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Abstract. Parameter estimation and synchronisation of chaotic systems are one of the hottest topics in the field
of nonlinear science. In this paper, we addressed how to utilise the obtained experimental time series to estimate
multiple parameters in chaotic systems. On the basis of relations of critical points and extreme value points, as well
as the least squares estimation, we deduced a novel statistical parameter estimation corollary method to evaluate
the unknown parameters in chaotic systems. In order to illustrate the feasibility and effectiveness of the proposed
method, three numerical simulation results are presented, where the validity of the proposed method is verified in
detail. Furthermore, we also investigated the effects of time-series noise and system disturbances for the proposed
method, and the results showed that the proposed method is robust to uncertainties.

Keywords. Parameter estimation; chaotic system; time series; least squares estimation; noise.

PACS Nos 05.45.−a; 05.40.Ca

1. Introduction

Parameter estimation of chaotic systems from its exper-
imental time series is an active subject in many disci-
plines in the field of natural sciences. In most cases,
the chaotic system can be described by a set of differ-
ential equations which governs the orbits of all state
variables in the system [1,2]. Usually, many chaotic sys-
tems contain some unknown or immeasurable parame-
ters, which one expects to evaluate accurately through
some effective strategies. Many approaches, such as
synchronisation-based methods [3–7], Kalman filter
[8], integrator theory [9], statistical analysis method
[10] and intelligence algorithms [11–15], have been
developed for the parameter identification of various
chaotic systems in recent years. However, majority of
the abovementioned methods need to construct one
or more differential equations with respect to the
original chaotic system, which is hard to realise in

practice for some special situations. In order to address
this problem, a new off-line estimation method of
chaotic systems has been proposed based on its time
series.

From off-line estimation methods, the least squares
method and its variant are the most popular approaches
for the parameter estimation. The principle of this
method is simple and the method can be easily imple-
mented, has high accuracy and the performance is
good [16]. In this study, the classical least squares
approach was adopted, and a statistical procedure based
on the measured extreme value points was proposed
to estimate the unknown parameters of the chaotic
systems. By a simple combination of central limit the-
orem and least squares estimation, it is proved that
all the unknown parameters in different chaotic sys-
tems can be estimated exactly from its time series.
Although a systematic proof cannot be given at present,
some representative examples are used to show the
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(a) The observation value of ˆ( )a t by using the identifier (11)
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(b) The observation value of ˆ( )b t by using the identifier (14)

(c) The observation value of ˆ( )c t by using the identifier (17)
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Figure 1. Parameter estimation results in chaotic finance system.

effectiveness of this method and offer some new and
interesting results. These results indicate that the pro-
posed method is nonlinearly stable, robust enough
against time-series noise and system disturbances. As
the proposed method only requires a time series, they
are more applicable in practice, especially for the
chaotic communication where the parameters of chaotic
systems should be known prior to the implementa-
tion of a complete communication protocol. From
the theoretical perspective, our approach provides a
feasible mathematical principle for the parameter esti-
mation in chaotic communication just by adopting

sufficient time-series data, thus strengthening the secu-
rity of chaotic modulation process. From the engi-
neering perspective, the ability to evaluate unknown
parameters for a majority of chaotic systems by a
simple statistical mathematical analysis, instead of
establishing differential equations, simplifies the design
and implementation of parameter observers in chaotic
communication.

The rest of this paper is organised as follows. The
principle of the proposed method is introduced in detail
in §2, and examples of three typical chaotic systems are
used to demonstrate the effectiveness of the proposed
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Table 1. The results of parameter estimation in chaotic finance system.

Parameters a b c

Sample time interval tr = 0.1 s
Real values 0.9 0.2 1.2
Estimation values (100 s) 0.9659 (7.3%) 0.1915 (4.3%) 1.1836 (1.4%)
Estimation values (150 s) 0.9489 (5.4%) 0.1948 (2.6%) 1.1881 (1.0%)
Estimation values (200 s) 0.9383 (4.3%) 0.1962 (1.9%) 1.1884 (1.0%)

Sample time interval tr = 0.05 s
Real values 0.9 0.2 1.2
Estimation values (100 s) 0.9593 (6.6%) 0.1898 (5.1%) 1.2041 (3.40/00)
Estimation values (150 s) 0.9291(3.2%) 0.1943 (2.9%) 1.2026 (2.20/00)
Estimation values (200 s) 0.9170 (1.9%) 0.1959 (2.1%) 1.2015 (1.30/00)

Sample time interval tr = 0.01 s
Real values 0.9 0.2 1.2
Estimation values (100 s) 0.9012 (1.30/00) 0.1980 (1.0%) 1.2012 (1.00/00)
Estimation values (150 s) 0.9002 (0.20/00) 0.1985 (7.50/00) 1.2006 (0.50/00)
Estimation values (300 s) 0.9000 (00/00) 0.1988 (6.00/00) 1.2006 (0.50/00)

Note: The numbers in parenthesis are the parameter estimation accuracies measured
as PE = |θi − θ̂i |/θi , where θi are the parameters to be identified, i.e. a, b and c.

method in §3. Section 4 gives discussion, conclusions
are summarised in §5 and the acknowledgments are
given in the last part.

2. Principle of the proposed method

Consider the following dynamic system:

Ẋ = F(X, θ), (1)

where X = (x1, x2, . . . , xn)T ∈ Rn is the observed sys-
tem vector, θ = (θ1, θ2, . . . , θm)T ∈ Rm is the unknown
system parameter and F ∈ C[Rn × Rm → Rn] is the
function vector of X and θ .

