduate engineering students with primary and secondary

ones. A robotics unit is integrated into a fourth-grade sci-

ence curriculum.4 West et al.5 rely on Arduino-based robot

kits and real and simulated exploration rovers. In many

cases, these proposals are based on the development of

robotics challenges for students, such as the well-known

RoboCupJunior,6 the IT-Adventures,7 the Junior Soccer

Simulation,8 and the Zero Robotics9 competitions. Game-

based learning environments have also been used to moti-

vate young students. This is the case of the LOGO-like

environment proposed by Paliokas et al.10 and the robot

Computing Systems Department, Albacete Research Institute of

Informatics, University of Castilla-La Mancha, Campus Universitario,

Albacete, Spain

Corresponding author:

Aurelio Bermúdez, Albacete Research Institute of Informatics, University

of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.

Email: aurelio.bermudez@uclm.es

International Journal of Advanced
Robotic Systems

January-February 2019: 1–19
ª The Author(s) 2019

DOI: 10.1177/1729881418820425
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-3313-4078
https://orcid.org/0000-0002-3313-4078
mailto:aurelio.bermudez@uclm.es
https://doi.org/10.1177/1729881418820425
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881418820425&domain=pdf&date_stamp=2019-01-06

game environment described by Shim et al.,11 which com-

bines tangible user interfaces with an educational robot.

At the same time, there is a new trend in K-12 education,

referred to as computational thinking. Computational think-

ing is based on the principle of applying concepts and prac-

tices borrowed from the computer programming world to

solve problems in any discipline (not only the computing

one). Computational concepts include sequences, loops, con-

ditionals, operators, and so on. Some examples of computa-

tional practices are experimentation and iteration, testing and

debugging, abstracting and modularizing, and reusing and

mixing. Since the seminal work of Wing,12 the number of

initiatives introducing these ideas in the teaching/learning

process at K-12 level has notably grown. A complete review

of such efforts can be found in the study by Heintz et al.13

Perhaps the most popular approaches are the Scratch,14

Blocky,15 and Code.org16 block-based (or visual) program-

ming environments. Turchi and Malizia17 suggest extending

this kind of environments with tangible user interfaces.

Alternative initiatives to block-based coding18 rely on digital

storytelling, and studies in the literature 19,20 propose using

robotics (like the current work) for promoting computational

thinking. Visual programming and robotics also meet at the

popular Makeblock platform21 and in the LEGO-based plat-

form described by Yadagiri et al.22 Finally, Garcı́a-Peñalvo

and Mendes23 explore the effects of recent computational

thinking experiences in pre-university education.

In this context, and with the goal of promoting skills

related to computer programming and robotics among the

secondary school students of the Spanish region of Castilla-

La Mancha, the Faculty of Computer Science Engineering of

the University of Castilla-La Mancha24 designed a drone

programming competition consisting in the development

of the automatic navigation system for an unmanned aerial

vehicle.25 The name of this competition is Drone Chal-

lenge,26 and its two first editions were carried out from April

to June 2017 and from February to April 2018, respectively.

In this work, aside from describing the goals, rules and

phases of the competition, and the way in which it was

carried out, we present in detail the working platform

deployed for the participants, since we consider that it is

an excellent baseline for the development of computer pro-

gramming skills at K-12 level. At a glance, the platform

allows the students to design their proposals using a devel-

opment environment based on Matlab/Simulink [version:

R2017a, MathWorks].27 Then, they can evaluate the perfor-

mance of their designs in a simulation environment based on

the robot operating system (ROS)28 and Gazebo.29 Further-

more, the article provides the results of a survey conducted

after the competition with the aim of collecting the partici-

pants’ opinion about the tools employed and the develop-

ment of the challenge.

To sum up, the main contributions of this work are

threefold: (1) the proposal of a complete robotic platform

for the development and test of drone navigation systems;

(2) the description of a challenge for secondary students

based on this platform; (3) an evaluation of both the plat-

form and the competition, based on the opinions provided

by the participants in the event.

The rest of this work is structured as follows. First, in the

second section, the Drone Challenge competition is

described. Then, in the third section, the working platform

is detailed. After that, in the fourth section, the contents of the

survey proposed and an overview of the responses collected

are presented. Finally, in the fifth section, conclusions and

some future works derived from this work are summarized.

The drone challenge competition

Drone Challenge is a contest for student teams, in which

each of them must program the automatic navigation sys-

tem for an unmanned aerial vehicle (from now on, just

“drone”). The drone considered is a quadcopter, since this

is the most popular type of drone today. In fact, although

navigation systems are tested in a simulation environment,

the final prize is a commercial drone for each one of the

components of the winner team.

In particular, each team must provide some intelligence

to a simulated quadcopter, so that it is able to take off from

a base, cross several floating frames in a specific order (red,

green, and blue), and finally land over the starting point.

Figure 1 shows the competition arena, in which we can

observe the colored frames, the drone on its takeoff base,

and a golden carpet identifying the allowed flying area. We

assume that the drone is equipped with a camera, which

helps in the process of locating the frames. Each milestone

(crossing a frame, crossing all the frames in the right order,

and landing over the starting point) provides a point for the

try. In case of a tie, the time of each try is also considered.

Obviously, the solution to the challenge is not unique.

