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Abstract: In this study, incompressible and viscous external flow around a cylinder is simulated using the lattice Boltzmann method. The
surface of cylinder is considered to be a rigid immersed body in the fluid flow. The fluid flow field is discretised by a uniform and fixed
Cartesian mesh but there are difficulties in the modelling of curved boundaries. As a result, the cylinder surface is extrapolated by macroscopic
properties at boundary nodes. On the other hand, to well treat with boundary condition of the cylinder surface and in the meantime, to save the
computational effort, an innovation is applied in this research which solves this problem by introducing a new curved boundary condition to
improve computational accuracy in lattice Boltzmann simulations. However, this method can be extended to other physical fields as well as
fluid flow. The present results have been compared with the available numerical results which show good agreements.

1 Introduction

The lattice Boltzmann method (LBM) is a useful simulation
technique for numerically solving flow problems [1-4]. This
method is also feasible as a simulation technique for systems
such as a suspension of solid particles or a polymeric liquid.
LBM was first developed by Mcnamara and Zanetti [5] in 1998
to solve the problems with lattice gas automata method. Unlike
conventional numerical schemes based on the discretisation of
macroscopic continuum equations, the LBM is based on microscop-
ic models and mesoscopic kinetic equations. LBM recovers the
Navier—Stokes using Chapman—Enskog expansion. One of the
most important benefits of lattice Boltzmann is the explicit form
of governing equation and easy solution of parallel equations and
boundary conditions employment on the curved boundaries. The
lattice Boltzmann applications are in the fields of incompressible
flows simulation in the complicated geometries like blood flow in
vessels, multiphase flows, free convection problems, moving
boundaries, chemical reactions, porous media flows, suspended par-
ticles, Magneto Hydro Dynamics (MHD) flows, non-Newtonian
fluid flows, large eddy simulations, turbulence flows in aerodynam-
ics and other applications [6—8]. It was also developed into an effi-
cient method for solving the problems including the interaction of
flow and solid [9-11]. Cheng and Zhang [10] have proposed a
proper model to simulate the fast boundary movements and a high
pressure gradient occurred in the fluid—solid interaction. In their
research, mitral valve jet flow considering the interaction of leaflets
and fluid has been simulated. Recently, the lattice Boltzmann
has been combined with immersed boundary method to use for
simulating the movement and changing the shape of immersed
boundaries. This method is a combination of a mathematical formu-
lation and a numerical method. Mathematical formulation of
immersed boundary method included Eulerian variables. Discrete
equations in place of a lattice of immersed boundary method use
a Cartesian grid for Eulerian variables and a Lagrangian one for
immersed boundaries. Lagrangian boundaries can move freely
within the Cartesian grid and there is no need to adapt the
Eulerian grids. Many studies have been conducted in this area.
Dupuis et al. [12] studied the flow over an impulsively started
cylinder at moderate Reynolds (Re) number. They investigated
how the coupling method of the forcing term between the
Eulerian and Lagrangian grids could affect the results. Zhang
et al. [9, 13] studied the dynamic behaviour of red blood cell in
shear flow and channel flow and investigated several hemodynamic
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and rheological properties. Cheng and Zhang [10] have proposed a
proper model to simulate the fast boundary movements and high
pressure gradient occurred in the fluid—solid interaction. In their re-
search, mitral valve jet flow considering the interaction of leaflets
and fluid has been simulated.

However, studies on the unlimited (infinite range) are concen-
trated on the experiments. In the limited work that was done on
simulating of flow around a cylinder, numerical methods rather
than lattice Boltzmann were used. Therefore, in this paper shear
flow around a cylinder was studied using improved lattice
Boltzmann and the results were compared with experimental find-
ings. In this research, a replaced mesoscopic method called LBM
is used. In this method, the flow is considered as a cluster of parti-
cles which can collide with each other. The main advantage of this
method is the relative simplicity in implementing and compatibility
with the desired geometries. The main novelty of this paper is to im-
plement a new designed boundary condition for the curved cylinder
surface. Some researchers use other methods such as immersed
boundary or immersed interface methods for simulating the flow
around immersed objects like cylinder. However, these methods
need more efforts to implement with respect to lattice Boltzmann.
So in the present study, an improvement is applied to LBM to in-
crease its benefits.

