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induces p21 expression with increased  
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Abstract: Restoration of p53 functions is one of the therapeutic strategies for esophageal carcinoma which is often 
defective of the p53 pathway. We examined effects of CP-31398 which potentially increased expression of wild-type 
p53 or converted mutated p53 to the wild-type. We used 9 kinds of human squamous esophageal carcinoma cells 
with different p53 genotypes and examined expression of p53 and the related molecules in CP-31398-treated cells. 
Cisplatin, a DNA damaging agent, induced cleavages of PARP and caspase-3 without increase of p53 levels, indi-
cating that the p53 down-stream pathway was disrupted in these cells. CP-31398 induced growth retardation but 
the cytotoxic effects were irrelevant to p53 genotype. CP-31398 influenced expression of p53 and the downstream 
molecules in a cell-dependent manner, but constantly increased p21 expression at the transcriptional level with 
decreased YY1 expression. Knockdown experiments with siRNA demonstrated that the CP-31398-mediated p21 
up-regulation was unrelated with p53 expression but was associated with YY1 expression. We also showed that CP-
31398-induced cell cycle changes including increase of G2/M populations was attributable to the up-regulated p21. 
These data collectively indicated that CP-31398 augmented endogenous p21 levels and induced cell cycle changes 
through regulation of YY1, and that YY1 was a novel target of CP-31398 in p53 dysfunctional cells.

Keywords: CP-31398, esophageal carcinoma, p53, p21, YY1, G2/M arrest

Introduction 

An advanced case of esophageal carcinoma 
remains intractable because of the frequent 
invasion into vital organs in the vicinity [1]. A 
combination of chemotherapy and radiation is 
applicable to the patients and they can be sub-
jected to surgical procedures thereafter. The 
current chemotherapeutic agents for esopha-
geal carcinoma are primarily DNA-damaging 
agents such as cisplatin (CDDP) and DNA syn-
thesis inhibitors. Recent genome-wide sequ- 
encing data however demonstrated that the 
major genetic abnormality was associated with 
gene mutations in the p53 pathway, which re- 
sulted in p53 dysfunction and consequently in 

resistance to the DNA damaging anti-cancer 
agents [2, 3]. Reconstitution of the authentic 
p53 pathway is therefore one of strategies for 
esophageal carcinoma to enhance anti-tumor 
effects by the chemotherapeutic agents.

A number of agents acting on p53 expression 
levels are now being investigated for the thera-
peutic efficacy and some of them have been 
examined for the possible clinical feasibility [4]. 
An agent to inhibit a binding between p53 and 
MDM2 molecules which ubiquitinate and de- 
grade p53 is a candidate to increase p53 sta-
bility [5]. An MDM2 inhibitor can increase p53 
levels but the effectiveness is restricted only in 
cells with the wild-type p53 genotype. A differ-
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ent type of an agent is needed to activate the 
p53 pathway in cells with mutated p53 geno-
type. CP-31398 and PRIMA-1 belong to a func-
tionally different group from MDM2 inhibitors 
and augment or activate the p53 downstream 
pathway irrespective of the p53 genotypes [6, 
7]. The agents can not only increase express- 
ion of the wild-type p53 also convert specific 
mutated p53 such as codon 248, 249 and 273 
to the wild-type [8]. Nevertheless, the agents 
with the p53-converting activity or MDM2 in- 
hibitors have not yet examined for the cytoto- 
xicity in esophageal carcinoma except a report 
dealing with nutlin-3a, one of the MDM2 inhibi-
tors [9].

We previously showed that adenoviruses expre- 
ssing the wild-type p53 (Ad-p53) induced cell 
death in esophageal carcinoma and increased 
susceptibility to chemotherapeutic agents [10]. 
These data suggested that activation of the 
p53 pathway with exogenously expressed p53 
was another therapeutic strategy for esopha-
geal carcinoma despite the whole exome sequ- 
encing data which indicated that the majority 
was defective of the p53-mediated signaling  
[2, 3]. We further conducted a clinical study to 
intratumorally administer Ad-p53 into esopha-
geal carcinoma and demonstrated the safety 
and clinical efficacy [11]. These data collective-
ly suggested that stimulation of the p53 path-
way with transduced p53 or up-regulated en- 
dogenous p53 produced cytotoxic effects on 
esophageal carcinoma and indicated that res-
toration of the p53 pathway played an impor-
tant role in the treatment.

In the present study, we investigated a possi- 
ble therapeutic efficacy of CP-31398, an agent 
capable to convert mutated p53 into the wild-
type and to augment wild-type p53 level [8]. We 
analyzed how 9 kinds of esophageal carcinoma 
cells responded to a DNA damaging agent in 
terms of the p53 pathway and examined wheth-
er CP-31398 activated the p53 pathway in the 
esophageal carcinoma cells. The present study 
also analyzed a mechanism of CP-31398-me- 
diated induction of p21 in a p53-independent 
manner.

Materials and methods

Cells and agents

Human esophageal squamous cell carcinoma, 
TE-1 (mutated p53; at codon 272 Val to Met), 

TE-2 (wild-type p53), TE-10 (mutated at 242  
Cys to Tyr), TE-11 (wild-type), YES-2 (mutated at 
236 Tyr to Asn), YES-4 (wild-type), YES-5 (mutat-
ed at 280 Arg to Gly), YES-6 (wild-type) and T.Tn 
(mutated at 214 His to Arg and at 258 Glu to 
stop) cells, were from Cell Resource Center for 
Biomedical Research, Tohoku University (Sen- 
dai, Japan). Human mesothelioma, MSTO-211H 
(wild-type) and NCI-H28 (wild-type) cells, were 
purchased from American Type Culture Collec- 
tion (Manassas, VA, USA), and JMN-1B (mutat-
ed) and EHMES-1 (mutated) which were estab-
lished from Japanese patients, were kindly pro-
vided by Dr. Hironobu Hamada (Hiroshima Uni- 
versity, Hiroshima, Japan) [12]. All cells were 
cultured with RPMI-1640 medium supplement-
ed with 10% fetal calf serum. CP-31398 and 
nutlin-3a were purchased from Tocris Bioscien- 
ce (Bristol, UK), and ChemieTek (Indianapolis, 
IN, USA), respectively.