Each team can choose its own strategy for the drone navi-

gation system. At the same time, the performance of two

implementations for the same strategy may be different,

resulting in different flight times. Therefore, the challenge

proposed stimulates the creativity of the participants. This

concept is very close to the concept of computational think-

ing. Indeed, the expressions “creative computation” and

“creative thinking” are often used as synonyms or comple-

mentary of computational thinking.

To evaluate the quality of each proposal, the navigation

system developed is tested in different scenarios (or simu-

lated worlds), in which the position of the colored frames,

the takeoff base, and the drone’s initial orientation vary.

Ideally, the drone should exhibit exactly the same behavior

(taking off, crossing the frames in the right order, and land-

ing) in all of them.

Although students have to deal with several complex

tools, an effort has been made to adapt these tools to their

level, not being required to have previous experience with

them. Also, there are lots of low-level implementation

details such as the drone stability control, the way in which

video is processed, and the public–subscribe protocol used

2 International Journal of Advanced Robotic Systems

for the communication between tools, which participants

do not need to know to develop their proposals. Third sec-

tion focuses on all these implementation aspects.

Regarding the phases of the competition, there is an

initial phase, which lasts between 8 weeks and 10 weeks,

in which the enrolled teams have to develop their proposals

in their respective schools. Then, the submitted navigation

systems are assessed to determine the set of teams that will

finally participate in the final phase of the competition. In

the first edition of the competition, 20 teams coming from

all the provinces of the region of Castilla-La Mancha were

enrolled in this initial phase. In the second edition, the

number of enrolled teams grew to 62. Since each team is

composed of two, three, or four students supervised by a

teacher, more than 80 people in the first edition and 260

people in the second edition were working in their propos-

als during this phase of the competition.

The final phase took place in the facilities of the Faculty

of Computer Science Engineering, on June 30, 2017 and on

April 23, 2018. Only 7 teams, involving a total of 30 people,

and 14 teams, involving a total of 59 people, participated in

this final phase in each edition. Regarding the scheduling of

the final phase, during the first hour, teams test their naviga-

tion systems in seven different scenarios, and they can make

last-minute tunings to their implementations. Then, all the

proposals are frozen, and three of the previous scenarios are

randomly chosen. During the last hour of the final, proposals

are tested in these three scenarios under the supervision of

the judges of the competition.

A supporting application, the Game Monitor, is avail-

able for the participants during the initial phase of the com-

petition, so that they can know and improve the quality of

their proposals, and it is also employed by the judges during

the final phase. It is a separate Matlab/Simulink program

that connects to the simulation environment to measure the

time required to complete each try. In particular, while the

simulation is running, it provides the time during which

the drone engines are on and shows the location of the

drone in a top view of the scenario (see Figure 2). This tool

is also in charge of checking whether the drone exits the

flying scenario (a 10 � 10 � 4 m3), since this situation

must be penalized (see Figure 3), and whether the try has

reached the maximum allowed time (set to 3 min).

Apart from the Game Monitor, a small client–server appli-

cation was developed for the final phase so that, while the

judges of the competition are assessing proposals, partici-

pants can check their “virtual” place in an instantaneous rank-

ing. To have this ranking updated in real time, each judge uses

a smartphone to fill in a Web form with the results of each try

and sends immediately this information to the server.

Finally, with respect to the interaction with the partici-

pants during the competition, it is mainly supported by its

“official” blog,26 which has been conceived as a dynamic

tool. In this space, students can access to a set of video

tutorials organized in several categories. Figure 4 shows an

example. Through these tutorials, the organization provides

detailed instructions for installing and configuring the work-

ing environment and gives advice and suggestions for the

development of the proposals. These tutorials also offer solu-

tions to the problems or doubts that the participants pose as

they work on their designs. On average, each of these tutor-

ials has received more than 100 views during the first edition

of the challenge and more than 160 views during the second

one. Video tutorials are complemented by the traditional

“Frequently asked questions” section of the blog.

The robotic platform

The working environment employed by the participants in

the Drone Challenge competition described in the previous

section is composed of two main components: a drone simu-

lator and a navigation development framework. Next, we

detail both components. As said above, most of the details

provided here are hidden for the students, but they would be

available if we wanted, for example, to use this platform for

designing a different competition or for teaching purposes.

Figure 1. The competition arena.

Bermúdez et al. 3

Drone simulator

The drone simulator (Figure 5) is based on Gazebo,29 a

realistic robotics simulator included in the popular ROS.28

It runs on Ubuntu and allows testing the navigation system

programmed in a simulated scenario. Students just must

launch the Gazebo simulator, specifying the name of the

scenario in which their program will be tested.

This subsection focuses on the design of the drone

model incorporated into the simulator. As we will see, we

have used Simulink for solving the model. Then, the solu-

tion obtained has been programmed in the ROS/Gazebo

plugin managing the simulated drone.

Quadcopter state-space model. To model and control the

drone, we have used the state–space theory of linear time-

invariant systems.30 At first, the nonlinear system dynamics

is represented by the following state and output equations

_x ¼ fðx;uÞ

y ¼ gðxÞ

Where u is the input vector, x is the state vector, and y is

the output vector. Next, we define these vectors.

First, the system input vector u ¼ ½O NE O NW

O SE O SW �T allows us to handle the rotor speed. Note that

Figure 2. Game monitor snapshot.

Figure 3. Game monitor snapshot (drone out of the scenario).

4 International Journal of Advanced Robotic Systems

we use the transpose notation, expressing column vectors

as rows.