2 Governing equations

In recent decades, the LBM has been highly regarded. This method
is a reliable alternative to conventional methods of Computational
Fluid Dynamics (CFD) to solve complex problems of the flow
which has been used in many engineering applications [14].
Unlike conventional methods that consider fluid as integrated, in
this method the flow of virtual particles is considered. So LBM
can model the relationship between particles which is the base for
multi-phase flows. When Mach numbers (the ratio of average
flow speed to the speed of sound) and Knudsen (the ratio of the
mean free path to the length flow characteristic) are small
enough, Boltzmann equations are a good approximation for
Navier—Stokes equations.
The final form of Navier—Stokes equations will be as follows:

Vou=0 (1)

d
p(a—l;—l—thVu) = —Vp+vV2u 2)
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In the above equation, p and v are the dynamic viscosity of the fluid
mass and density, respectively. In addition, # = (u, v), p and t show
the velocity, pressure and time, respectively.

As noted earlier in LBM, fluid is composed of virtual particles
which can collide. In addition to the spatial position, the speed is
also discrete in this method. This implies that the particles only
move along directions marked with discrete speeds. The discrete
Boltzmann equations by expanding the Chapman—Enskog results
in Navier—Stokes equations (1) and (2) are written as follows:

ﬁ(xa t) _ﬁeq(xa t)

T

filx+ &A1+ At) — fix, 1) = — 3)

where f;(x, ?) is the particle distribution function and é; is speed of
position x at time of #. At is the time step, f; }(x, ?) is the equilibrium
distribution function and time 7 indicating the non-dimensional re-
laxation time in the Boltzmann equation. In the present work, LBM
is used with two-dimensional D2Q9 model; there are eight moving
particles and a stationary one in this model and is shown in Fig. 1.
The velocities of the particles can be written in the form of the fol-
lowing equation [14]:
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In this equation, ¢ = Ax/At and Ax are the intervals between two
consecutive nodes in the Eulerian grid. The equilibrium distribution
function is written in the form of the following equation:
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where w; is the weight coefficient with the following values:
wy = 4/9
w;=1/9 ifi=1-4 6)

w,=1/36 ifi=5-38

The elastic force in the lattice Boltzmann equation is defined as

_ 1 3@ —u) 9@ -u),

Kinematic viscosity in D2Q9 model is written as follows and it is
related to the non-dimensional time of 7. If 7> 1 is selected, the

L
X

Fig. 1 Velocities in D2Q9 model
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results will be unreliable. In general, it is better to select
0.5 < 7 < 1. In the present work 7= 1 has been selected

v :C?(’T—%) ®)

Macroscopic fluid density is obtained by the following equation:

8
p=> 1 ©)

i=0

In addition, the macroscopic velocity of u is

8
=2 [Zf,-‘,} (10)
g ly=

It should be noted that although the LBM is simulating the incom-
pressible isothermal flows, density is not constant. In addition, the
pressure does not appear clearly in any of the above equation. In this
method, the following equation is used to calculate the pressure:

p=pc (11)

where p is the unit pressure in the lattice, ¢, = ¢/+/3 is the sound
velocity in lattice and p is the lattice density. In the lattice
Boltzman Ax = Ar =1, therefore ¢, =1/ V3. In addition, the
relation between physical pressure p, and lattice pressure p is
obtained by

2 2
Pp=PyCop =P, Axp =p Ay) P (12)
P pCs.p p As, p At o

where the index p represents the physical quality.

3 Implementation of the boundary curve in LBM

Two-step algorithm of colliding-streaming which has been intro-
duced in (3) in LBM requires a Cartesian grid with similar grid
node distance. The simulation of fluid flow is limited to simple
geometries of sharp edges.