Assuming that the unknown parameters are located
in the i th equation of (1), according to the theory
of mathematic calculus, the critical point of a dif-
ferential function of one variable is a point on the
graph of the function where the function’s derivative
is zero. Thus Ẋi = 0 at the critical point of the
i th variable, and then the following formula can be
obtained:

Fi (x
(i)
1 , x (i)

2 , . . . , x (i)
n , θ1, θ2, . . . , θm) = 0, (2)

where x (i)
1 , x (i)

2 , . . . , x (i)
n represent the values of the vari-

ables of the system when the i th variable is located in
the critical point. In theory, we can get the following
m equations that are similar to eq. (2) from different
critical points of Xi :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fi (x
(i)
1 (1), x (i)

2 (1), . . . , x (i)
n (1), θ1, θ2, . . . , θm) = 0,

Fi (x
(i)
1 (2), x (i)

2 (2), . . . , x (i)
n (2), θ1, θ2, . . . , θm) = 0,

...

Fi (x
(i)
1 (m), x (i)

2 (m), . . . , x (i)
n (m), θ1, θ2, . . . , θm)=0.

(3)

The unknown parameters θi (i = 1, 2, . . . ,m) can
be obtained by solving eq. (3), i.e. we can iden-
tify the unknown parameters in accordance with the
critical points in eq. (2).

However, in practical engineering, the measured data
depend on the adopted sample points, and in most cases,
the extreme value points of a differential function of one
variable can be obtained based on these sample points.
But they are not always the same as the critical points
of a differential function of one variable, and hence, the
derivatives of extreme value points of one variable are
not always strictly equal to zero, i.e. a deviation from
zero is inevitable for the derivatives of the extreme value
points. Therefore, it is difficult to directly apply eq. (3)
for estimating the unknown parameters in the chaotic
systems.

To address this issue, the central limit theorem is
introduced. It is well known that the sampling process
of the measured data is repeated in equal intervals of
time. When the sampling interval is very small, the
size of the adopted data is sufficiently large, which
satisfies the first precondition of the central limit the-
orem. Furthermore, when the sampling interval is very
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(a) The observation value of ˆ( )a t by using the identifier (20)

(b) The observation value of ˆ( )b t by using the identifier (22)

(c) The observation value of ˆ( )c t by using the identifier (27)
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(d) The observation value of ˆ( )d t by using the identifier (28)
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Figure 2. Parameter estimation results in hyperchaotic Rossler system.
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Table 2. The results of parameter estimation in hyperchaotic Rossler system.

Parameters a b c d

Sample time interval tr = 0.1 s
Real values 0.25 3 0.5 0.05
Estimation values (100 s) 0.2436 (2.6%) −2.3864 (1.79) 0.5439 (8.8%) 0.0828 (0.66)
Estimation values (200 s) 0.2442 (2.3%) 13.259 (3.42) 0.6245 (0.25) 0.0898 (0.80)
Estimation values (300 s) 0.2451 (2.0%) 10.097 (2.37) 0.6347 (0.27) 0.0935 (0.87)

Sample time interval tr = 0.05 s
Real values 0.25 3 0.5 0.05
Estimation values (100 s) 0.2539 (1.6%) 2.0215 (0.33) 0.4964 (7.20/00) 0.0565 (0.13)
Estimation values (200 s) 0.2537 (1.5%) 12.732 (3.24) 0.4838 (3.2%) 0.0525 (5.0%)
Estimation values (300 s) 0.2530 (1.2%) 8.8288 (1.94) 0.4782 (4.4%) 0.0504 (8.00/00)

Sample time interval tr = 0.01 s
Real values 0.25 3 0.5 0.05
Estimation values (100 s) 0.2499 (0.40/00) 3.7310 (0.24) 0.5105 (2.1%) 0.0503 (6.00/00)
Estimation values (200 s) 0.2499 (0.40/00) 3.9828 (0.33) 0.5100 (2.0%) 0.0507 (1.40/00)
Estimation values (300 s) 0.2499 (0.40/00) 3.6285 (0.21) 0.5052 (1.0%) 0.0512 (2.80/00)

Note:The numbers in parenthesis are the parameter estimation accuracies measured as PE = |θi−θ̂i |/θi ,
where θi are the parameters to be identified, i.e. a, b, c and d.

small, the deviations between the derivatives of extreme
value points and the derivatives of critical points are
minimal, and considering that the positions of all
critical points in the chaotic systems are uniformly
randomly distributed, which satisfy the second condi-
tion of the central limit theorem, we get the following
corollary:

COROLLARY 1

If the sample of extreme value points is enough, then
the deviations between the derivatives of extreme value
points and derivatives of critical points (i.e. Ẋi = 0)
tend towards a norm distribution, whose arithmetic
mean is zero. In other words, for the extreme value
points of a differential function of the ith variable, eq. (3)
can be modified as follows:

Fi (x
(i)
1 (k), x (i)

2 (k), . . . , x (i)
n (k), θ1, θ2, . . . , θm)

= εi (k) (k = 1, 2, . . . , N ), (4)

where εi is the residual error set that follows the norm
distribution and N is the number of extreme value points
obtained from the measured data.

Least squares method is one of the most popular
approaches for parameter estimation. In order to evalu-
ate the precise values of unknown parameters in the sys-
tems, the least squares method is introduced in eq. (4).
Assuming that θ̂ is the observed value of θ , we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi (x
(i)
1 (1), x (i)

2 (1), . . . , x (i)
n (1), θ̂1, θ̂2, . . . , θ̂m)=0,

Fi (x
(i)
1 (2), x (i)

2 (2), . . . , x (i)
n (2), θ̂1, θ̂2, . . . , θ̂m)=0,

...

Fi (x
(i)
1 (m), x (i)

2 (m), . . . , x (i)
n (m), θ̂1,

θ̂2, . . . , θ̂m) = 0.