In vitro cytotoxicity and cell proliferation

Cells (2 × 103/well) were seeded in 96-well 
plates and were cultured for 4 days with differ-
ent concentrations of an agent. Cell viability 
was determined with a cell-counting WST kit 
(Wako, Osaka, Japan) (WST assay). The amount 
of formazan produced from a WST-8 reagent 
was determined with the absorbance at 450 
nm and the relative viability was calculated 
based on the absorbance without any treat-
ments. Live cell numbers were also counted 
with the trypan blue dye (dye exclusion assay). 
Half maximal inhibitory concentration (IC50) val-
ues were also estimated with the CalcuSyn 
software (Biosoft, Cambridge, UK).

Western blot analysis

Cell lysate was subjected to sodium dodecyl 
sulfate polyacrylamide gel electrophoresis. The 
protein was transferred to a nylon filter and was 
hybridized with antibody against phosphorylat-
ed p53 at Ser 15 (catalog number: #9284) or 
46 (#2521), p21 (#2947), caspase-3 (#9668), 
cleaved caspase-3 (#9661), poly ADP ribose 
polymerase (PARP) (which also detected cleav- 
ed PARP) (#4108), AMPKα (#2532), phosphory-
lated AMPKα (Thr172) (#2535), 4E-BP1 (#94- 
52), phosphorylated 4E-BP1 (Thr37/46) (#94- 
59), p70S6K (#9202), phosphorylated p70S6K 
(Thr389) (#9205) (Cell Signaling, Danvers, MA, 
USA), p53 (Ab-6, Clone DO-1) (#MS-187-P0), 
phosphorylated p21 (Thr145) (#PA5-36677) 
(Thermo Fisher Scientific, Fremont, CA, USA), 
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MDM2 (sc-965), YY1 (sc-7341) (Santa Cruz Bio- 
technology, Santa Cruz, CA, USA), p63 (ab735), 
p73 (ab40658), YY2 (ab116507) (Abcam, Cam- 
bridge, UK), γ-H2AX (#613401, BioLegend, San 
Diego, CA, USA), Kip1/p27 (#610241) (BD bio-
sciences, San Jose, CA, USA) and actin (#4970) 
(Cell Signaling) as a loading control followed by 
appropriate second antibody. The membranes 
were developed with the ECL system (GE Heal- 
thcare, Buckinghamshire, UK) and imaged with 
ImageQuant LAS 4000 (GE Healthcare).

RNA interference

Cells were transfected with small interfering 
RNA (siRNA) duplex targeting YY1 (#sc-36863), 
p21 (#sc-29427) (Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), p53 (#TP53-VHS40367) 
or with non-coding siRNA (#12935-114) as a 
control (Thermo Fisher Scientific, Fremont, CA, 
USA) using Lipofectamine RNAiMAX according 
to the manufacturer’s protocol (Thermo Fisher 
Scientific).

Cell cycle analysis

Cells treated with an agent were fixed in ice-
cold 100% ethanol, incubated with RNase (50 
μg/ml) and stained with propidium iodide (50 
μg/ml). The staining profiles were analyzed with 
FACSCalibur (BD Biosciences, San Jose, CA, 
USA) and CellQuest software (BD Biosciences).

Reverse transcription-polymerase chain reac-
tion (RT-PCR)

First-strand cDNA was synthesized with Super- 
script III reverse transcriptase (Invitrogen, Car- 
lsbad, CA) and amplification of equal amounts 
of the cDNA was performed with the following 
primers and conditions: for the p53 gene, 
5’-CTGCCCTCAACAAGATGTTTTG-3’ (sense) and 
5’-CTATCTGAGCAGCGCTCATGG-3’ (anti-sense), 
and 30 sec at 96°C for denature/90 sec at 
65°C for annealing/36 cycles; for the p21  

gene, 5’-GACACCACTGGAGGGTGACT-3’ (sense) 
and 5’-GGCGTTTGGAGTGGTAGAAA-3’ (anti-sen- 
se), and 10 sec at 94°C/20 sec at 48°C/35 
cycles; for the glyceraldehyde-3-phosphate de- 
hydrogenase (GAPDH) gene, 5’-ACCACAGTCCA- 
TGCCATCAC-3’ (sense) and 5’-TCCACCACCCTG- 
TTGCTGTA-3’ (anti-sense), and 15 sec at 94°C/ 
15 sec at 60°C/30 cycles. The products were 
analyzed with gel electrophoresis.

Results

Esophageal carcinoma cells were defective of 
p53 activation

We examined possible activation of p53-medi-
ated pathway with CDDP, a DNA damaging 
agent, in 9 kinds of human esophageal squa-
mous cell carcinoma with different p53 geno-
type (Figure 1). TE-11 and YES-4 cells, with 
wild-type p53 genotype, temporally increased 
p53 levels and the phosphorylation at serine 
15 after CDDP treatments, while the other p53 
wild-type cells, TE-2 and YES-6 cells, hardly ex- 
pressed p53 and did not increase the expres-
sion (Figure 1A). We also found that CDDP 
treatments scarcely increased p53 transcripts 
(Figure 1B), indicating that the p53 increase in 
TE-11 and YES-4 cells were due to a posttran-
scriptional regulation. Expression of p21, a tar-
get of p53 activation, was rather down-regulat-
ed in TE-11, YES-4 and to a lesser extent YES-6 
cells, but slightly increased in TE-2 cells. Expre- 
ssion of p73, belonging to the p53 family pro-
teins, was variable among the cells in both 
forms, TAp73α and ΔNp73, and that of p63,  
the another family protein, was suppressed by 
CDDP treatments. Induction of the DNA dam-
age was evidenced by up-regulated γ-H2AX ex- 
pression and all the cells showed cleavages  
of caspase-3 and PARP. These data collective- 
ly indicated that CDDP induced cell death with-
out activation of p53 and the other p53 family 
proteins, and suggested that the p53 down-

