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Abstract: Arable soils are subjected to the altering influence of agricultural and natural processes 
determining surface feedback patterns therefore affecting their ability to reflect light. However, 
remote soil mapping and monitoring usually ignore information on surface state at the time of data 
acquisition. Conducted research demonstrates the contribution of surface feedback dynamics to soil 
reflectance and its relationship with soil properties. Analysis of variance showed that the 
destruction surface patterns accounts for 71% of spectral variation. The effect of surface smoothing 
on the relationships between soil reflectance and its properties varies. In the case of organic matter 
and medium and coarse sand particles, correlation decreases with the removement of surface 
structure. For particles of fine sand and coarse silt, grinding changes spectral areas of high 
correlation. Partial least squares regression models also demonstrated variations in complexity, R2cv 
and RMSEPcv. Field dynamics of surface feedback patterns of arable soils causes 22–46% of soil 
spectral variations depending on the growing season and soil type. The directions and areas of 
spectral changes seem to be soil-specific. Therefore, surface feedback patterns should be considered 
when modelling soil properties on the basis of optical remote sensing data to ensure reliable and 
reproducible results. 
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1. Introduction 

Soil spectral reflectance in optical domain has been under study for quite a long time. It was 
found to be affected by many factors such as moisture content, surface condition, granulometric 
composition, total iron content, organic matter content, content of readily-soluble salts, carbonate 
content and mineralogical composition [1–8]. The relationships between soil spectral reflectance and 
its properties allow to estimate soil characteristics from remotely-sensed data. 

To facilitate the development of soil mapping algorithms, spectral libraries of soils and rocks 
have been created [9–14]. However, the problem arises when linking spectral data measured in 
laboratory and in the field as surface state interferes affecting the accuracy of the acquired 
relationships [15–19].  

In the experiment with rainfall simulation and wind tunnel abrasion it was proven that changes 
in open soil surface state significantly influence the variation in the reflectance of all wavebands [20]. 

To describe the way land surface transforms when drying after rainfall (which can be captured 
by remote sensors as changes in spectral reflectance), [21] introduced the term land surface feedback 
dynamic patterns. When studying open soil surface at a local level (where rainfall is uniform), 
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feedback dynamic pattern is mainly dependent on soil conditions. The incorporation of surface 
feedback patterns estimated from remote sensing data was shown to increase the accuracy of digital 
soil texture mapping over low-relief areas [22]. 

As arable soils experience the influence of both agricultural and natural processes, resulting in 
the formation of various surface structure elements (clods, crust, cracks, grains), surface dynamic 
feedback patterns will be determined by the spatial arrangement of formed surface elements and the 
degree of their development. 

Despite the recognition that surface state should be estimated when using remote sensing data 
for digital soil mapping as from one side it affects soil spectral reflectance [23] and from the other 
side can be additional source of information allowing to increase the accuracy of models for mapping 
of soil characteristics from remote sensing data [22], there is still a lack of studies on that topic. 

Therefore, the aim of our research is to show how surface feedback patterns influence soil 
reflectance and its relationships with soil properties. 

2. Experiments 

The study area is comprised of four test plots. The first test plot (three arable fields) is located in 
north-eastern part of Saratov oblast in Russia. This territory is characterized by a moderately dry and 
moderately warm climate. The mean annual precipitation sum is 385 mm with a maximum  
of 255–270 mm in the warm season (April–October). 

The soil cover is rather inhomogeneous there due to complex geological structure and shallow 
cover of quaternary deposits. Haplic and Calcic Chernozems formed on clay loam and clay are 
dominant. They are accompanied by Mollic Solonetz on clay and clay loams, Haplic Chernozems on 
eluvium of gaizes, Calcic Chernozems on sands and sandy loams, and Haplic and Calcic Chernozems 
on eluvium of sandstone, parent material exposure. 

Second, third and fourth test plots (36 arable fields) are located in western, south-western and 
northern parts of Tulskaya oblast in Odoevskiy, Plavskiy and Yasnogorskiy regions correspondingly. 
The region has a moderate continental climate. Annual precipitation is 470 mm in the southeast and  
575 mm in the northwest. 

Soils of these test plots are represented by Albic Luvisols (Odoevskiy, Yasnogorskiy) and Luvic 
Greyic Phaeozems (Odoevskiy) formed on heavy clay loams, Grey-Luvic Phaeozems and Luvic 
Chernozems (Plavskiy) formed on calciferous loess loams. 

The spectral reflectance was measured in the field in sunny weather with spectroradiometer 
HandHeld 2 working in optical domain (the range of wavelengths is from 325 to 1075 nm). The 
accuracy of measurements is ±1 nm. During the scanning, the apparatus was held perpendicular to 
the surface. Spectral reflectance at each point was measured 5-10 times and then averaged. Acquired 
spectra were also resampled at 10-nm intervals. Due to poor signal-to-noise ratio parts of spectrum 
before 350 and after 900 nm were removed from the analysis.  