Faced with more complex geometries including curved boundar-
ies using such a girding due to lack of full compliance between the
curved boundaries and grid nodes has no results except that ap-
proximate of boundaries of the curve with broken lines which
clearly cannot approximate the physical integrity of the boundary
into the implementation of lattice Boltzmann simulation. This in-
complete approximation, especially in high Re number flows can
rise to vortices that are unrealistic in the current boundary followed
by an analysis of the total area affected by the error. Therefore, in
this section a new method introduced by Mohammadipoor et al.
[15] is employed here which is described below.

In such circumstances, the analysis of the curved line requires a
new design. It is should be a design which despite the broken lines
as the geometry of the flow, can simulate the physical boundary
effect on the curve flow analysis. The introduction of such a
scheme is the subject of this section of the paper.

In general terms, when a boundary curve is matched with lattice
Boltzmann, nodes will be divided into two areas: nodes that are
outside the boundaries of the curve and are the place for fluid and
the other are the nodes that are outside the scope of the flow and
a place for solid. In Fig. 2, the first group is shown as filled solid
circles and the second group is shown as hollow circles. From
now on, the subtitles w will be used to show parameters of the
boundary curves.
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Fig. 2 Position of curved boundary due to nodal points [15]

It is clear that from among all the nodes on the solid part,
only the adjacent nodes in the curve boundary are effective in
flow analysis. These nodes in this paper are called as the
boundary nodes and their related parameters will be specified
with subtitles b.

Border distribution functions in the nodes must be determined
in such a way that the result is the simulation of the desired condi-
tion on the boundary curve. For this purpose, it is necessary to ex-
trapolate the macroscopic properties of the boundary nodes (M)
due to the required amount of the property on the curve boundary
(M) and the value of the property in the nearest node to the wall
(My). This extrapolation requires two reference points; one is
located in solution and another one on the curves boundary.
Determining the boundary curve is the most important step in the
simulation.

Since all efforts to simulate the curve even during extrapolation
has been the relatedness of the nodal points of the lattice, setting
the reference is limited to the point ¢; of the microscopic lattice
speed in a way that the border crossing points of the curve with
microscopic lattice speed are considered criteria for selection
of reference points for the boundary nodes py. In such circum-
stances, the speed vector with the minimum distance to the intersec-
tion of the boundary nodes or velocity vector with the lowest
point of the normal vector border are selected as the extrapolation
direction. Since the distribution of microscopic velocity covers
the range of 360° with only eight velocity vector, the lack
of matching to extrapolate to normal direction is likely to be
common.

In such circumstances of extrapolation values especially when
the boundary condition is of the second type (Newman), the ex-
trapolation is associated with the error. The new design which
has been introduced in this paper, by leaving aside the lattice
node in the selection of reference points, the constant adaptation
to enable normal extrapolation becomes possible. This means that
at any point, the boundary line can be expected as perpendicular
to the boundary (the boundary normal vector). Intersection of this
line with the curve boundary indicates the first reference point
(pw)- The second reference point (p,) is elected on a vertical line
and a distance from the first dy. These are shown in Fig. 3. The
assessed property values, in the first reference point (M,,) located
on the border of the details (boundary condition) is the known
part of the problem. To determine the value of property in the
second reference point (M;), the linear interpolation on four
points of 4, B, C and D including points of reference is used.

M; = MC(XB - Xf) (yB —)’f)/‘sz
+ Mp(X; — X,) (4 — }’f)/‘Sx2 + M (Xp — Xp) (v — yD)/5x2

+ MB(Xf - Xc) (yf - )’c)/‘(sz
(13)
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Fig. 3 Reference nodes on the normal vector to boundary [15]

Revealing the M; and M,, values at reference points, the macro-
scopic properties of the border are calculated by linear extrapolation

% dy
Mb_[l+d] v M (14)

T
In this regard, d, as shown in Fig. 3 is the distance from the node
boundary to the curve boundary that it called the border since
then and dy is the distance between two points of reference in the
field of fluid. The distance should be chosen in such a way that
four environmental points 4, B, C and D exist for the second refer-
ence point. Since lattice Boltzmann is square, d,, is always much
smaller than +/28x so by selecting the greater dy more than the
maximum dj, and to establish dy=26x, this condition is always pro-
vided. If necessary, by selecting the third reference point Pgr in 40x
distance with the first reference, extrapolation can be applied from a
quadratic relationship below:

dy dy dy [, dy
M= |1+2|14+ My -2+ |M,
el s gl

dy dy
*2d; [1 jud—f]Mff (15)