(5)

Choosing the following criterion:

J = eTe =
N∑

k=1

[Ẋ (i)
i (k) − Fi (X

(i)(k), θ̂ )]2

=
N∑

k=1

(Fi(X
(i)(k), θ̂ ))2 (6)

and the best selected value of θ̂ will result in J having
the smallest value, i.e.

∂ J/∂θ̂ = 0 ( j = 1, 2, . . . ,m). (7)

Therefore, we obtain the estimation value of θ̂ j from
eqs (6) and (7).

3. Simulation experiments

In this section, numerical simulation and comparison
are carried out based on several typical chaotic systems
including chaotic finance system, hyperchaotic Rossler
system and classical Lorenz system. Furthermore, in
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(a) The observation value of ˆ( )a t by using the identifier (32)

(b) The observation value of ˆ( )b t by using the identifier (35)
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(c) The observation value of ˆ( )c t by using the identifier (33)
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(d) The observation value of ˆ( )c t by using the identifier (37)
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Figure 3. Parameter estimation results in classical Lorenz system.
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Table 3. The results of parameter estimation in classical Lorenz system.

Parameters a b c1 c2

Sample time interval tr = 0.1 s
Real values 10 8/3 28 28
Estimation values (100 s) 9.6405 (3.6%) 3.1775 (1.9%) 27.519 (1.7%) 28.753 (2.7%)
Estimation values (200 s) 9.5802 (4.2%) 3.0134 (1.3%) 27.792 (7.40/00) 28.625 (2.2%)
Estimation values (300 s) 9.5813 (4.2%) 2.9523 (1.1%) 27.862 (4.90/00) 28.672 (2.4%)

Sample time interval tr = 0.05 s
Real values 10 8/3 28 28
Estimation values (100 s) 9.7422 (2.6%) 2.5796 (3.2%) 28.353 (1.3%) 28.097 (3.50/00)
Estimation values (200 s) 9.8922 (1.1%) 2.6566 (3.70/00) 28.131 (4.70/00) 28.249 (8.90/00)
Estimation values (300 s) 9.9285 (7.20/00) 2.6672 (0.20/00) 28.142 (5.40/00) 28.184 (6.60/00)

Sample time interval tr = 0.01 s
Real values 10 8/3 28 28
Estimation values (100 s) 9.9975 (2.50/00) 2.6791 (4.60/00) 27.923 (2.80/00) 28.007 (0.30/00)
Estimation values (200 s) 10.005 (5.30/00) 2.6734 (2.50/00) 28.008 (0.30/00) 28.016 (0.60/00)
Estimation values (300 s) 10.002 (2.40/00) 2.6738 (2.60/00) 27.973 (1.00/00) 28.019 (0.70/00)

Note:The numbers in parenthesis are the parameter estimation accuracies measured as PE = |θi −θ̂i |/θi ,
where θi are the parameters to be identified, i.e. a, b, c1 (obtained by the identifier (33)) and c2 (obtained
by the identifier (37)).

order to test the robustness of the proposed parame-
ter estimation method, different amplitude-based ran-
dom noise and disturbances are added to the mea-
sured time-series and chaotic systems, respectively, and
the effect of parameter estimation results has been
investigated.

3.1 Simulation results of noiseless time series

Example 1. Parameter estimation of the chaotic finance
system.

The first example is the chaotic finance system, which
is defined by
⎧
⎨

⎩

ẋ = z + (y − a)x,
ẏ = 1 − by − x2,

ż = −x − cz,
(8)

where a, b and c are unknown parameters. The finance
system is in the chaotic state when parameters a = 0.9,
b = 0.2 and c = 1.2.

For the extreme value point set of system (8) of variable
x , the least squares criterion method can be calculated
by the following formula according to eq. (6):

J1 =
N1∑

k=1

[z(1)(k) + (y(1)(k) − â)x (1)(k)]2, (9)

where x (1), y(1) and z(1) are the state variable sets when
the variable x is located in positions of extreme value

points and N1 is the number of extreme value points of
the variable x, which are obtained from the measured
data. In accordance with eq. (7), we get

∂ J1

∂ â
= 2

N1∑

k=1

[â(x (1)(k))2 − x (1)(k)z(1)(k)

−(x (1)(k))2y(1)(k)] = 0. (10)

Then â is deduced as

â =
∑N1

k=1 x
(1)(k)z(1)(k) + (x (1)(k))2y(1)(k)

∑N1
k=1 (x (1)(k))2

. (11)

For the extreme value point set of system (8) of variable
y, the least squares method can be calculated by the
following formula according to eq. (6):

J2 =
N2∑

k=1

[1 − (x (2)(k))2 − b̂y(2)(k)]2, (12)

where x (2) and y(2) are the state variable sets when the
variable y is located in positions of extreme value points
and N2 is the number of extreme value points of the
variable y, which are obtained from the measured data.
In accordance with eq. (7), we get

∂ J2

∂ b̂
= 2

N1∑

k=1

[b̂(y(2)(k))2−y(2)(k)+(x (2)(k))2y(2)(k)]

= 0. (13)
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(a) The observation value of ˆ( )a t by using the identifier (11) in the presence of time series noise

(b) The observation value of ˆ( )b t by using the identifier (14) in the presence of time series noise

0 50 100 150 200 250 300

t/s

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 a

 = 0.001

 = 0.0005

 = 0.0001

t
r
=0.01s

0 100 200 300 400 500 600

t/s

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 a

 = 0.001

 = 0.0005

 = 0.0001

t
r
=0.005s

0 50 100 150 200 250 300

t/s

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 b

 = 0.001

 = 0.0005

 = 0.0001

t
r
=0.01s

0 100 200 300 400 500 600

t/s

0.1

0.15

0.2

0.25

0.3

0.35

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 b

 = 0.001

 = 0.0005

 = 0.0001

t
r
=0.005s

(c) The observation value of ˆ( )c t by using the identifier (17) in the presence of time series noise
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Figure 4. Parameter estimation results in noisy time-series chaotic finance system.