The research consisted of 2 main stages. At the first stage we assessed the effect of destroying 
surface feedback patterns (also referred to in the text as SFP) formed in the field, which is usually 
done when measuring spectral reflectance in laboratory. In addition, we also estimated the possible 
transformations of relationships between the properties of upper soil horizon and its spectral 
reflectance resulting from the removement of surface patterns. 

For that, 50 samples were taken from the upper layer (0–5 cm depth) at the 1st test plot and 
scanned in dry intact (with original surface patterns) and ground (1-mm sieve) state. They were also 
analysed in laboratory for organic matter content [24] and texture [25].  

The next stage was to find out what happens in the field with spectral reflectance when surface 
feedback patterns change in time during the growing season.  

This part of the research was performed on the fields of 2nd, 3 rd and 4th test plots. Spectral data 
there was measured 8 times from April to November during 2 years (2014, 2015). Scanning was 
carried out on areas representing typical soils for the plots (3–5 points per a field). Generally 903 
spectral curves were collected. 
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In our previous studies on soil spectral reflectance in optical domain it was found that along 
spectral curves there are sections where they change the direction due to variations in soil properties, 
contributing to soil reflectance [26–28]. Such indicative parameters were determined for studied soils 
and further used to assess the influence SFP have on soil reflectance. More information on the 
parameters and the way they are calculated can be found in [26,28]. 

As most of the remote sensing data used in digital soil mapping is multispectral, we recalculated 
obtained indicative parameters in relation to the width of spectral bands of satellite systems. In 
particular, we used Landsat TM-5 spectral bands. This was done to understand how changes in SFP 
affect soil reflectance when working with data of lower spectral resolution. 

Correlation analysis, analysis of variance (ANOVA) and partial least squares regression (PLSR) 
were used to determine the way the destruction of SFP affects the relationships between reflectance 
parameters and soil properties. The effect of surface feedback pattern dynamics on soil reflectance 
was also estimated with ANOVA.  

ANOVA was performed in the R environment with car package. The size of effect was measured 
with eta-squared (heplots package). PLSR modelling was done with pls package. Optimal number of 
components was determined using graphs of the cross validated (leave-one out method) root mean 
squared error of prediction (RMSEPcv). Coefficient of determination calculated with caret package 
was used to assess the prediction ability of the PLSR models. 

3. Results and Discussion 

3.1. The Effect of Destroying SFP on Spectral Reflectance of Upper Soil Horizon 

General analysis of spectral reflectance of dry intact and ground samples showed that 
removement of surface patterns results in smoothing of spectral curves and causes an increase in 
reflectance values.  

As to indicative spectral parameters, according to analysis of variance the destruction of SFP 
determines 71% of their variation (Pillai’s trace = 0.71, F = 2.37, p = 0.03, eta squared = 0.71). The most 
pronounsed changes are observed for such parameters as st1, st2, st3 and st4, calculated as the ratios 
of reflectance value in certain band (Reflectance value for each considered band (here and further in 
the text) was obtained by recalculating from spectral data required with field spectroradiometer in 
relation to spectral bands of multispectral satellite systems (Landsat TM-5)) to its spectral width 
(Figure 1B). 

 
Figure 1. Variations in indicative spectral parameters due to the destruction of soil surfrace feedback 
patterns: (A) parameters calculated as ratios of spectral reflectances of two corresponding bands (lt12, 
lt13, lt14, lt23, lt 24, lt34) and as average reflectance for the band (lt1, lt2, lt3, lt4); (B) parameters 
calculated as ratios of band reflectance to the its spectral width (st1, st2, st3, st4) and as the ratio of 
ditterence between reflectances in two bands to the difference between maximum and minimum 
wavelength of the corresponding bands (st12, st13, st24, st14, st34). Surface: 0—dry intact; 1—dry 
ground. 
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Besides, the destruction of SFP results in a decrease of the correlation between organic matter, 
particles of coarse and medium sand fraction and spectral reflectance parameters (Table 1). In the 
case of fine sand and coarse silt fractions the parameters with significantly high correlations are 
changed. 

Table 1. Correlation coefficients between spectral reflectance and soil properties for intact (above the 
slash) and ground samples (under the slash). (Significant coefficients are written in semi-bold type). 

Parameter 1 

Properties 

Organic Matter Coarse and Medium 
Sand Particles 

Fine Sand 
Particles Coarse Silt Particles 

lt1 0.61/0.02 −0.27/0.03 −0.56/−0.5 0.48/0.58 
lt3 0.44/0.05 −0.21/0.01 −0.61/−0.37 0.56/0.39 
st1 0.59/0.05 −0.32/0.02 −0.55/−0.52 0.47/0.6 

st13 0.26/−0.03 0.09/0.02 −0.7/−0.1 0.64/0.07 
st3 0.49/0.05 −0.19/0.01 −0.64/−0.37 0.57/0.39 
lt12 0.14/0.21 −0.61/−0.18 0.46/−0.43 −0.3/0.58 
lt23 −0.32/−0.21 0.52/−0.14 −0.31/0.77 0.33/−0.8 
lt13 0.27/0.19 −0.68/−0.06 0.46/−0.59 −0.38/0.72 
lt14 0.09/0.09 −0.51/0.01 0.4/−0.64 −0.27/0.74 
lt24 −0.06/0.03 −0.36/0.12 0.42/−0.64 −0.35/0.67 