Figure 1. Human esophageal carcinoma cells were defective of p53 activation. (A, C) Esophageal carcinoma with 
the wild-type p53 (A) and mutated p53 genotype (C) were treated with CDDP at 20 μM for 24 or 48 hrs, and expres-
sion levels of p53 and the relevant molecules were examined with Western blot analysis. Actin was used as a load-
ing control. (B) Expression of p53 mRNA in CDDP-treated cells. Cells which were untreated or treated with 20 μM 
of CDDP for 24 hrs were examined for expression of p53 and GAPDH transcripts as a loading control with RT-PCR. 
(D) Cells were treated with nutlin-3a at various concentrations and the relative viabilities were measured with the 
WST assay. IC50 values were calculated with CalcuSyn software. Averages and SE bars are shown (n=3). (E) Growth 
inhibitory effects of nutlin-3a on mesothelioma cells with different p53 genotype. Cells were treated with nutlin-3a 
at various concentrations and the relative viabilities were measured with the WST assay. IC50 values were calculated 
with CalcuSyn software. Averages and SE bars are shown (n=3).
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stream pathway was non-functional in esopha-
geal carcinoma despite the wild-type p53 ge- 
notype.

Esophageal carcinoma cells with mutated p53 
genotypes showed differential expression lev-
els of p53 and the phosphorylation after CDDP 
treatments (Figure 1C). TE-1 and TE-10 cells 
decreased p53 and the phosphorylation levels, 
whereas YES-2 and T.Tn cells increased both 
p53 levels and YES-5 cells did not influence the 
levels. Expression levels of p21 and p63 were 
down-regulated except p21 in YES-2 cells, but 
those of TAp73α and ΔNp73 remained unchan- 
ged except TAp73α in TE-1. CDDP-treated cells 
showed increased γ-H2AX and cleavages of 
PARP and caspase-3 in these cells. These data 
therefore indicated that a DNA damaging agent 
activated apoptotic pathway in a p53-indepen-
dent manner in esophageal carcinoma cells.

We also examined whether the p53 down-
stream pathway in the esophageal carcinoma 
cells functioned by analyzing relative sensitivity 
to nutlin-3a (Figure 1D). Nutlin-3a, an inhibitor 
for interaction between MDM2 and p53, in- 
duced growth inhibition in cells with the wild-
type p53 genotype, whereas cells with mutated 
p53 genotype were insensitive to nutlin-3a 
[13]. We used mesothelioma cells with the  
wild-type and with mutated p53 genotype, and 
showed that those with the wild-type p53 were 
sensitive to nutlin-3a-mediated growth inhibi-
tion (average IC50 ± SE: 3.77 ± 1.71), whereas 
those with mutated p53 were insensitive 
(33.92 ± 2.94) (Figure 1E). Susceptibility of 
esophageal carcinoma cells to nutlin-3a show- 
ed that the IC50 values were all similar to that  
of mesothelioma with mutated p53 and the 
sensitivity was not influenced by the p53 geno-
type. These data collectively indicated that the 
p53 downstream pathway in esophageal carci-
noma were non-functional irrespective of the 
p53 genotype and suggested that cell death  
by a DNA damage was irrelevant to the p53 
pathways.

Growth suppression produced by CP-31398 
was irrelevant to the p53 genotype

We then examined growth suppressive activity 
of CP-31398 with the esophageal carcinoma 
(Figure 2A). Sensitivity of cells with the wild-
type p53 to CP-31398 (IC50=4.97 ± 1.23) was 
not different from that of cells with mutated 
p53 (4.27 ± 0.40), indicating that the suscepti-
bility was not associated with the p53 genoty- 
pe (P=0.26). We also tested susceptibility of 
mesothelioma to CP-31398 and found that 
CP-31398 inhibited the cell growth in a p53- 
independent manner (IC50 of wild-type p53: 
6.80 ± 2.12, mutated p53: 5.55 ± 0.20) (Figure 
2B). We examined live cell numbers of esopha-
geal carcinoma cells treated with CP-31398 
(Figure 2C). CP-31398 treatments induced 
growth retardation and decreased live cell 
numbers, indicating that CP-31398 produced 
cytostatic and cytotoxic effects depending on 
the agent dose and the effects were not associ-
ated with the p53 genotype. These data collec-
tive indicated that mechanism of CP-31398-
mediated cytotoxicity was irrelevant to the p53 
pathway.

Cell cycle progression by CP-31398

We tested cell cycle progression of cells treated 
with CP-31398 (Figure 2D; Table 1). We found 
that a small percentage of TE-1, TE-2 and YES-5 
cells showed an over-4N population (hyperploi-
dy), and TE-4 and TE-11 cells constantly had a 
sub-G1 population which was different from a 
cell death-linked sub-G1 fraction. The hyper-
ploidy fractions and the persistent sub-G1 pop-
ulation could be attributable to an abnormal 
cell division process in nucleoli, which was per-
tinent to malignant transformation. CP-31398-
treated cells showed increase in G2/M popula-
tions in all the cells tested (Figure 2E), hyper-
ploidy fractions in TE-2, TE-10, YES-2 and T.Tn 
cells, and sub-G1 populations in YES-2, YES-5, 
YES-6 and T.Tn cells.

Figure 2. CP-31398-mediated effects on esophageal carcinoma. (A, B) Esophageal carcinoma (A) and mesothelioma 
(B) cells were treated with CP-31398 as indicated and the relative viabilities were measured with the WST assay. IC50 
values were calculated with CalcuSyn software. Averages and SE bars are shown (n=3). (C) Cells were treated with 
CP-31398 as indicated and live cell numbers were counted with a trypan blue dye exclusion assay. Averages and 
SE bars are shown (n=3). (D) Representative cell cycle profiles of esophageal carcinoma cells which were treated 
with CP-31398 for 48 hrs were analyzed with a flow cytometry. Percentages of each fraction was shown in Table 
1. (E) Percentages of G2/M phase populations in esophageal carcinoma cells treated with CP-31398 as indicated 
for 48 hrs. SE bars are also shown (n=3). *P<0.05. ns: not significant. The percentages are also shown in Table 1.
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Table 1. Cell cycle progression of esophageal carcinoma cells treated with CP-31398

Cells Time 
(hrs)