Then b̂ is deduced as

b̂ =
∑N2

k=1 y
(2)(k) − (x (2)(k))2y(2)(k)
∑N2

k=1 (y(2)(k))2
. (14)

Similarly, for the extreme value points set of system (8)
of variable z, we get

J3 =
N3∑

k=1

[−x (3)(k) − ĉz(3)(k)]2, (15)

where x (3) and z(3) are the state variable sets when the
variable z is located in positions of extreme value points

and N3 is the number of extreme value points of the
variable z, which are obtained from the measured data.
In accordance with eq. (7), we get

∂ J3

∂ ĉ
= 2

N1∑

k=1

[ĉ(z(3)(k))2 + x (3)(k)z(3)(k)] = 0. (16)

Then ĉ is deduced as

ĉ =
∑N3

k=1 −x (3)(k)z(3)(k)
∑N3

k=1 (z(3)(k))2
. (17)
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Table 4. The results of parameter estimation in noisy time-series chaotic finance
system.

Parameters a b c

Sample time interval tr = 0.01 s
Real values 0.9 0.2 1.2
Noise item η = 0.001 0.9023 (2.60/00) 0.2041 (2.1%) 1.2076 (6.30/00)
Noise item η = 0.0005 0.8982 (2.00/00) 0.2000 (0%) 1.2011 (0.90/00)
Noise item η = 0.0001 0.9013 (1.40/00) 0.1994 (3.00/00) 1.1993 (0.60/00)

Sample time interval tr = 0.005 s
Real values 0.9 0.2 1.2
Noise item η = 0.001 0.9316 (3.5%) 0.2134 (6.7%) 1.1666 (2.8%)
Noise item η = 0.0005 0.9097 (1.1%) 0.2042 (2.1%) 1.2013 (1.10/00)
Noise item η = 0.0001 0.8995 (0.60/00) 0.1998 (1.00/00) 1.1994 (0.50/00)

Note: All the simulation results are based on the statistical average results of
extreme point values in the time range [0 s, 300 s].

In simulations, fourth-order Runge–Kutta method is
used to solve eq. (8), and the initial state of this system
is set as (x(0), y(0), z(0)) = (1, 3, 2). Figure 1 shows
the estimation results of parameters a, b and c at differ-
ent sample time interval tr . The numbers of extreme
value points of the variables x , y and z, which are
obtained from the measured time series (tr = 0.01 s),
are N1 = 75, N2 = 112 and N3 = 73. Table 1 lists
the statistical results of parameters a, b and c at differ-
ent sample time interval tr . From figure 1 and table 1,
it can be seen that the relative estimation errors of all
the unknown parameters in chaotic finance system are
very small, which demonstrate the effectiveness of the
proposed parameter estimation method.

Example 2. Parameter estimation of the Rossler system.
The second example is the hyperchaotic Rossler sys-

tem [17], which is defined by
⎧
⎪⎨

⎪⎩

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2 + x4,

ẋ3 = x1x3 + b,
ẋ4 = −cx3 + dx4,

(18)

where a, b, c and d are unknown parameters. The
Rossler system is in the hyperchaotic state when the
parameters are set as a = 0.25, b = 3, c = 0.5 and
d = 0.05.

For the extreme value point set of system (18) of vari-
able x2, the least squares method can be calculated by
the following formula according to eq. (6):

J4 =
N4∑

k=1

[x (2)
1 (k) + x (2)

4 (k) + âx (2)
2 (k)]2, (19)

where x (2)
1 , x (2)

2 and x (2)
4 are the state variable sets when

the variable x2 is located in positions of extreme value
points and N4 is the number of extreme value points of

the variable x2, which are obtained from the measured
data. In accordance with eq. (7), we get

â =
∑N4

k=1 −x (2)
1 (k)x (2)

2 (k) − x (2)
2 (k)x (2)

4 (k)
∑N4

k=1 (x (2)
2 (k))2

. (20)

For the extreme value point set of system (18) of variable
x3, the least squares method can be calculated by the
following formula according to eq. (6):

J5 =
N5∑

k=1

[x (3)
1 (k)x (3)

3 (k) + b̂]2, (21)

where x (3)
1 and x (3)

3 are the state variable sets when the
variable x3 is located in positions of extreme value points
and N5 is the number of the extreme value points of the
variable x3, which are obtained from the measured time
series. In accordance with eq. (7), we get

b̂ = −1

k

N5∑

k=1

x (3)
1 (k)x (3)

3 (k). (22)

For the extreme value point set of system (18) of variable
x4, the least squares method can be calculated by the
following formula according to eq. (6):

J6 =
N6∑

k=1

(−ĉx (4)
3 (k) + d̂x (4)

4 (k))2, (23)

where x (4)
3 and x (4)

4 are the state variable sets when the
variable x4 is located in positions of extreme value points
and N6 is the number of extreme value points of the
variable x4, which are obtained from the measured time
series. In accordance with eq. (7), we get
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(a) The observation value of ˆ( )a t by using the identifier (20) in the presence of time series noise

(b) The observation value of ˆ( )b t by using the identifier (22) in the presence of time series noise
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(c) The observation value of ˆ( )c t  by using the identifier (27) in the presence of time series noise 

(d) The observation value of ˆ( )d t by using the identifier (28) in the presence of time series noise
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Figure 5. Parameter estimation results in noisy time-series hyperchaotic Rossler system.
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Table 5. The results of parameter estimation in noisy time-series hyperchaotic Rossler system.