In most works done in the field of curve boundary simulation, ex-
trapolation requires the use of two separate equations proportional
to the distance from the edge of the boundary nodes to boundary
curve which in case of changing extrapolation can be followed by
drastic changes in the distribution functions [16, 17] and even in
some cases a measure of exchange of extrapolation relationship
can affect the accuracy of the results [18]. However, in the model
presented in this paper, only one equation (14) or (15) is sufficient
to extrapolate the macroscopic properties of the boundary node.
From the value calculated by applying M, on the boundary
nodes, one can simulate curve boundary effects.

In other words, the simulation of the curve boundary is simply a
matter of applying the calculated values from (14) or (15) on the
boundary nodes. The plan is quite general and will be applicable
for each of the lattice Boltzmann models. In case of using lattice
Boltzmann model to simulate fluid flow, macroscopic properties
of M can be velocity, pressure and temperature of the fluid.

4 No-slip boundary condition

According to the design presented in the previous section, the
boundary curve simulation requires implementing the macroscopic
values calculated from (13) or (14) in boundary nodes. In LBM
unlike conventional CFD methods with the appointment of macro-
scopic boundary conditions is not done using the boundary nodes.
Instead, a specified series of distribution functions are selected on
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boundary node the effect of which is equivalent to the desired
amount of macroscopic boundary.

The specific fluid flow is discussed in this section and macro-
scopic properties that should be allocated to boundary nodes are
the fluid velocity. The purpose of this section is to introduce new
models of boundary condition in which the fluid velocity at the
boundary nodes is without any undesired slip of the required U,
velocity (rate obtained from extrapolation).

In the boundary node after streaming the distribution functions
area outside the settlement into boundary nodes which are
unknown, the task of the model is to determine the unknown func-
tions proportional to the desired velocity of the boundary node. For
example, in Fig. 4, the unknown functions for a boundary node are
located on a flat wall shown in dots. Analysis of Chapman—Enskog
which is the link between lattice Boltzmann equation with the
Navier—Stokes equation is based on the development of power dis-
tribution function

f=Y =" +efV+o(s) (16)

n=0

In extension, ¢ is the Knudsen number and f° is the equilibrium
distribution function.

5 Results and discussion
5.1 Flow around a circular cylinder

We here consider solving the problem of uniform flow past a circu-
lar cylinder by means of the LBM. In a special limited range of the
Re number, a pair of vortices appears behind the cylinder. The for-
mation of these vortices is very sensitive to the type of boundary
model used for the interaction between the cylinder and the neigh-
bouring virtual fluid particles. The important task in the formulisa-
tion of the present problem is the treatment of the boundary
condition between the cylinder and the virtual fluid particles in
the neighbouring lattice sites in addition to the outer boundary con-
ditions. The two-dimensional circular cylinder with diameter D is
fixed at the origin of the coordinate system.

In this section, two-dimensional flow passing over a cylinder at
Re numbers 20 and 40 are evaluated. Re number in this flows is
defined based on the free-stream velocity (Up) and the cylinder
diameter (D) as Re = UyD/v.

The cylinder periphery includes 40 boundary nodes. Flow rate at
the entrance equals to the fixed value of u=U, and the rapid
changes in the flow path are ignored (dU/dx =0).

It is known that the flow field for outer flow problems is signifi-
cantly distorted unless a sufficiently large simulation region is used.
According to Fig. 5, in the case of Re=20, the length of the pair of
vortices is approximately the same as the cylinder diameter, and
the formation of these vortices is quite sensitive to the outer bound-
ary condition that has been adopted.