CP-31398 
(μM)

Cell cycle distribution (%) (Average ± SE)
Sub-G1 G1 S G2/M Hyperploidy

TE-1 24 (-) 1.43 ± 0.03 43.57 ± 1.13 22.02 ± 0.53 27.80 ± 0.35 5.19 ± 0.03
3 2.20 ± 0.19 62.86 ± 0.69 15.50 ± 0.67 16.98 ± 2.16 2.46 ± 0.01

10 2.83 ± 0.12 38.22 ± 0.38 11.57 ± 0.43 41.60 ± 0.38 5.77 ± 0.05
48 (-) 1.30 ± 0.03 57.30 ± 0.29 10.45 ± 0.22 25.57 ± 0.10 5.38 ± 0.10

3 1.05 ± 0.03 54.08 ± 0.69 14.00 ± 0.30 25.14 ± 0.17 5.74 ± 0.07 
10 3.87 ± 0.17 37.94 ± 0.07 8.07 ± 0.10 43.82 ± 0.30 6.30 ± 0.03

TE-2 24 (-) 4.13 ± 0.05 31.95 ± 0.44 22.68 ± 0.20 35.23 ± 0.22 6.01 ± 0.02
3 3.31 ± 0.13 20.29 ± 0.20 26.84 ± 0.20 37.79 ± 0.26 11.77 ± 0.05

10 3.31 ± 0.14 14.93 ± 0.21 20.12 ± 0.17 47.48 ± 0.35 14.16 ± 0.07
48 (-) 3.32 ± 0.11 32.32 ± 0.41 23.80 ± 0.09 34.64 ± 0.33 5.92 ± 0.12

3 4.54 ± 0.13 26.01 ± 0.20 22.68 ± 0.19 35.55 ± 0.23 11.22 ± 0.04
10 6.97 ± 0.19 11.39 ± 0.61 15.71 ± 0.24 47.30 ± 0.15 18.64 ± 0.15

TE-10 24 (-) 1.09 ± 0.02 44.26 ± 0.50 23.00 ± 0.45 29.86 ± 0.42 1.79 ± 0.02
3 1.67 ± 0.14 45.46 ± 0.40 25.54 ± 0.33 26.23 ± 0.23 1.00 ± 0.06

10 3.81 ± 0.20 34.58 ± 0.46 35.04 ± 0.13 24.67 ± 0.55 1.90 ± 0.05
48 (-) 1.35 ± 0.02 55.77 ± 0.20 20.26 ± 0.24 21.68 ± 0.16 0.94 ± 0.02

3 1.82 ± 0.16 52.90 ± 0.40 22.03 ± 0.09 21.92 ± 0.20 1.33 ± 0.01 
10 4.68 ± 0.13 27.84 ± 0.23 23.86 ± 0.61 39.54 ± 0.33 4.08 ± 0.15

TE-11 24 (-) 42.47 ± 0.19 33.65 ± 0.20 14.77 ± 0.28 8.89 ± 0.37 0.23 ± 0.02
3 48.38 ± 0.41 28.21 ± 0.30 15.89 ± 0.32 7.33 ± 0.48 0.19 ± 0.03

10 39.56 ± 0.11 29.15 ± 0.25 18.17 ± 0.12 12.19 ± 0.09 0.93 ± 0.01
48 (-) 48.54 ± 0.44 33.17 ± 0.47 10.86 ± 0.28 7.10 ± 0.29 0.32 ± 0.01

3 48.99 ± 0.27 29.93 ± 0.30 12.42 ± 0.10 8.05 ± 0.06 0.61 ± 0.01 
10 39.56 ± 0.14 28.76 ± 0.46 16.68 ± 0.13 13.37 ± 0.22 1.63 ± 0.04

YES-2 24 (-) 1.93 ± 0.06 45.75 ± 0.27 25.96 ± 0.20 25.96 ± 0.25 0.40 ± 0.01
3 1.95 ± 0.20 47.74 ± 0.73 23.13 ± 0.52 26.56 ± 0.84 0.62 ± 0.03

10 2.88 ± 0.10 36.64 ± 0.44 32.74 ± 0.29 23.61 ± 0.38 4.13 ± 0.05
48 (-) 2.87 ± 0.01 52.52 ± 0.32 25.79 ± 0.24 18.20 ± 0.15 0.62 ± 0.02

3 2.36 ± 0.37 46.14 ± 0.73 29.03 ± 0.12 21.38 ± 1.08 1.09 ± 0.03 
10 6.39 ± 0.23 26.08 ± 0.82 35.64 ± 0.24 26.37 ± 0.27 5.52 ± 0.04

YES-4 24 (-) 16.40 ± 0.79 48.61 ± 0.36 22.06 ± 0.20 12.43 ± 0.80 0.50 ± 0.01
3 14.95 ± 0.29 45.48 ± 0.24 23.33 ± 0.51 15.86 ± 0.04 0.38 ± 0.05

10 14.64 ± 0.19 39.63 ± 0.09 22.11 ± 0.17 22.12 ± 0.22 1.49 ± 0.05
48 (-) 15.29 ± 0.12 49.45 ± 0.42 21.84 ± 0.26 12.39 ± 0.38 1.03 ± 0.04

3 16.54 ± 0.05 48.06 ± 0.24 21.08 ± 0.17 13.20 ± 0.03 1.13 ± 0.01
10 15.41 ± 0.10 35.16 ± 0.46 19.48 ± 0.01 27.65 ± 0.34 2.29 ± 0.04

YES-5 24 (-) 2.25 ± 0.07 44.09 ± 0.57 25.03 ± 0.47 23.45 ± 0.33 5.19 ± 0.03
3 3.49 ± 0.07 49.18 ± 0.06 21.21 ± 0.14 19.57 ± 0.28 6.55 ± 0.12

10 9.83 ± 0.27 31.51 ± 0.83 22.01 ± 0.73 32.24 ± 0.42 4.41 ± 0.03
48 (-) 3.39 ± 0.14 47.04 ± 0.37 24.38 ± 0.17 20.42 ± 0.03 4.77 ± 0.02