Parameters a b c d

Sample time interval tr = 0.01 s
Real values 0.25 3 0.5 0.05
Noise item η = 0.001 0.2493 (2.80/00) 3.0172 (5.70/00) 0.4678 (6.4%) 0.0510 (2.0%)
Noise item η = 0.0005 0.2498 (0.80/00) 3.0246 (8.20/00) 0.4949 (1.0%) 0.0517 (3.4%)
Noise item η = 0.0001 0.2497 (1.20/00) 3.0849 (2.8%) 0.5130 (2.6%) 0.0514 (2.8%)

Sample time interval tr = 0.005 s
Real values 0.25 3 0.5 0.05
Noise item η = 0.001 0.2505 (2.00/00) 3.0047 (1.60/00) 0.4686 (6.3%) 0.0491 (1.8%)
Noise item η = 0.0005 0.2507 (2.80/00) 3.0053 (1.80/00) 0.4974 (5.20/00) 0.0497 (6.00/00)
Noise item η = 0.0001 0.2498 (0.80/00) 3.0103 (3.40/00) 0.4989 (2.20/00) 0.0500 (0%)

Note: All the simulation results are based on the statistical average results of extreme point values
in the time range [0 s, 300 s].

d̂ =
∑N6

k=1 x
(4)
3 (k)x (4)

4 (k)
∑N6

k=1 (x (4)
4 (k))2

ĉ,

ĉ =
∑N6

k=1 x
(4)
3 (k)x (4)

4 (k)
∑N6

k=1 (x (4)
3 (k))2

d̂. (24)

It is obvious that we cannot evaluate the values of the
parameters c and d with expression (24). In order to
solve this problem, an auxiliary variable is introduced.
Assume that u = x4 − x1, then we have:

u̇ = (1 − c)x3 + dx4 + x2. (25)

For the extreme value point set of system (18) of variable
u, the least squares method can be calculated by the
following formula according to eq. (6):

J7 =
N7∑

k=1

[(1 − ĉ)x (5)
3 (k) + d̂x (5)

4 (k) + x (5)
2 (k)]2, (26)

where x (5)
2 , x (5)

3 and x (5)
4 are the state variable sets when

the variable u is located in positions of extreme value
points and N7 is the number of extreme value points of
the variable u that is obtained from the measured time
series. In accordance with eq. (7), we get

ĉ =

⎧
⎨

⎩

∑N7
i=1 x

(5)
2 (k)x (5)

4 (k)
∑N7

i=1 x
(5)
3 (k)x (5)

4 (k) +
(∑N7

i=1 x
(5)
3 (k)x (5)

4 (k)
)2

−
(∑N7

i=1 x
(5)
2 (k)x (5)

3 (k) + ∑N7
i=1 (x (5)

3 (k))2
) ∑N7

i=1 (x (5)
4 (k))2

⎫
⎬

⎭

(∑N7
i=1 x

(5)
3 (k)x (5)

4 (k)
)2 − ∑N7

i=1 (x (5)
3 (k))2

∑N7
i=1 (x (5)

4 (k))2
, (27)

d̂ =
∑N7

i=1 x
(5)
2 (k)x (5)

4 (k)
∑N7

i=1 (x (5)
3 (k))2 − ∑N7

i=1 x
(5)
2 (k)x (5)

3 (k)
∑N7

i=1 x
(5)
3 (k)x (5)

4 (k)
(∑N7

i=1 x
(5)
3 (k)x (5)

4 (k)
)2 − ∑N7

i=1(x
(5)
3 (k))2

∑N7
i=1(x

(5)
4 (k))2

. (28)

In simulations, the initial state of this system is set as
(x1(0), x2(0), x3(0), x4(0)) = (−20, 0, 0, 15). Figure
2 shows the estimation results of parameters a, b, c
and d at different sample time interval tr . The num-
bers of extreme value points of the variables x1, x2 and
u, which are obtained from the measured time series
(tr = 0.01s), are N4 = 89, N5 = 289 and N7 = 118.
Table 2 lists the statistical results of the parameters a,
b, c and d at different sample time interval tr . From
figure 2 and table 2, it is seen that the estimated val-
ues obtained by the proposed method are very close to
the real values, implying that the smaller is the sam-
ple time interval, the better is the parameter estimation
result.

Example 3. Parameter estimation of the Lorenz system.
The third example is the classical Lorenz system [18],

which is defined by
⎧
⎨

⎩

ẋ1 = a(x2 − x1),

ẋ2 = cx1 − x1x3 − x2
ẋ3 = x1x2 − bx3,

, (29)

where a, b and c are the unknown parameters. The
Lorenz system is in the chaotic state when the parame-
ters are set as a = 10, b = 8/3 and c = 28.
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(a) The observation value of ˆ( )a t by using the identifier (32) in the presence of time series noise

(b) The observation value of ˆ( )b t by using the identifier (35) in the presence of time series noise

(c) The observation value of ˆ( )c t by using the identifier (33) in the presence of time series noise

0 50 100 150 200 250 300

t/s

9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 
a

 = 0.01

 = 0.005

 = 0.001

t
r
=0.01s

0 100 200 300 400 500 600

t/s

9.85

9.9

9.95

10

10.05

10.1

10.15

10.2

10.25

10.3

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 
a

 = 0.01

 = 0.005

 = 0.001

t
r
 = 0.005s

0 50 100 150 200 250 300

t/s

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 
b

 = 0.01

 = 0.005

 = 0.001

t
r
 = 0.01s

0 100 200 300 400 500 600

t/s

2.56

2.58

2.6

2.62

2.64

2.66

2.68

2.7

2.72

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 
b

 = 0.01

 = 0.005

 = 0.001

t
r
 = 0.005s

0 50 100 150 200 250 300

t/s

27.55

27.6

27.65

27.7

27.75

27.8

27.85

27.9

27.95

28

28.05

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 
c

 = 0.01

 = 0.005

 = 0.001

t
r
 = 0.01s

0 100 200 300 400 500 600

t/s

27.65

27.7

27.75

27.8

27.85

27.9

27.95

28

28.05

28.1

28.15

E
st

im
at

io
n 

re
su

lts
 o

f p
ar

am
et

er
 
c

 = 0.01

 = 0.005

 = 0.001

t
r
 = 0.005s

(d) The observation value of ˆ( )c t by using the identifier (37) in the presence of time series noise
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Figure 6. Parameter estimation results in noisy time-series classical Lorenz system.
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Table 6. The results of parameter estimation in noisy time-series classical Lorenz system.