From now on, we will use the
e½� notation to refer to the

earth coordinate system, where the X and Y axes are located

on the floor, and the Z axis remains vertical, so that
eX � eY ¼ eZ . In the same way, we use the

b½� notation

to refer to the drone (or “body”) coordinate system,

arranged as shown in Figure 6, and equally satisfying
bX � bY ¼ bZ .

Let vector p ¼ e½x y z� T be the drone position according

to the earth coordinate system, and let vector

o ¼ e½� q � T be the drone orientation with respect to the

X (roll), Y (pitch), and Z (yaw) axes of the earth. Let

v ¼ b½ _x _y _z� T and � ¼ b½!x !y !z � T be, respectively, the

linear and angular speeds with respect to the drone

coordinate system. Starting from this, the complete

state of the drone is defined by means of the following

vector: ½p o v ��T. Figure 7 shows the way in which

Simulink receives these 12 values from the Gazebo

simulator.

Considering that the drone behavior does not depend on

its location, from the point of view of the sustentation

control we do not need the information provided by

Figure 4. The “how to cross a frame” video tutorial.

Figure 5. Drone simulator developed in Gazebo.

Figure 6. Drone reference system (X axis in red, Y axis in green,
and Z axis in blue).

Bermúdez et al. 5

e½p � T. Therefore, the system can be defined by means of

the internal state vector x ¼ ½e� eq b� bv �T.

Finally, we define the output vector y ¼ b½v !z� T, so that

it represents the low-level drone control. That is, we will be

able to obtain the required forward speed in its three axes

and the required rotation speed over the vertical axis.

Nonlinear drone dynamics. After defining the input (u), state

(x), and output (y) vectors, we have to model the system’s

behavior by means of the function _x ¼ fðx; uÞ. For this, we

apply rigid body dynamics.

Translation movement is given by the set of forces

acting over the object, according to the expression

m b€p ¼
P

F. Similarly, rotation movement is given by the

set of moments acting over the object, according to the

expression I _�þ�� I�þ�� IrO r ¼
P

M. Fortu-

nately, it is not necessary to handle directly these expres-

sions if we employ the rigid body model with six degrees of

freedom (DOF) incorporated into the aerospace Simulink

library and shown in Figure 8. The 6-DOF block requires

defining the mass and the inertia of the object as well as the

different forces and moments that affect it. It provides var-

ied information about the object movement, which we

employ to build the output vector (y).

The drone modeled looks like the one shown in left side

of Figure 9. Rotors are arranged in a square, and they are

located at 25 cm from the center of gravity. Each propeller

covers a circumference of 20 cm in diameter. We have

considered a mass of 300 g, and a total inertia equal to the

inertia of a 40 � 40 �5 cm3 box with uniform density. The

right side of Figure 9 shows the drone inertial properties,

defined according to the simulation description format

(SDF) specification.31

m ¼ 300 g; I ¼
10:225 0 0

0 10:225 0

0 0 20

2
64

3
75� 10�4

Translation equations. The set of forces contributing to the

drone translation movement are given by the expression

m€p ¼
P

F ¼ ~Fg þ~FT þ~FD (see Figure 10). Next, we

describe these forces, called gravity (~Fg), aerodynamic

thrust (~FT), and aerodynamic drag (~FD).

The 6-DOF Simulink block requires input forces and

moments expressed in the drone coordinate system. How-

ever, the gravity is initially defined with respect to the earth

coordinate system, as e~Fg ¼ e½0 0� mg� T. Therefore, we

can apply the transformation b~Fg ¼ De~Fg , where D is the

direction cousin matrix (DCM) defining the orientation of

the drone in the scenario. This matrix is available at the

Figure 7. Drone position and orientation (odometry) in Simulink.

6 International Journal of Advanced Robotic Systems

DCMbo output of the 6-DOF block (see Figure 8). Figure 11

shows this transformation.

The angular speed of each rotor is O i; i2 fNE;
NW ; SE; SWg, being its maximum value O max

i ¼
15;000 r=min¼ 1570:8 rad=s, a typical value in real
components.

We define the aerodynamic thrust force T as the one

produced (in opposite sense) by the air pushed by a

propeller. This force is proportional to the square of the

propeller rotation speed O , that is, T ¼ kFTO 2. Assuming

that a rotor can produce a typical maximum force of 1 kg¼
9.8 N, we obtain: kFT ¼ 3:9718 kg� 10�6m.

Altogether the four drone rotors will produce a resul-

tant force (b~FT) in the direction and sense of the drone

Z axis

Figure 8. Use of the 6-DOF Simulink block. DOF: degree of freedom.

<inertial>
<mass>0.300</mass>

<!-- <box><size>0.40 0.40 0.05</size></box> -->
<inertia>

<ixx>0.0010225</ixx> <!-- 1/12*mass*(y*y+z*z) -->
<ixy>0.0000000</ixy>
<ixz>0.0000000</ixz>
<iyy>0.0010225</iyy> <!-- 1/12*mass*(x*x+z*z) -->
<iyz>0.0000000</iyz>
<izz>0.0020000</izz> <!-- 1/12*mass*(x*x+y*y) -->

</inertia>
</inertial>

Figure 9. Quadcopter aspect and inertial properties.

Bermúdez et al. 7

b~FT ¼

0

0

XfNE; NW ; SE; SWg

i

bT i

2
66664

3
77775

¼ kFT

0

0

O 2
NE þ O 2

NW þ O 2
SE þ O 2

SW

2
664

3
775

Figure 12 shows the Simulink model implementing this

force.