3 3.30 ± 0.09 48.79 ± 0.06 23.09 ± 0.12 20.57 ± 0.08 4.24 ± 0.10
10 5.21 ± 0.04 47.38 ± 0.11 12.71 ± 0.11 26.80 ± 0.29 7.90 ± 0.05

YES-6 24 (-) 2.25 ± 0.03 48.63 ± 0.31 21.38 ± 0.13 27.10 ± 0.14 0.64 ± 0.02
3 1.69 ± 0.13 48.32 ± 0.18 20.02 ± 0.20 29.17 ± 0.49 0.81 ± 0.04

10 1.90 ± 0.10 48.07 ± 0.21 18.11 ± 0.29 30.70 ± 0.37 1.22 ± 0.03
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Expression of p53 and the relevant molecules 
induced by CP-31398

We investigated expression of p53 and the rel-
evant molecules in esophageal carcinoma cells 
treated with CP-31398 (Figure 3). CP-31398 
increased p53 expression in TE-10 cells but 
decreased the levels in TE-1, YES-2 and YES-5 
cells. Phosphorylated p53 levels at Ser 15 
matched with changes of p53 expression in 
TE-10 and YES-2 cells, but those at Ser 46 in 
these cells were not associated with the p53 

changes. TE-1 cells showed no change of the 
phosphorylated p53 levels and YES-5 cells 
decreased only Ser 46 phosphorylation. T.Tn 
cells up-regulated p53 phosphorylation in both 
Ser 15 and 46 but the p53 levels remained  
the same, and TE-11 cells increased the phos-
phorylation at Ser 15 but decreased at Ser 46 
with constant p53 levels. Expression of p53 
and the phosphorylation remained unchanged 
in YES-4, but TE-2 and YES-6 scarcely express- 
ed p53 and the phosphorylation at Ser 15 as 
shown in CDDP-treated cells. CP-31398 did not 

48 (-) 2.69 ± 0.09 64.27 ± 0.28 11.16 ± 0.04 21.20 ± 0.22 0.68 ± 0.03
3 2.75 ± 0.06 61.41 ± 0.18 11.11 ± 0.19 23.42 ± 0.02 1.32 ± 0.10

10 9.29 ± 0.15 49.34 ± 0.52 12.47 ± 0.04 27.20 ± 0.37 1.69 ± 0.05
T.Tn 24 (-) 2.48 ± 0.07 57.91 ± 0.09 20.06 ± 0.13 17.83 ± 0.09 1.73 ± 0.02

3 3.78 ± 0.08 62.78 ± 0.15 19.22 ± 0.42 12.70 ± 0.31 1.52 ± 0.04
10 12.37 ± 0.23 27.16 ± 0.04 23.59 ± 0.39 25.33 ± 0.28 11.55 ± 0.03

48 (-) 2.61 ± 0.04 62.33 ± 0.33 19.24 ± 0.30 14.19 ± 0.11 1.64 ± 0.03
3 4.12 ± 0.06 61.50 ± 0.15 18.69 ± 0.13 13.54 ± 0.04 2.16 ± 0.10

10 22.34 ± 0.16 17.82 ± 0.32 27.85 ± 0.21 15.77 ± 0.52 16.23 ± 0.05
Cells treated with CP-31398 was analyzed for the cell cycle progression with a flow cytometry.

Figure 3. Expression of the p53 family and the related molecules in CP-31398-treated cells. Esophageal carcinoma 
cells were treated with CP-31398 at 10 μM for 48 hrs and subjected to Western blot analysis as indicated. Actin was 
used as a loading control.
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increase p53 levels not only in p53 wild-type 
cells but in mutated p53 cells, suggesting that 
CP-31398 did not increase stability of wild- 
type p53 or probably conversion from muta- 
ted p53 to the wild-type p53. As for other p53 
family proteins, esophageal carcinoma cells 
decreased p63 and/or p73 isoform expression 
levels except TE-1 and TE-10 cells, and conse-
quently CP-31398-mediated changes of the 
p53 family proteins were not linked with the 
p53 genotypes. Expression of MDM2, a target 
of the p53 pathway, was constant except in 
TE-2 and YES-4 cells which down-regulated the 
expression, whereas expression of p21, also 
the p53 target molecules, was up-regulated in 
all the cells. Phosphorylated p21 at Thr 145, a 
marker of p21 stability, was however not cor- 
related with increased p21 levels, suggesting 
that augmented p21 expression was attribut-
able to the transcriptional activation. CP-313- 
98-induced changes of p27 expression were 
variable among the cells and the expressional 
changes were inconsistent with the p53 chang-
es. Increased cleavage of PARP or caspase-3 
was detected in all the cells except TE-2 cells, 
indicating that CP-31398 induced the apoptot-
ic pathway in a p53-independent manner.

regulated with CP-31398 except increased lev-
els of phosphorylated 4E-BP1 and p70S6K in 
YES-4, marginally increased p70S6K in YES-6 
and 4E-BP1 in T.Tn cells. These data collectively 
indicated that YY2 or 4E-BP1 expression pro-
files did not matched with the p21 up-regula-
tion by CP-31398 and suggested that both  
molecules were not responsible for the aug-
mented expression.

We further examined expression of p53 and 
the related molecules in CP-31398-treated 
cells with different doses and incubation peri-
ods (Figure 4). Expression of p53 was down-
regulated in the majority in dose- and time-
dependent manners except TE-10 which incre- 
ased the level, T.Tn with unchanged levels, TE-2 
and TE-6 which did not expressed p53. The 
responses to CP-31398 in respective cells 
were thus different from those to CDDP, indi- 
cating that CP-31398 did not induce the same 
DNA damage as CDDP did. The dose and time 
course experiments showed that expression of 
p21 was up-regulated with CP-31398 compar- 
ed with the expression in untreated cells. Ex- 
pression of YY1, a transcriptional factor which 
negatively regulates p21 transcripts [16, 17], 
decreased with CP-31398 treatments except 

Figure 4. CP-31398-mediated augmentation of p21 and suppression of YY1 
expression. Esophageal carcinoma cells treated with CP-31398 (A) at differ-
ent concentrations as indicated for 48 hrs or (B) at 10 μM for different times 
as indicated, were subjected to Western blot analysis. Actin was used as a 
loading control.