Parameters a b c1 c2

Sample time interval tr = 0.01 s
Real values 10 8/3 28 28
Noise item η = 0.001 9.9773 (2.30/00) 2.6622 (1.70/00) 27.979 (0.80/00) 28.033 (1.20/00)
Noise item η = 0.0005 10.000 (0%) 2.6649 (0.70/00) 27.972 (1.00/00) 28.023 (0.80/00)
Noise item η = 0.0001 10.028 (2.80/00) 2.6738 (2.90/00) 27.989 (0.40/00) 28.028 (1.00/00)

Sample time interval tr = 0.005 s
Real values 10 8/3 28 28
Noise item η = 0.001 10.014 (1.40/00) 2.6620 (0.50/00) 27.979 (0.80/00) 27.966 (1.20/00)
Noise item η = 0.0005 9.9847 (1.50/00) 2.6582 (3.20/00) 27.994 (0.20/00) 27.969 (1.10/00)
Noise item η = 0.0001 9.9989 (0.10/00) 2.6526 (5.30/00) 27.993 (0.30/00) 27.999 (00/00)

Note: All the simulation results are based on the statistical average results of extreme point values in
the time range [0 s, 300 s].

For the extreme value point set of system (29) of
variable x1, it is hard to evaluate the value of the
parameter a with eqs (6) and (7). Similarly, assuming
that u = x2 − x1, then we have

u̇ = cx1 − x2 − x1x3 − au. (30)

For the extreme value point set of system (29) of variable
u, the least squares method can be calculated by the
following formula according to eq. (6):

J8 =
N8∑

k=1

[ĉx (4)
1 (k) − x (4)

1 (k)x (4)
3 (k)

−x (4)
2 (k) − au(4)(k)]2, (31)

where x (4)
1 , x (4)

2 , x (4)
3 and u(4) are the state variable sets

when the variable u is located in positions of extreme
value points and N8 is the number of extreme value
points of the variable u, which are obtained from the
measured data. In accordance with eq. (7), we get

â =

⎧
⎨

⎩

∑N8
i=1[x (4)

1 (k)x (4)
3 (k) + x (4)

2 (k)]x (4)
1 (k)

∑N8
i=1 x

(4)
1 (k)u(4)(k)

− ∑N8
i=1 [x (4)

1 (k)x (4)
3 (k)+x (4)

2 (k)]u(4)(k)
∑N8

i=1 (x (4)
1 (k))2

⎫
⎬

⎭

∑N8
i=1 (u(4)(k))2

∑N8
i=1 (x (4)

1 (k))2 −
(∑N8

i=1 x
(4)
1 (k)u(4)(k)

)2 , (32)

ĉ =

⎧
⎨

⎩

∑N8
i=1[x (4)

1 (k)x (4)
3 (k) + x (4)

2 (k)]x (4)
1 (k)

∑N8
i=1 (u(4)(k))2

− ∑N8
i=1 [x (4)

1 (k)x (4)
3 (k)+x (4)

2 (k)]u(4)(k)
∑N8

i=1 x
(4)
1 (k)u(4)(k)

⎫
⎬

⎭

∑N8
i=1 (u(4)(k))2

∑N8
i=1 (x (4)

1 (k))2 −
(∑N8

i=1 x
(4)
1 (k)u(4)(k)

)2 . (33)

For the extreme value point set of system (29) of
variable x3, the least squares method can be calcu-
lated by the following formula according to eq. (6):

J9 =
N9∑

k=1

[x (3)
1 (k)x (3)

2 (k) − b̂x (3)
3 (k)]2, (34)

where x (3)
1 , x (3)

2 and x (3)
3 are the state variable sets

when the variable x3 is located in positions of extreme
value points and N9 is the number of extreme value
points of the variable x2, which are obtained from
the measured data. In accordance with eq. (7), we
get

b̂ =
∑N9

k=1 x
(3)
1 (k)x (3)

2 (k)x (2)
3 (k)

∑N9
k=1 (x (3)

3 (k))2
. (35)

Here, we get the estimation values of all the unknown
parameters a, b and c. To add more discussion, another



97 Page 14 of 19 Pramana – J. Phys. (2019) 92:97

(a) The observation value of ˆ( )a t by using the identifier (11) in the presence of system disturbance
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(b) The observation value of ˆ( )b t by using the identifier (14) in the presence of system disturbance

(c) The observation value of ˆ( )c t by using the identifier (17) in the presence of system disturbance
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Figure 7. Parameter estimation results in disturbance-based chaotic finance system.

parameter estimation approach with respect to the
parameter c is proposed. For the extreme value point
set of system (29) of variable x2, the least squares
criterion method can be calculated by the following for-
mula according to eq. (6):

J10 =
N10∑

k=1

[ĉx (2)
1 (k) − x (2)

1 (k)x (2)
3 (k) − x (2)

2 (k)]2,

(36)

where x (2)
1 , x (2)

2 and x (2)
3 are the state variable sets

when the variable x2 is located in positions of extreme

value points and N10 is the number of extreme value
points of the variable x2, which are obtained from
the measured data. In accordance with eq. (7), we
get

ĉ =
∑N10

k=1 (x (2)
1 (k))2x (2)

3 (k) + x (2)
1 (k)x (2)

2 (k)
∑N10

k=1 (x (2)
1 (k))2

. (37)

In simulations, the initial state of this system is set as
(x1(0), x2(0), x3(0)) = (10, 10, 10). Figure 3 shows
the estimation results of parameters a, b and c at
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Table 7. The results of parameter estimation in disturbance-based chaotic finance
system.