1 Only parameters having at least one significant correlation coefficients are shown. 

Partial least squares regression also showed that the effect of destroying SFP varies with the 
properties. For organic matter, the complexity of model and R2 increase when SFP are destroyed 
(from three to five components and from 0.42 to 0.70 correspondingly). Prediction error changes very 
little (from 2.6 to 2.57). The number of model components for samples with removed SFP is also 
greater in case of coarse and medium sand particles (6 against 4), R2 alters slightly (from 0.70 to 0.68). 
But the RMSEPcv increases (from 8.1 to 10.39). 

Model complexity does not change for fine sand and coarse silt particles; RMSEPcv also alters 
very little (from 19.5 to 19.15 and from 7.88 to 8.17 correspondingly). Determination coefficient 
decreases for the former (from 0.50 to 0.58) and increases for the latter (from 0.49 to 0.63).  

Therefore, the removement of soil SFP may not only affect the accuracy of developed models 
used in digital soil mapping but also the relationships between soil reflectance and the properties 
itself.  

Thus in order to apply the dependencies between soil characteristics and their spectral features 
for soil mapping and monitoring, spectral data should be acquired in the field and the registration of 
surface state should be done at the time of data acquisition.  

3.2. The Influence of the Dynamics of SFP on Spectral Reflectance of Upper Soil Horizon 

The field observations of the bare soil surface on test plots revealed significant dynamics of its 
surface state caused by the influence of snow melting in spring and rainfalls in the spring-autumn 
period. Formed surface feedback patterns determine reflectance of upper soil horizon.  

Analasing two-year data, we found that indicative spectral parameters vary with the time of 
spectral data acquisition (Figure 2). The character of changes and their magnitude are soil-specific as 
they differ with the test plots. The greatest variations are observed for st3 parameter. 

The effect of tillage on surface reflectance was also found to be specific as it affected few 
indicative parameters (Figure 3). The biggest difference between reflectance of tilled and non-tilled 
surface is registered for such parametetrs as st1, st2, st3 and st4 on the 2nd and 4th test plots, and for 
lt13 and st1 parameters on the 3rd test plot. 
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Figure 2. Variations in mean values of spectral indicative parameters due to seasonality (with error 
bars): (A,C) 2nd test plot; (B,D) 3rd test plot. Date corresponds to the times of spectral data acquisition. 

 
Figure 3. Variations in mean values of indicative parameters due to tillage interference (with error 
bars): 0—non-tilled surface with SFP; 1—tilled surface; (A,B) results for the 2nd test plot; (C,D) results 
for the 3rd test plot; (E,F) results for the 4th test plot. 

Further analysis of variance proved that both the seasonality and tillage significantly affect soil 
reflectance properties (Table 2). The influence of tillage is generally higher. Moreover, SFP formed 
due to natural factors add up to the contribution of seasonality to reflectance variations. This effect 
also differs with the growing season. 

Table 2. Multivariate analysis of surface dynamics influence on soil spectral reflectance. 

Parameter Seasonality 
Seasonality/Tillage Seasonality/Year 

Tillage 
Non-Tilled Tilled 2014 2015 

2nd test plot 
Pillai’s trace 1.24 1.54 0.90 0.53 1.05 0.28 

F 6.01 6.26 2.48 3.24 5.17 7.83 
p-value 0.00 0.00 0.00 0.00 0.00 0.00 

eta squared 0.25 0.38 0.22 0.27 0.35 0.28 
3rd test plot 

Pillai’s trace 1.30 0.91 1.16 1.16 0.91 0.50 
F 12.22 23.41 7.06 7.06 23.41 45.23 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 
eta squared 0.22 0.46 0.29 0.29 0.46 0.50 
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Thus, as the dynamics of SFP accounts for more than 20% of spectral variations in the optical 
domain it will affect the stability and reproducibility of models which include information on the 
relationships between soil reflectance and its properties and are used as the basis of soil digital 
mapping and monitoring with optical remote sensing data. 

4. Conclusions 

The state of open soil surface is an important factor that should be considered when using optical 
spectral data for digital soil mapping as the destruction of formed surface feedback patterns alters 
soil reflectance causing 71% of spectral variations and modifies its relationships with soil properties.  

The dynamics of surface patterns of arable soils due to natural and agricultural processes 
accounts for 22–50% of variations of indicative spectral parameters. The effect is greater on non-tilled 
soils with surface structure formed by natural processes and differs with soil type. 

Therefore, ignoring state of open surface at the time of optical spectral data acquisition does not 
guarantee the reliability, stability and accuracy of estimated relationships between soil reflectance 
and properties.  
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