Finally, we define the aerodynamic drag force (~FD) as the

friction with the air produced in opposite sense to the move-

ment of the drone. This force depends on the shape of the object

in each axis (KFD) and on the square of the forward speed

b~FD ¼ �KFD

b _xj _xj
_yj _yj
_zj_zj

2
64

3
75;KFD ¼

0:6350 0 0

0 0:6350 0

0 0 2:3520

2
64

3
75

In our model, the KFD constant has been set assuming a

similar friction in the X and Y axes (although the fuselage is

not exactly equal) to obtain a maximum horizontal speed of

20 km=h ¼ 5:55 m=s, and a maximum vertical speed of

3 m=s.

Figure 13 shows the Simulink model implementing this

force.

Rotation equations. As said before, the moments contributing

to the rotation movement experienced by the drone are

given by the expression I _�þ�� I�þ�� IrO r ¼P
M ¼ b~MT þ b~MDR þ b~MD, which has been modeled

in Figure 14.

Next, we describe these moments, called aerodynamic

thrust (b~MT), rotor aerodynamic drag (b~MDR), and aero-

dynamic drag (b~MD).

We define the aerodynamic thrust moment (b~MT) as the

rotation experienced by the drone over the X (roll) and Y

(pitch) axes when the four propellers do not generate the

same thrust

b~MT ¼
l cosð45Þ 0 0

0 l sinð45Þ 0

0 0 0

2
64

3
75

T NW þ T SW � TNE � TSE

T SW þ TSE � T NW � T NE

0

2
64

3
75

Regarding the (longitudinal) X axis, rotors producing a

positive moment are those located on the left side (NW and

SW). On the other hand, regarding the (perpendicular) Y

axis, rotors producing a positive moment are those located

on the rear side (SW and SE). Since T ¼ kFTO 2, the pre-

vious expression can be represented by the Simulink dia-

gram shown in Figure 15.

The turn of a rotor produces a drone rotation in opposite

sense. Rotors can turn at different speeds, according to the

sense indicated in Figure 16 left. Collectively, this pro-

duces a rotor aerodynamic drag moment (b~MDRÞ, defined

by the following expression and represented in Simulink as

shown in Figure 16 right

b~MDR ¼ kMDR

0

0

O 2
NE � O 2

NW � O 2
SE þ O 2

SW

2
664

3
775;

kMDR ¼ 1:3581� 10�7

Finally, we define the aerodynamic drag moment (b~MD)

as the friction with the air when the drone rotates over itself

Figure 10. Drone translation movement.

Figure 11. Gravity force in the drone coordinate system.

8 International Journal of Advanced Robotic Systems

b~MD ¼ �KMD

b _�j _�j
_qj _qj
_ j _ j

2
664

3
775;

KMD ¼
0:0621 0 0

0 0:0621 0

0 0 0:0039

2
664

3
775

Again, we assume similar frictions in the X and Y axes.

The KMD value has been set so that the drone, without

gravity, can rotate over itself up to 2 r=min. Figure 17

shows the Simulink model implementing this moment.

Linearization. After modeling the above equations in Simu-

link, they are linearized using the linear analysis tool. Fig-

ure 18 shows the complete system, with the input and the

output in open loop. The operating point applied is the

drone perfectly balanced, with null linear and angular

speeds. The input is similar for all the rotors, so that each

one compensates a quarter of the weight of the drone.

After the linearization, we obtain the transformation for

the initial system expression, where the values obtained for

the state (A), input (B), and output (C) matrices are

_x ¼ fðx; uÞ
y ¼ gðxÞ

�
!

_x ¼ Axþ Bu

y ¼ Cx

�

Figure 12. Aerodynamic thrust force.

Figure 13. Aerodynamic drag force.

Bermúdez et al. 9

A ¼

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 g 0 0 0 0 0 0

�g 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
666666666666666664

3
777777777777777775

B ¼

0 0 1 0

0 0 0 1

�0:2506 0:2506 �0:2506 �0:2506

�0:2506 �0:2506 0:2506 �0:2506

0:0584 �0:0584 �0:0584 0:0584

0 0 0 0

0 0 0 0

0:0114 0:0114 0:0114 0:0114

2
666666666666666664

3
777777777777777775

C ¼

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

2
666664

3
777775

Low-level control. We have defined previously the system

output as y ¼ b½ _x _y _z !z� T, which corresponds to the drone

forward speed (in all axes) and rotation speed (in the Z

axis). Now, we define a reference to follow (r), as a vector

similar to y, so that y� r represents the instantaneous error

that we are committing (_ξ).

Once we have linearized the nonlinear system modeling

of the quadcopter, we apply a controlled feedback of the

state and the accumulated error (ξ) between the output

obtained and the reference to follow, which is defined by

the following expressions

_x ¼ Axþ Bu

y ¼ Cx

_ξ ¼ y� r

u ¼ �Kxx�Kyξ

To compute the control matrices Kx and Ky, we first

represent the previous expressions in matrix notation

_x
_x

� �
¼

A 0

C 0

� �
x

x

� �
þ

B

0

� �
uþ

0

�1

� �
r

Then, we define a new system, modeling the follow-up

error e ¼
xe

xe

� �
. The resulting system is

_xe

_xe

� �
¼

A 0

C 0

� �
�

B

0

� �
½Kx Ky �

� �
xe

xe

� �

Since the obtained system does not have an input, we

can apply the pole placement method. The chosen eigen-

values are ½�6 � 6 � 7 � 7 � 8 �8 � 8 � 8 � 9

�9 � 9 � 9�. These values guarantee that the system is

stable and does not fluctuate, since they are negative and

real numbers. Constants obtained are

Figure 14. Moments involved in the drone rotation.