We also examined express- 
ion of YY2, p53-bindindg mol-
ecules involved in p21 tran-
scriptional activation [14], 
and that of AMPK which was 
in an upstream pathway of 
4E-BP1 which played a role  
in p21 stability [15]. Express- 
ion of YY2 increased in TE-10 
and to a lesser extent TE-11 
cells, but decreased in YES-2 
cells. Other cells treated with 
CP-31398 did not show any 
changes of YY2 expression. 
Expression of AMPK or the 
phosphorylation was down-
regulated in the majority of 
cells, but TE-11 and YES-2 
cells increased the phosphor-
ylation levels. YES-4 cells was 
not influenced in both expres-
sion levels and YES-5 mini-
mally increased AMPK expre- 
ssion. Expression levels of 
4E-BP1, p70S6K and respec-
tive phosphorylated mole-
cules was in general down-
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TE-10 cells that increased the level. These data 
collectively suggested that CP-31398-media- 
ted p21 increase was independent of the p53 
pathway and was well associated with YY1 ex- 
pression.

CP-31398 activated p21 transcription and YY1 
involvement in the p21 induction

We investigated whether the CP-31398 regu-
lated p21 expression at the transcriptional 
level with RT-PCR (Figure 5A). An amount of 
p21 transcripts increased in esophageal carci-
noma cells treated with CP-31398 and the up-
regulation was dependent on CP-31398 con-
centrations used. All the esophageal carcinoma 
showed increase of p21 transcripts but the 
mRNA expression levels were not matched with 
the protein levels, suggesting that p21 expres-
sion was also regulated at the post-transcrip-
tional level.

We examined a possible involvement of p53  
in the CP-31398-mediated p21 up-regulation 

ed with CP-31398 exceptionally increased YY1 
expression in contrast with the other cells and 
showed p21 augmentation like the others 
(Figure 4A and 4B). These data indicated that 
YY1 was a negative regulator for p21 expres-
sion in CP-31398-treated cells except TE-10 
cells in which p21 was positively controlled by 
YY1. We noticed that knockdown of YY1 did  
not increase p21 expression in CP-31398-
untreated cells and TE-10 cells treated with 
control siRNA by itself increased YY1 expres-
sion but did not influence p21 expression. 
These data suggested that p21 expression was 
not totally dependent on YY1 and that regula-
tion of YY1 in TE-10 cells was different from 
that in the other cells.

Up-regulated p21 mediated CP-31398-induced 
cell cycle changes

We examined how the up-regulated p21 expres-
sion contributed to cell cycle changes induced 
in CP-31398-treated cells with siRNA-mediated 

Figure 5. CP-31398-mediated up-regulation of p21 was independent of p53 
but associated with YY1 expression. (A) Esophageal carcinoma cells treated 
with CP-31398 as indicated for 48 hrs and amounts of p21 transcripts were 
analyzed with RT-PCR. GAPDH transcripts are shown as a control. (B, C) Cells 
transfected with either (B) p53-siRNA or (C) YY1-siRNA were treated with CP-
31398 at 10 μM for 48 hrs and subjected to Western blot analysis. Cells 
transfected with control siRNA were also used as a reference. Actin was used 
as a loading control.

with siRNA in 4 representa- 
tive cells regarding p53 geno-
type (Figure 5B). Expression 
of p53 was down-regulated 
with p53-siRNA but not with 
control siRNA irrespective of 
the genotype. Knockdown of 
p53 scarcely influenced en- 
dogenous p21 expression or 
the CP-31398-induced aug-
mented p21 levels. Cells tre- 
ated with control siRNA aug-
mented p21 expression after 
CP-31398 treatments. These 
data with the siRNA indicat- 
ed that the CP-mediated p21 
augmentation was irrelevant 
to p53 expression. We next 
investigated how YY1 regu- 
lated the CP-31398-mediat- 
ed p21 up-regulation in YY1 
down-regulated cells (Figure 
5C). TE-1, TE-10 and TE-11 
cells decreased YY1 expres-
sion with YY1-siRNA but not 
with control siRNA. Down-
regulation of YY1 increased 
p21 expression in TE-1 and 
TE-11 cells but decreased  
the expression in TE-10 cells 
when they were treated with 
CP-31398. TE-10 cells treat- 
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p21 knockdown (Figure 6). Expression of p21 
became completely negative with the siRNA 
even in CP-31398-treated cells (Figure 6A). 
Cell cycle progression induced by CP-31398 
was examined in cells treated with the siRNA 
(Figure 6B; Table 2). Increased G2/M fractions 
observed in TE-1 cells treated with CP-31398 
for 48 hrs were not detected in cells treated 
with p21-siRNA. Likewise, TE-2 cells increased 
G2/M population with CP31398 treatments 
but p21-siRNA treated cells decreased the pop-
ulation to the level of untreated cells. TE-2 cells 
showed increased hyperploidy with CP-31398 
treatments and the up-regulation was disap-
peared with p21-siRNA treatments. Decreased 
G0/G1 populations induced by CP-31398, pro-
bably accompanied by increased G2/M and 
hyperploidy fractions, was returned to the le- 
vel of untreated cells. These data collectively 
indicated that cell cycle changes caused by 
CP-31398 was mainly due to increased p21 
expression. 

Discussion

The present study examined effects of a p53- 
stabilizing CP-31398 on p53 relevant pathways 
in human esophageal squamous cell carcino-
ma cells bearing the wild-type p53 or mutated 
p53 of which conformation was not corrected 
by CP-31398 [8]. We showed that CP-31398 

did not activated the p53 pathway but up-regu-
lated p21 expression at the transcription level 
in a p53-independent manner, and demon-
strated firstly to our knowledge that the CP- 
31398-mediated augmentation of p21 expres-
sion was regulated by a transcriptional factor 
YY1. We also showed that the p21 up-regula-
tion was responsible for cell cycle changes 
induced by CP-31398 in the esophageal carci-
noma cells.