Parameters a b c

Sample time interval tr = 0.01 s
Real values 0.9 0.2 1.2
Disturbance item η = 0.1 0.9130 (1.4%) 0.1982 (0.9%) 1.2000 (0%)
Disturbance item η = 0.01 0.9010 (1.10/00) 0.2001 (0.50/00) 1.2021 (1.80/00)
Disturbance item η = 0.001 0.8983 (1.90/00) 0.1993 (3.50/00) 1.2012(1.00/00)

Sample time interval tr = 0.005 s
Real values 0.9 0.2 1.2
Disturbance item η = 0.1 0.9138 (1.5%) 0.2012 (0.6%) 1.1955 (3.80/00)
Disturbance item η = 0.01 0.8987 (1.40/00) 0.1999 (0.50/00) 1.1992 (0.70/00)
Disturbance item η = 0.001 0.9016 (1.80/00) 0.1993 (3.50/00) 1.2001 (0.10/00)

Note: All the simulation results are based on the statistical average results of extreme
point values in the time range [0 s, 300 s].

different sample time interval tr . The numbers of
extreme value points of the variables x1, x2 and u, which
are obtained from the measured time series (tr = 0.01s),
are N8 = 979, N9 = 797 and N10 = 979. Table 3
lists the statistical results of parameters a, b and c at
different sample time intervals tr . From figure 3 and
table 3, it is seen that for the parameter c, whether
we adopt the identifier equation (33) or the identi-
fier equation (37), the errors between the observation
values and the real values are trivial, which verify
the effectiveness of the proposed estimation method
again.

3.2 Simulation results in the presence of time-series
noise

Here, we shall analyse the influence of time-series
noise on the estimation performance of the proposed
scheme in chaotic systems. To be concrete, the noise
term is assumed as Gaussian white noise, which is inde-
pendently and identically distributed with zero mean,
and suppose that the measured time-series output of
n-dimensional chaotic system is described as

x real
i = xi + ηi , i = 1, 2, . . . , n, (38)

where x real
i is the real measured output, xi is the

evaluation output in theory as shown in eq. (1) and
ηi is the uncertain time-series noise with different
amplitudes.

For Example 1, we keep all the conditions invari-
ant and add the noise to the measured time series

of chaotic finance system. Let the amplitudes of ran-
dom noises ηi (i = 1, 2, 3) be 0.01, 0.005 and
0.001, and use the identifier equations (11), (14) and
(17) to estimate the unknown parameters. Figure 4
shows the results of unknown parameter estimation
in the presence of noise with zero mean, sample
time 0.01 and 0.005 s, respectively. Table 4 lists
the corresponding statistical indicators with respect to
figure 4.

For Example 2, we keep all the conditions invariant
and add the noise to the measured time series of hyper-
chaotic Rossler system. Let the amplitudes of random
noises ηi (i = 1, 2, 3) be 0.01, 0.005 and 0.001, and
use the identifier equations (20), (22), (27) and (28) to
estimate the unknown parameters. Figure 5 shows the
results of unknown parameter estimation in the presence
of noise with sample time 0.01 and 0.005 s, respectively.
Table 5 lists the corresponding results with respect to
figure 5.

For Example 3, we keep all the conditions invari-
ant and add the noise to the measured time series of
classical Lorenz system. Let the amplitudes of random
noises ηi (i = 1, 2, 3) be 0.01, 0.005 and 0.001. We still
use the identifier equations (32), (33), (35) and (37) to
estimate the unknown parameters. Figure 6 shows the
results of unknown parameter estimation in the presence
of noise with zero mean, sample time 0.01 and 0.005 s,
respectively. Table 6 lists the corresponding results with
respect to figure 6.

From figures 4–6, we can see that the estimation
curves of the proposed method are a little oscillatory
around the true parameter values for the chaotic sys-
tems, and from tables 4–6, we can see that when the
amplitudes of time-series noise are lower or when the
frequency of time-series noise is higher, the results
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(a) The observation value of ˆ( )a t by using the identifier (20) in the presence of system disturbance
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(b) The observation value of ˆ( )b t by using the identifier (22) in the presence of system disturbance

(c) The observation value of ˆ( )c t by using the identifier (27) in the presence of system disturbance
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(d) The observation value of ˆ( )d t by using the identifier (28) in the presence of system disturbance
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Figure 8. Parameter estimation results in disturbance-based hyperchaotic Rossler system.
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Table 8. The results of parameter estimation in disturbance-based hyperchaotic Rossler system.