10 International Journal of Advanced Robotic Systems

Kx ¼

�334:1327 �334:1327 �29:9223 �29:9223 72:7456 �167:9315 167:9315 334:1327

0 0 29:9223 �29:9223 �72:7456 �167:9315 �167:9315 334:1327

0 0 �29:9223 29:9223 �72:7456 167:9315 167:9315 334:1327

0 0 29:9223 29:9223 72:7456 167:9315 �167:9315 334:1327

2
6664

3
7775

Ky ¼

�307:4 307:4 1580:3 308:1

�307:4 �307:4 1580:3 �308:1

307:4 307:4 1580:3 �308:1

307:4 �307:4 1580:3 308:1

2
6664

3
7775

Figure 15. Aerodynamic thrust moment.

Figure 16. Drone rotors and rotor aerodynamic drag moment.

Bermúdez et al. 11

To conclude this subsection, we will outline the beha-

vior of the ROS/Gazebo plugin developed after solving

the model. Each simulation cycle starts by reading the

drone X and Y values. Then, considering the proposed

reference, the instantaneous error is computed. The

result of this computation is used to update the accumu-

lated error. After that, the set of matrix operations pre-

viously described are performed, producing the rotation

value for all the rotors. As a result, the drone follows the

given reference.

Navigation development framework

The navigation development framework (Figure 19, left

panel) is based on the popular engineering tool Matlab/

Simulink,27 which can be run over different operating sys-

tems (including Microsoft Windows, macOS, and Ubuntu).

Students define the drone’s behavior by programming the

autopilot block on the left. As we will see, it can be done in

an easy and visual way, by means of a reduced set of

commands. Note that it is also possible to control the drone

manually using a joystick. The drone simulator block on

the right employs the Matlab Robotics System Toolbox32 to

connect to Gazebo through several ROS topics (Figure 19

right panel).

Quadcopter odometry. Gazebo continuously publishes on a

ROS topic, to which Simulink is subscribed, a vector
e½x y z � T with the quadcopter position and orientation

(Figure 20 left panel). Internally, these data are managed

as a bus called imu, composed of four values, referred as

posX, poxY, posZ, and heading, expressed according to a

reference system located in the middle of the simulated

scenario. Programmers can read these values and take them

into account in their navigation systems. This information

is also displayed by means of a Simulink viewer (Figure 20,

right panel).

Video image processing. The model also receives the video

frames acquired by the drone’s built-in camera. This cam-

era presents the following characteristics:

� Refresh rate: 5 Hz

� Resolution: 320� 240 pixels

� Color range: 24 bits= pixel

� Angle of view: 90�

� Projection plane: 160 cm from the focal point.

All the above means that, if we place a frame on the

projection plane, its size in pixels on the image corresponds

to its actual size in centimeters.

Each frame is automatically processed, looking for any

colored pixel. Figure 21 shows an example of this

Figure 17. Aerodynamic drag moment.

Figure 18. Drone non-linear model.

12 International Journal of Advanced Robotic Systems

processing. Plot on the right shows the red and blue frames

detected in the image shown on the left. The result of this

processing is available for the programmers through the

cam bus. More in detail, this bus is composed of three fields

(called, respectively, red, green, and blue) that provide the

limits of the image region where the corresponding frame

has been located, referred to as N (north), S (south), E

(east), and W (west) (see Table 1).

Figure 20. ROS topic publishing quadcopter odometry. ROS: robot operating system.

Figure 21. Example of video image processing.

Figure 19. Navigation development framework (high-level view).

Table 1. Data provided to the programmer in the example of
Figure 21.

N S E W

Red 50 40 �53 �72
Green �inf inf �inf inf
Blue 22 �25 61 15

N: north; S: south; E: east; W: west.

Bermúdez et al. 13

From this information, we can conclude whether a frame

is completely displayed on the screen. If so, knowing that

the actual height of each frame is 23 cm, we can infer the

distance X to it by applying the method shown in Figure 22.

In the same way, once the distance has been computed, and

knowing that the actual width of each frame is 43 cm, we can

infer the angle of inclination (in absolute value) with which

we approach by means of the procedure shown in Figure 23.

The following Matlab code fragment implements these

computations:

Quadcopter navigation. Programmers control the movement

of the drone by setting five variables composing the cmd

bus (Figure 24 left). This bus publishes data into a ROS

topic to which Gazebo has been previously subscripted. For

debugging purposes, this bus is monitored by means of a

Simulink viewer (Figure 24 right).

The on variable is a binary value used for activating or

deactivating the drone engines. If it is set to 0, the drone

will drop. Otherwise, it will move according to the rest of

control variables. The velX, velY, and velZ variables are real

numbers between �1 and þ1 that provide the drone with

different velocities according to the drone reference system

(see Figure 6). Finally, the rotZ variable is also a real num-

ber between �1 and þ1 that allows to define a horizontal

turn (around the Z axis).

Programmers define the value for these variables from a

state machine implemented in Stateflow (inside Simulink).