Previous studies showed that CP-31398 aug-
mented p53 expression by stabilizing p53 
through inhibiting p53 ubiquitination but not 
inhibiting the p53-MDM2 interactions in p53 
wild-type cells [18]. The agent also converted a 
few types of mutated p53 to wild-type p53 due 
to a conformational change at the DNA binding 
domain of p53 [6, 8]. Nevertheless, subse-
quent studies demonstrated that CP-31398-
mediated effects were complex [19] and were 
dependent on tumors tested and on the ge- 
netic backgrounds [20]. The present study in- 
vestigated CP-31398-mediated effects in p53- 
dyfunctional but not p53-deleted tumors on 
cell growth inhibition, and demonstrated that 
CP-31398-mediated p53 and the phosphoryla-
tion levels, and the cytotoxicity were irrelevant 
to the p53 genotype, and furthermore cleav-
ages of PARP and caspase-3 were not associ-
ated with p53 up-regulations. These data th- 

Figure 6. CP-31398-mediated cell cycle changes were at-
tributable to augmented p21 expression. A. Cells transfected 
with p21-siRNA or control siRNA were treated with CP-31398 
at 10 μM for 48 hrs and subjected to Western blot analysis. 
Actin was used as a loading control. B. Representative cell 
cycle profiles of cells treated with siRNA and/or CP-31398 at 
10 μM for 48 hrs. The profiles were examined with a flow cy-
tometry. A percentage of each fraction was shown in Table 2.
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Table 2. Cell cycle progression of esophageal carcinoma cells which were treated with CP-31398 and 
siRNA

Cells Time 
(hrs) Conditions

Cell cycle distribution (%) (Average ± SE)
Sub-G1 G1 S G2/M Hyperploidy

TE-1 24 (-) 5.21 ± 0.14 44.96 ± 0.68 14.41 ± 0.25 28.11 ± 0.29 7.32 ± 0.01
Control siRNA 5.45 ± 0.12 43.70 ± 0.37 14.40 ± 0.11 29.03 ± 0.47 7.41 ± 0.03
Control siRNA + CP-31398 6.14 ± 0.04 40.95 ± 0.37 12.88 ± 0.10 32.35 ± 0.30 7.69 ± 0.14
p21-siRNA 5.00 ± 0.10 44.01 ± 0.31 14.56 ± 0.05 29.01 ± 0.30 7.42 ± 0.30
p21-siRNA + CP-31398 4.17 ± 0.03 44.98 ± 0.14 14.49 ± 0.11 28.82 ± 0.07 7.55 ± 0.14

48 (-) 2.65 ± 0.23 42.29 ± 0.82 16.96 ± 0.58 27.10 ± 0.06 11.00 ± 0.01
Control siRNA 2.81 ± 0.14 40.93 ± 0.41 17.77 ± 0.17 26.57 ± 0.24 11.92 ± 0.11
Control siRNA + CP-31398 4.06 ± 0.02 31.51 ± 0.26 19.40 ± 0.51 31.71 ± 0.67 13.34 ± 0.01
p21-siRNA 1.92 ± 0.05 39.90 ± 0.35 17.99 ± 0.36 27.18 ± 0.11 13.01 ± 0.20
p21-siRNA + CP-31398 2.66 ± 0.08 41.11 ± 0.30 17.54 ± 0.33 25.70 ± 0.35 12.99 ± 0.03

TE-2 24 (-) 2.59 ± 0.04 29.66 ± 0.17 29.81 ± 0.14 34.11 ± 0.16 3.83 ± 0.02
Control siRNA 2.20 ± 0.08 33.53 ± 0.35 30.00 ± 0.04 31.37 ± 0.41 2.90 ± 0.07
Control siRNA + CP-31398 4.35 ± 0.03 30.88 ± 0.69 15.88 ± 0.30 38.73 ± 0.17 10.16 ± 0.07
p21-siRNA 4.26 ± 0.28 32.26 ± 0.44 27.07 ± 0.62 30.69 ± 0.38 5.72 ± 0.05
p21-siRNA + CP-31398 5.01 ± 0.26 33.10 ± 1.13 25.94 ± 0.23 30.38 ± 0.40 5.57 ± 0.07

48 (-) 2.72 ± 0.04 32.21 ± 0.21 39.47 ± 0.06 20.33 ± 0.39 5.27 ± 0.12
Control siRNA 3.67 ± 0.34 38.03 ± 2.58 34.26 ± 0.37 20.36 ± 1.57 3.68 ± 0.07
Control siRNA + CP-31398 3.00 ± 0.42 13.08 ± 1.26 36.56 ± 1.42 39.16 ± 1.65 7.48 ± 0.07
p21-siRNA 4.48 ± 0.07 32.04 ± 1.09 29.38 ± 0.27 25.42 ± 0.64 8.68 ± 0.04
p21-siRNA + CP-31398 4.61 ± 0.03 33.36 ± 0.35 29.68 ± 0.06 23.26 ± 0.04 9.09 ± 0.15

Cells transfected with p21-siRNA or control siRNA were treated with CP-31398 at 10 mM. The cell cycle profiles was analyzed 
with a flow cytometry.

erefore indicated that these esophageal carci-
noma cells were defective of p53 up-stream 
pathways as well as p53 down-stream pathway, 
and suggested that CP-31398 induced cell de- 
ath and cell cycle changes were at least partly 
attributable to non-p53 pathways. Expression 
profiles of p53 induced by CP-31398 was dif-
ferent from those by CDDP, but the profile 
changes in p63 and p73 were similar to those 
by CDDP. The CP-31398-mediated DNA dam-
age responses might thereby not be totally dif-
ferent with CDDP in these cells.