The input voltage is set to zero. In order to apply the second
type of boundary condition, the velocity gradient has changed to
the first boundary condition. Finally, its implementation as an

@ ® ®
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Fig. 4 Distribution functions in a boundary node
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Re = 20: Streamlines

Fig. 5 Magnified flow lines and vortices formed behind the cylinder for Re
numbers 20 and 40

inlet boundary condition is done by the help of no-slip boundary
condition model presented in this paper. After the first step, a cylin-
drical border was recognised by the program and no-slip boundary
condition is satisfied. Upper and lower boundaries have the periodic
boundary condition and to establish a condition of no slip on the
cylinder, the boundary condition of the present model is used.
Magnified flow lines and vortices formed behind the cylinder for
Re numbers 20 and 40 are shown in Fig. 5. Due to the low Re
number of the area behind the cylinder, it has a steady and symmet-
rical state.

Table 1 Drag coefficient for Re numbers 100 and 200

Cp Re=100 Re=200
Calhoun [19] 1.33+0.014 1.17+0.058
present study 1.37+0.009 1.34+0.030
0.135
0.13 fmmmmmmmmmm oo oo
B 0125 Fmmmmm o T
E
L B e
z
B 0015 oo
2
L I 0 B B it
(U R i s
0.1
100 150 200 250 300
Reynolds Number

Fig. 6 Strohul number for different Re number
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150
XxC

Re =200

Fig. 7 Streamlines around the square cylinder in different Re numbers

Table 1 shows the drag coefficient for Re numbers 100 and 200
with other numerical results are compared. Re= 100 for the average
drag coefficient obtained by simulation study, somewhat larger
than the value obtained by the authorities (Calhoun [19]). This
difference, however, is low at about 1-3%.

5.2 Flow around a square cylinder

In this part, flow around a square cylinder with the dimension of
dxd is investigated in the Re number between 100 and 300.
The Re number is defined similarly to circular cylinder, i.e.
Re = Uyd/v. Based on empirical observations and numerical simula-
tions, the domain of solving the vortex shedding process occurs
with the two-dimensional transient flow. It should be noted that
in Re above 300, the flow has three-dimensional structures, and
the two-dimensional solution leads to non-physical results.
A 10x10 lattice unit is applied to the square cylinder together
with no-slip boundary condition.

The Strouhal (St) number is defined according to the following
equation:

_ A

St =
Uy

(17)
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where f is the wake frequency. This frequency is determined by
using unsteady spectral analysis of x-component of flow velocity
at different points and behind the cylinder. The St numbers for dif-
ferent Re numbers have been shown in Fig. 6.

Fig. 7 displays the streamlines around the square cylinder in dif-
ferent Re numbers. It is noteworthy that the flow structure around
the cylinder changes by changing the Re number. For Re=166,
the small secondary vortices are created on the top and button
parts of cylinder.

6 Conclusion

In this paper, a new boundary condition for simulation of the curved
boundaries in LBM is provided. The new boundary condition
model is based on extrapolation of macroscopic properties with
the help of only one equation to prevent the drastic changes of dis-
tribution functions due to the numerous extrapolation equations.
Since the macroscopic properties of the boundary condition
model are based on extrapolation, its application is not limited to
the flow and would be applicable to all physical problems. In this
study, LBM was used to simulate the flow around a rigid cylinder
in two-dimensional and unsteady form. Now compare the numeric-
al results with experimental and numerical results of the past studies
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obtained using previous methods which reflects the ability of this
method to simulate different types of flows. The analysis of the
results has been done for different Re numbers. Summary of the
most important results of this paper are as follows.

The results of the present numerical simulations showed the re-
sultant symmetric vortex of the cylinder in viscosity of the flow
for the Re number smaller than the critical amount.

In this study, we have identified a set of instability in the
Reynolds number of about 50. According to previous studies, the
cylinder starts to be instable in critical Re about Re=46+ 1. For
Re numbers greater than this amount, the instability of the cylinder
increases and grows over time, leading to the phenomenon of
Karman vortex separation.

For the Re numbers of 20 and 40 for the flow lines, it was shown
that due to the low Re number in this area, the wake area behind the
cylinder has a steady state and is symmetrical.
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