The use of this tool is very easy and intuitive. Figure 25

shows two examples. According to the state machine

shown on the left, the drone continuously starts the engines,

ascends until it reaches an altitude of 2 m, stays in this

position for 3 s, descends until it reaches an altitude of

0.7 m, and finally stops the engines. According to the beha-

vior shown on the right, the drone ascends, and then,

= +

=
L
d +

L
h

=
L
(d + h)

=
L

d + h

L = 0.23

d = 160

h
Lateral
view

Figure 22. Distance to a frame.

=

=
= 0.43

Top view

Figure 23. Angle of inclination.

%% Frame position analysis
d2 ¼ 160^2; % 160^2 pixels
L ¼ 0.23; % frame height
A ¼ 0.43; % frame width
if frame.n > -inf && frame.n < 119 && frame.s > -120

l ¼ frame.n - frame.s;
h ¼ frame.s þ l/2;
frame.d ¼ L/l * sqrt(d2 þ h^2);
ap ¼ frame.e - frame.w;
a ¼ max(A/L * l, ap);
frame.a ¼ acosd(ap/a);

end

14 International Journal of Advanced Robotic Systems

maintaining its altitude, it moves to a specific scenario

position (defined by X ¼ 2 m and Y ¼ 3 m). Finally, it

lands on the floor.

Survey for participants

After the second edition of the Drone Challenge competi-

tion, we asked the participants to answer an anonymous and

voluntary online survey to collect their opinion about dif-

ferent aspects of the challenge. It was answered by exactly

36 people (19 students and 17 teachers), 34 of whom

attended to the final phase of the competition. Therefore,

we consider that their opinions can be representative

enough.

The survey was composed of two parts. Questions in the

first part tried to determine the participant’s profile. In

Figure 24. ROS topic publishing quadcopter commands. ROS: robot operating system.

Figure 25. Two examples of drone behavior programmed in stateflow.

Bermúdez et al. 15

particular, they were asked to indicate their educational

level, their background in programming and robotics, and

their interest in studying a STEM degree (in case of being a

student). Table 2 details the questions composing this part

of the survey. As it can be observed in this and the follow-

ing tables, instead of using a Likert-type scale, most of the

questions are Yes/No questions. The reason for this decision

was that we tried to maintain the concentration of the young

students until the end of the survey, composed of 24

questions.

From the responses provided by the participants, we can

firstly observe that three quarters of the students come from

the “Bachillerato” educational level (see Table 3), that is,

they are about to enroll in an academic degree. According

to Table 4, we may conclude that less than half of the

students are familiar with programming and robotics. On

the other hand, most of the teachers have some background

in programming, but they are not so familiar with robotics

(questions Q3 and Q4). Both findings are not surprising if

we analyze the current curriculum at secondary level. Aside

from that, nearly all the students expressed their interest in

enrolling in an STEM degree (Q5). Most of them were

interested in a computing engineering degree.

The second part of the conducted survey was composed

of three blocks. The first block (see Table 5) was focused

on polling the opinion of the participants regarding the set

of tools composing the working environment and the utility

of video tutorials.

According to the responses collected (see Table 6), the

general opinion about both the development and simulation

environments was positive (Q7 and Q10). However, some

Table 2. Questions related to the participant’s profile.

Question text Possible answers

Q1 Indicate whether you are a teacher or a
student

Teacher/Student

Q2 If you are a teacher, indicate the level of
the students supervised; if you are a
student, indicate the level in which
are were enrolled

ESOa/Bachillerato/
Ciclo Formativo/
Other

Q3 If you are a teacher, indicate whether
you teach programming; if you are a
student, indicate whether you have
received programming classes

Yes/No

Q4 If you are a teacher, indicate whether
you teach robotics; if you are a
student, indicate whether you have
received robotics classes

Yes/No

Q5 If you are a student, indicate whether
you are interested in enrolling in a
STEM degree

Yes/No

Q6 If you have answered “yes,” indicate
que name of the degree

(Open answer)

STEM: Science, Technology, Engineering, and Mathematics.
aSpanish curriculum at secondary level (high school) considers first a four-
year mandatory stage, for students from 12 to 15 years old. This stage is
called “Enseñanza Secundaria Obligatoria (ESO).” Then, there is a two-
year stage, referred to as “Educación Secundaria Superior,” for students
between 16 years and 17 years. In this period, students can take the
“Bachillerato,” oriented to academic degrees, or a “Ciclo Formativo,”
focused on the labor market.

Table 3. Responses to question Q2 (Educational Level).

Students Teachers

ESO Bachillerato
Ciclo

Formativo ESO Bachillerato
Ciclo

Formativo

Q2 5% 74% 21% 6% 82% 12%

Table 4. Responses to Questions Related to the Participant’s
Profile.

Students Teachers

Yes (%) No (%) Yes (%) No (%)

Q3 47 53 82 18
Q4 42 58 47 53
Q5 95 5 n/a n/a

Table 5. Questions related to the working environment.

Question text
Possible
answers

Q7 The development environment (Matlab/
Simulink) is appropriate

Yes/No

Q8 I already knew and was familiar with the
development environment (Matlab/Simulink)

Yes/No

Q9 If you have answered “no,” indicate whether it
has been easy for you to familiarize with
Matlab/Simulink

Yes/No

Q10 The simulation environment (ROS/Gazebo) is
appropriate

Yes/No

Q11 Video tutorials helped me to prepare the entire
working environment

Yes/No

Q12 Video tutorials eased the design of our proposal Yes/No
Q13 Indicate (if you wish) those aspects in the

working environment that should be
improved

(Open answer)

ROS: robot operating system.