We demonstrated in the present study that p21 
expression was up-regulated by CP-31398 in 
contrast to CDDP-induced p21 down-regula-
tion. The up-regulation was irrelevant to ac- 
tivation of the p53 pathway and knockdown of 
p53 with siRNA confirmed the p53-indepen-
dence. We therefore investigated a possible 
mechanism involved in non-p53-mediated p21 
augmentation. Previous studies showed that 
CP-31398 induced p21 expression in a p53- 
independent manner [21] but this is the first 
report to indicate that CP-31398 influenced 

YY1 expression and regulated p21 expression. 
YY1 is a transcriptional factor ubiquitously ex- 
pressed and regulates a number of genes posi-
tively or negatively depending on co-factors in- 
volved in the regulation [22, 23]. In addition, 
the over-expression was often associated with 
tumorigenesis and tumor progression includ- 
ing esophageal carcinoma [24]. YY1 promoted 
functions and expression of oncogenes [23], 
and inhibition of YY1 suppressed cell invasion 
and metastatic potentials [25]. We showed with 
CP-31398 treated cells that YY1 expression 
was reversely correlated with p21 expression 
and furthermore demonstrated that knock-
down of YY1 expression augmented the p21 
levels. Up-regulation of p21 contributed to cell 
growth suppression and YY1 down-regulation 
therefore played a role in inhibiting tumorigenic 
potentials. Previous studies showed that YY1 
inhibited p21 transcription by blocking an ac- 
cess of other factors to the regulatory sequenc-
es in p53 wild-type cells [16. 17], but the pres-
ent study also demonstrated the YY1-mediated 
p21 regulation in p53 dysfunctional cells. TE-10 
cells were exception in the CP-31398- and YY1-
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siRNA-treated studies, which showed that YY1 
expression was positively associated with p21 
expression and knockdown of YY1 rather de- 
creased p21 expression. Contradictory effects 
of YY1 on p21 expression found between TE-10 
cells and the other cells can be due to differen-
tial co-factors engagement in the p21 tran-
scriptions. Nevertheless, these results of TE- 
10 cells also showed that YY1 regulated p21 
expression in CP-31398-treated cells.

We examined other possible factors involved in 
p53-independent p21 regulation. YY2, a tran-
scription factor belonging to the YY family, had 
similarity to YY1 at the DNA sequence level and 
reciprocally regulated target gene expression of 
YY1 by competing a binding site at the tran-
scriptional regulatory region [26]. YY2 therefore 
struck a balance of the gene expression with 
YY1. The present data however showed that 
profiles of YY2 expression by CP-31398 were 
unrelated with those of YY1, indicating that YY2 
played a minor role in the p21 regulation. A 
recent study however showed an example of 
YY2-mediated gene regulation without YY1 in- 
volvement, and demonstrated that YY2 increa- 
sed p53 transcripts through regulation at non-
YY1 binding site, and consequently augmented 
p21 expression irrespective of YY1 [14]. YY1 
also regulated p53 expression in a different 
manner from YY2, which included facilitation of 
p53 ubiquitination by increasing binding be- 
tween p53 and MDM2 [27-29]. The current 
study however did not showed any correlation 
between p53 and YY1 or YY2 expression levels 
in the esophageal carcinoma cells. Interesting- 
ly, TE-10 cells exceptionally increased YY1 with 
CP-31398, and also greatly up-regulated YY2 
expression in comparison with other cells that 
showed constant YY2 expression after the 
CP-31398 treatment. It is however currently 
unknown how the YY2 increase in TE-10 cells 
contributed the p21 augmentation under in- 
creased YY1 expression.

We also investigated a possible contribution  
of mechanistic target of rapamycin complex 1 
(mTORC1) pathway to p21 expression in a 
p53-independent manner. Phosphorylation of 
4E-BP1, a down-stream molecule of mTORC1, 
stabilized p21, but the non-phosphorylated 
form degraded p21 [15]. On the contrary, acti-
vated mTORC1 inhibited MDM2 functions th- 
rough p70S6K, and increased p21 levels in a 
p53-dependent manner [30]. The present stu- 

dy examined AMPK, an up-stream pathway of 
mTORC1, and 4E-BP1 and p70S6K after CP- 
31398 stimulation. Phosphorylated AMPK in- 
duced phosphorylation of 4E-BP1 and p70S6K 
in cells which had intact AMPK-mTORC1-4E-
BP1/p70S6K pathways, but a majority of the 
esophageal carcinoma cells showed different 
phosphorylation profiles regarding respective 
molecules. These data indicated that the ma- 
jority had distorted signaling in the pathways 
and the p21 up-regulation was not attributable 
to phosphorylated 4E-BP1 in these cells.

Esophageal carcinoma cells treated with CP- 
31398 showed increased G2/M populations to 
a lesser extent sub-G1 and hyperploidy frac-
tions. We firstly reported that CP-31398 aug-
mented G2/M fractions although increased 
sub-G1 and G0/G1 populations by CP-31398 
were previously reported [21, 31]. These cell 
cycle changes induced by CP-31398 in the  
previous studies were primarily due to aug-
mented p53 levels, but the present study also 
showed that the changes were generated with-
out p53 involvement. We also firstly showed 
that CP-31398 increased hyperploidy fractions 
in several cell types, which was caused by an 
aberrant cell division process and might be 
precedent for cell death by CP-31398. Cell 
cycle arrest at G2/M was often associated with 
increased p27, but the present study showed 
that increased p27 was irrelevant. Inhibition of 
cyclin B1-Cdk1 complex and degradation of 
cyclins A2 and B1 induced by p21 promoted 
cell cycle arrest at G2 and G2/M phase [32, 
33]. We however did not analyze a mechanism 
of p21-induced G2/M arrest by CP-31398, but 
p21-siRNA released the cell cycle arrest and 
decreased sub-G1 fraction. The data indicated 
that CP-31398-mediated cell cycle changes 
were at least partly due to the up-regulated p21 
expression.

In conclusions, we investigated CP-31398-me- 
diated effects on p53 dysfunctional tumors 
and showed that the agent activated p21 ex- 
pression at the transcriptional levels. The pres-
ent study demonstrated that the p21 augment-
ed expression was linked with the YY1 level 
without involvement of p53, YY2 or mTORC sig-
naling. We also showed that cell cycle changes 
induced by CP-31398 was attributable to the 
YY1-mediated increased p21 levels. The pres-
ent study firstly demonstrated that a cytoto- 
xic agent, CP-31398, targeted YY1 which was 
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often over-expressed in tumors, and suggested 
that the CP-31398-mediated effects including 
the cytotoxicity were attributable to decreased 
YY1 levels in p53 dysfunctional tumors.
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