Parameters a b c d

Sample time interval tr = 0.01 s
Real values 0.25 3 0.5 0.05
Disturbance item η = 0.1 0.2516 (6.40/00) 2.4132 (0.20) 0.5050 (1.0%) 0.0497 (0.6%)
Disturbance item η = 0.01 0.2496 (1.60/00) 3.0575 (1.9%) 0.4928 (1.4%) 0.0490 (2.0%)
Disturbance item η = 0.001 0.2499 (0.40/00) 3.0895 (3.0%) 0.4978 (4.40/00) 0.0488 (2.4%)

Sample time interval tr = 0.005 s
Real values 0.25 3 0.5 0.05
Disturbance item η = 0.1 0.2501 (0.40/00) 2.8313 (5.6%) 0.5030 (0.6%) 0.0507 (1.4%)
Disturbance item η = 0.01 0.2504 (1.60/00) 3.8566 (0.29) 0.5082 (1.6%) 0.0506 (1.2%)
Disturbance item η = 0.001 0.2499 (0.40/00) 3.9347 (0.31) 0.5113 (2.2%) 0.0510 (2.0%)

Note: All the simulation results are based on the statistical average results of extreme point values in
the time range [0 s, 300 s].

are better in terms of all the indicators. From the
overall obtained results, we can see that the proposed
method has good performance against the time-series
noise.

3.3 Simulation results in the presence of system
disturbance

Here, we shall consider the influence of system distur-
bance on the estimation performance of the proposed
scheme in chaotic systems. Suppose that we have

ẋi = Fi (x, θi ) + μi , i ∈ {1, 2, . . . , n}, (39)

where μi represents the unknown disturbance item of
the system. In our simulations, we assume that μi =
k sin(10t) and we shall show the different impacts of k.

For Example 1, we keep all the conditions
invariant and add the disturbance into the state vari-
ables xi (i = 1, 2, 3) of the chaotic finance system. We
still use identifiers (11), (14) and (17) to evaluate the
unknown parameters. Figure 7 shows the correspond-
ing estimation results when k = 0.1, 0.01 and 0.001.
Table 7 lists the corresponding results with respect to
figure 7.

For Example 2, we keep all the conditions invari-
ant and add the disturbance into the state variables xi
(i = 1, 2, 3) of the hyperchaotic Rossler system. We still
use identifiers (20), (22), (27) and (28) to evaluate the
unknown parameters. Figure 8 shows the correspond-
ing estimation results when k = 0.1, 0.01 and 0.001.
Table 8 lists the corresponding results with respect to
figure 8.

For Example 3, we keep all the conditions invari-
ant and add the disturbance into the state variables xi

(i = 1, 2, 3) of the classical Lorenz system. We still
use identifiers (32), (33), (35) and (37) to evaluate the
unknown parameters. Figure 9 shows the correspond-
ing estimation results when k = 0.1, 0.01 and 0.001.
Table 9 lists the corresponding results with respect to
figure 9.

4. Discussion

Chaotic systems have a remarkable property that com-
plicated behaviours always emerge from a set of irreg-
ular orbits. This leads to the phenomenon that most
of the movement complications can be explained by
a simple statistical mathematical analysis in a record
time series, which motivated us to design a statistic and
systematic scheme based on least squares estimation
to identify the multiple parameters in chaotic systems,
thus avoiding the pitfalls of traditional local analysis
method.

The critical point of this parameter estimation method
as shown in eqs (5)–(7) is to find enough extreme value
points and make sure that every extreme value point
is independent. For a large class of chaotic systems,
the above two items are always satisfied, which give
us a sufficient condition and new insight to apply our
proposed estimation method into chaotic systems. In
comparison with [19–21] based on statistical method,
the proposed estimation methods use only the mea-
sured time-series data without the requirement for a
complicated theoretical analysis, which significantly
decreased the difficulties in practical implementation.
In addition, the absence of the adjustment parameters in
observers, which are proposed in [22–25], will enhance
the simplicity of the parameter estimation design and
decrease the computational cost.
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(a) The observation value of ˆ( )a t by using the identifier (32) in the presence of system disturbance
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(b) The observation value of ˆ( )b t by using the identifier (35) in the presence of system disturbance

(c) The observation value of ˆ( )c t by using the identifier (33) in the presence of system disturbance
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(d) The observation value of ˆ( )c t by using the identifier (37) in the presence of sytem disturbance
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Figure 9. Parameter estimation results in disturbance-based classical Lorenz system.
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Table 9. The results of parameter estimation in disturbance-based classical Lorenz system.

Parameters a b c1 c2

Sample time interval tr = 0.01 s
Real values 10 8/3 28 28
Disturbance item η = 0.1 10.027 (2.70/00) 2.6475 (7.20/00) 27.963 (1.30/00) 27.997 (0.10/00)
Disturbance item η = 0.01 9.9696 (3.00/00) 2.6567 (3.90/00) 27.960 (1.40/00) 28.013 (0.50/00)
Disturbance item η = 0.001 10.037 (3.70/00) 2.6586 (3.00/00) 27.990 (0.40/00) 28.008 (0.30/00)

Sample time interval tr = 0.005 s
Real values 10 8/3 28 28
Disturbance item η = 0.1 9.9930 (0.70/00) 2.6625 (1.50/00) 28.009 (0.30/00) 28.008 (0.30/00)
Disturbance item η = 0.01 10.036 (3.60/00) 2.6631 (1.30/00) 28.011 (0.40/00) 28.011 (0.40/00)
Disturbance item η = 0.001 10.001 (0.10/00) 2.6560 (4.00/00) 28.002 (0.10/00) 28.012 (0.40/00)

Note: All the simulation results are based on the statistical average results of extreme point values in the
time range [0 s, 300 s]

5. Conclusion

On the basis of least squares estimation, a novel
off-line parameter estimation approach for different
chaotic systems is proposed in this paper. This approach
gives a systematic procedure for estimating parame-
ters from the measured time series on the basis of
central limit theorem, where all unknown system param-
eters can be estimated dynamically. Three numerical
chaotic system simulations have been conducted to ver-
ify the validity of the proposed method, and the results
show that the proposed method has good estimation
results for different types of chaotic systems. Further-
more, the numerical results also verify the fact that
the proposed estimation method is robust to the time-
series noise and system disturbance in various chaotic
systems.
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