Table 6. Responses to questions related to the working
environment.

Students Teachers

Yes (%) No (%) Yes (%) No (%)

Q7 68 32 76 24
Q8 5 95 12 88
Q9 28 72 40 60
Q10 74 26 71 29
Q11 63 37 59 41
Q12 68 32 82 18

16 International Journal of Advanced Robotic Systems

of the participants complained about the computational

power required to run the simulation environment. We

believe that the reason is that many of them employed

Linux virtual machines for running ROS and Gazebo.

Another reason could be the amount of issues when starting

Gazebo (in both the real and the physical machine). Finally,

most of the participants found video tutorials useful in

preparing the working environment and designing their

proposals (Q11 and Q12).

Then, the second block (see Table 7) was focused on the

opinion of the participants about the way in which their

proposals had been assessed. This block of questions was

addressed to those teams that reached the final phase of the

competition.

From the corresponding responses (see Table 8), we

must highlight that a high percentage of both students and

teachers believed that their proposals had been evaluated

fairly. In addition, most of them knew the assessment

procedure.

Finally, the third block (see Table 9) collected the gen-

eral opinion and feelings about the competition. This block

was opened to all the participants in the competition (not

only to those attending to the final phase).

The responses obtained in this last block of questions

(see Table 10) showed that, although more than a half of the

participants considered that the required technical level

was appropriate, there was not a complete consensus about

it (Q17). Perhaps the reason for this is that at this educa-

tional level there is a generalized lack of familiarity with

the Matlab/Simulink tool, as we can see in the responses

provided to questions Q8 and Q9 (in Table 6). On the other

hand, we can see that most of the responses to questions

Q19 to Q21 were positive. Therefore, we may conclude that

participants enjoyed their participation in the event. More-

over, most of the responses to question Q23 were also

positive, which shows that students are willing to partici-

pate in future editions of the challenge.

Conclusions and future works

In this work, we have presented a platform for the devel-

opment of programming and robotics competitions for

young students, such as the Drone Challenge event

described. We consider that this platform is a suitable tool

for being used to practice different aspects related to com-

puter programming and aerial robotics at K-12 level.

Furthermore, this framework may also be used for support-

ing robotics subjects in engineering degree programs,

since, as we have seen, it allows to work at different

abstraction levels.

The results of the survey conducted after the Drone

Challenge competition indicate that participants had a very

Table 7. Questions related to the evaluation of proposals.

Question text
Possible
answers

Q14 I knew the way in which proposals would be
evaluated during the final phase of the
competition

Yes/No

Q15 I think that proposals have been evaluated fairly Yes/No
Q16 Indicate (if you wish) those aspects in the

evaluation procedure that should be
improved

(Open answer)

Table 8. Responses to questions related to the evaluation of
proposals.

Students Teachers

Yes (%) No (%) Yes (%) No (%)

Q14 68 32 73 27
Q15 79 21 93 7

Table 9. Questions related to the opinion about the competition.

Question text
Possible
answers

Q17 Considering that the competition was
addressed to secondary students, the
required technical level is appropriate

Yes/No

Q18 I have received enough information from the
organization about the development of the
competition

Yes/No

Q19 The challenge has been stimulating Yes/No
Q20 I have enjoyed while we were preparing our

proposal
Yes/No

Q21 If you have participated in the final phase of the
challenge, indicate whether you have had fun

Yes/No

Q22 If you are a student, indicate whether this
challenge is motivating to enroll in a STEM
degree

Yes/No

Q23 If you are a student, indicate whether you would
like to participate in future editions of this
challenge, or in similar competitions

Yes/No

Q24 Indicate (if you wish) those general aspects of
the competition that should be improved

(Open answer)

Table 10. Responses to questions related to the opinion about
the competition.

Students Teachers

Yes (%) No (%) Yes (%) No (%)

Q17 58 42 53 47
Q18 79 21 82 18
Q19 79 21 88 12
Q20 74 26 82 18
Q21 95 5 80 20
Q22 53 47 n/a n/a
Q23 84 16 n/a n/a

Bermúdez et al. 17

positive opinion about the working platform and the way in

which the competition had developed.

As future works, after solving the issues related to the

simulation environment (or, alternatively, replacing it by a

real drone platform), we plan to use this tool as a starting

point for the design of future programming challenges for

secondary school students. We also believe that this frame-

work could be useful to develop a research line on auton-

omous navigation for flying robots.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed the receipt of following financial support

for the research, authorship, and/or publication of this article: This

work has been partially supported by the TIN2015-66972-C5-2-R

(MINECO/FEDER) project.

ORCID iD

Aurelio Bermúdez https://orcid.org/0000-0002-3313-4078

References

1. He S, Maldonado J, Uquillas A, et al. Teaching K-12 students

robotics programming in collaboration with the robotics club. In:

IEEE integrated STEM education conference, Princeton, NJ,

USA, 8 March 2014.

2. Bower T. Teaching introductory robotics programming.

IEEE Robot Autom Mag 2016; 23(2): 67–73.

3. Ilori O and Watchorn A. Inspiring next generation of engi-

neers through service-learning robotics outreach and mentor-

ship programme. Int J Adv Robot Syst 2016; 13: 1–7.

4. Eguchi A and Uribe L. Robotics to promote STEM learning:

educational robotics unit for 4th grade science. In: IEEE Inte-

grated STEM Conference (ISEC), Princeton, NJ, USA, 11

March 2017.

5. West J, Vadiee N, McMahon A, et al. From classroom Ardu-

inos to missions on mars: making STEM education accessible

and effective through remotely operated robotics. In: IEEE

Integrated STEM Conference (ISEC), Princeton, NJ, USA, 11

March 2017.

6. Eguchi A. RoboCupJunior for promoting STEM education,

21st century skills, and technological advancement

through robotics competition. Robot Auton Syst 2016;

75: 692–699.

7. Rursch JA, Luse A, and Jacobson D. IT-adventures: a pro-

gram to Spark IT interest in high school students using

inquiry-based learning with cyber defense, game design, and

robotics. IEEE Trans Educ 2010; 53(1): 71–79.

8. Nascimento F, Seidel I, and Faria CR. Junior soccer simula-

tion: providing all primary and secondary students access to

educational robotics. In: Latin American Robotics Symposium

and 2015 3rd Brazilian Symposium on Robotics, Uberlandia,

Brazil, 29–31 October 2015.

9. Liu J, Feenstra W, Hunt M, et al. Students touch space in zero

robotics programming competition with free downloadable

curriculum. In: IEEE Aerospace Conference, Big Sky, Mon-

tana, USA, 1–8 March 2014.

10. Paliokas I, Arapidis C, and Mpimpitsos M. Game based early

programming education: the more you play, the more you

learn. In: Pan Z., et al. (ed.), Transactions on Edutainment

IX. LNCS 7544. Berlin; Heidelberg: Springer-Verlag, 2013,

pp. 115–131.

11. Shim J, Kwon D, and Lee W. The effects of a robot game

environment on computer programming education for ele-

mentary school students. IEEE Trans Educ 2017; 60(2):

164–172.

12. Wing JM. Computational thinking. Commun ACM 2006;

49(3): 33–35.

13. Heintz F, Mannila L, and Färnqvist T. A review of models for

introducing computational thinking, computer science and

computing in K-12 education. In: Frontiers in Education

(FIE), 2016, pp. 1–9. IEEE.

14. MIT Media Lab. Scratch. https://scratch.mit.edu (accessed 28

February 2018).

15. Google, Inc. Blockly. https://developers.google.com/blockly

(accessed 28 February 2018).

16. Kalelioglu F. A new way of teaching programming skills to K-

12 students: Code.org. Comput Hum Behav 2015; 52: 200–210.

17. Turchi T and Malizia A. Fostering computational thinking

skills with a tangible blocks programming environment. In:

IEEE symposium on visual languages and human-centric

computing (VL/HCC), Cambridge, UK, 4–8 September 2016.

18. Kordaki M and Kakavas P. Digital storytelling as an effective

framework for the development of computational thinking

skills. In: EDULEARN17 conference, Barcelona, Spain, 3–5

July 2017.

19. Enrı́quez C, Aguilar O, and Domı́nguez F. Using robot to

motivate computational thinking in high school students.

IEEE Lat Am Trans 2016; 14(11): 4620–4625.

20. Witherspoon EB, Higashi RM, Schunn CD, et al. Developing

computational thinking through a virtual robotics program-

ming curriculum. ACM Trans Comput Educ 2017; 18(1): 1–20.

21. Makeblock Co., Ltd. Makeblock. http://www.makeblock.com

(accessed 20 May 2018).

22. Yadagiri RG, Krishnamoorthy S, and Kapila V. A blocks-

based visual environment to teach robot-programming to

K-12 students. In: Proceedings of the American society for

engineering education (ASEE), Seattle, Washington, 14–17

June 2015.

23. Garcı́a-Peñalvo FJ and Mendes AJ. Exploring the computa-

tional thinking effects in pre-university education. Comput

Hum Behav 2018; 80: 407–411.

24. Faculty of Computer Science Engineering (University of

Castilla-La Mancha). http://esiiab.uclm.es (accessed 28

February 2018).

25. Valavanis K and Vachtsevanos GJ (eds.). Handbook of

Unmanned Aerial Vehicles. Berlin: Springer, 2015.

26. Drone Challenge. http://blog.uclm.es/esiidronechallenge (in

Spanish) (accessed 28 February 2018).

18 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0002-3313-4078
https://orcid.org/0000-0002-3313-4078
https://orcid.org/0000-0002-3313-4078
https://scratch.mit.edu
https://developers.google.com/blockly
http://www.makeblock.com
http://esiiab.uclm.es
http://blog.uclm.es/esiidronechallenge

27. The MathWorks, Inc. Matlab. https://www.mathworks.com/

products/matlab.html (accessed 28 February 2018).

28. Open Source Robotics Foundation. Robot Operating

System (ROS). http://www.ros.org (accessed 28 February

2018).

29. Open Source Robotics Foundation. Gazebo. http://gazebo

sim.org (accessed 28 February 2018).

30. Ogata K. Modern Control Engineering, 5th ed. Upper Saddle

River: Prentice Hall, 2010.

31. Open Source Robotics Foundation. SDF. http://sdformat.org/

(accessed 20 May 2018).

32. The MathWorks, Inc. Robotics System Toolbox. https://www.

mathworks.com/products/robotics.html (accessed 28 Febru-

ary 2018).

Bermúdez et al. 19

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://www.ros.org
http://gazebosim.org
http://gazebosim.org
http://sdformat.org/
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/robotics.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

