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Abstract. In this paper, the synchronization problem of a chaotic supply chain management system is studied.
A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader
supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable
errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by
the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for
identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness
of the theoretical discussions.

Keywords. Modified projective synchronization; supply chain system; chaotic behaviour.

PACS Nos 12.60.Jv; 12.10.Dm; 98.80.Cq; 11.30.Hv

1. Introduction

1.1 Motivation

Chaos synchronization is an extension of the concept
of chaos control. Nowadays, the control and synchro-
nization of the chaotic systems has got a lot of attention
by the researchers because of its unpredictable com-
plex behaviour. The ultimate objective of the chaos
synchronization is to design a feedback controller for
the follower chaotic system such that the follower
system tracks the trajectories of the leader chaotic
system as time goes to infinity. However, the chal-
lenges occur when the chaotic systems are exposed
to some uncertainty, unknown system parameters and
have different initial values. Then, some actions have
to be taken in order to stabilize and to improve
synchronization.

Chaos phenomenon generally appears in nonlinear
dynamical systems. A nonlinear dynamical system has
chaotic behaviour if it is sensitive to the initial condi-
tions. Since Lorenz [1] in 1963 has discovered his 3D
chaotic system, many chaotic systems such as Chen sys-
tem [2], Lü system [3], Liu system [4], Genesio system
[5], Bhalekar Gejji system [6], supply chain system [7],
and many other chaotic systems, were found and studied
by the researchers.

Recently, supply chain system has got considerable
attention in analysis, modelling and planning because
of its many economical applications [8,9]. The purpose
of this paper is to investigate the synchronization and
the control of chaos in supply chain system.

1.2 Literature review

In the literature, the first method called OGY method
on control of the chaotic system was developed by
Ott et al [10], and the first identical synchronization
method was developed by Pecora and Carroll in [11].
Since then, different approaches have been extended
for the synchronization and antisynchronization of the
chaotic systems, either identical or non-identical ones.
Active method [12,13], impulsive method [14], projec-
tive method [15,16], lag method [17], sliding method
[18,19] and backstepping control method [20] are some
of the investigated synchronization methods. Neverthe-
less, more often the parameters of a chaotic system
are fully or partially uncertain or unknown and also
system states are exposed to some unknown distur-
bances, and so these methods are usually of no use. To
overcome this problem, many researchers concentrate
on adaptive methods [21–24], which are extensions of
adaptive control theory, in order to estimate unknown
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parameters. Furthermore, some investigations are per-
formed to cope with unknown disturbances [25–29].

Many adaptive methods have been developed for con-
trol and synchronization of different types of chaotic
systems, due to their high performance in synchroniza-
tion task. Adaptive synchronization of two identical Lü
system in [30], Lorenz system in [31], Rössler system in
[32], Chen system in [33], Chua system in [34], Genesio
system in [35] and unified system in [36,37] are some
of the adaptive methods studied. Adaptive synchroniza-
tion of two different chaotic systems such as adaptive
synchronization of the Lü and the Lorenz chaotic sys-
tems [38], Chen and the Lü systems as leader systems
with the Lorenz system [39], Rössler and Chen [40],
Chen and Chua [41] and so on are extensively investi-
gated. Furthermore, some researchers investigated some
sort of extended adaptive synchronization methods, such
as adaptive backsteping method [42], adaptive sliding
mode method [43], adaptive projective method [44]
etc.

The synchronization between hyperchaotic Lü and
Lorenz system [45], the Genesio–Tesi chaotic system
[46], the unified chaotic system in [47], and also the
synchronization between two typical unknown chaotic
systems [48–52] are some of the researches based on
the adaptive-MPS method.

Recently, supply chain system has attracted the atten-
tion of many researchers [9,53–57]. Supply chain sys-
tem wants to afford of the customers demands accurately
on time with minimum possible cost. Supply chain sys-
tems have usually some unknown/uncertain coefficient
in their dynamical systems. The behaviour of the supply
chain system may become chaotic in some situations
depending on the customers or purchasing decisions.
The deficiency of supply shortages, order batching, price
fluctuations and lead times may result in a phenomenon
called bullwhip effect [58]. A number of studies are
devoted to find the bullwhip effect resources to reduce
the uncertainty.

Chaotic behaviour of the supply chain system at the
production or inventory levels is not pleasant. So the
control of a supply chain system may eliminate its
nonlinear factors of the system. And also the synchro-
nization of the supply chain systems can equilibrate the
demand and resource planning of the system.

Anne et al [59] have proposed an adaptive method
for the synchronization of the supply chain system with
unknown internal or external disturbances. In order to
improve their competitiveness, every enterprise has to
use supply chain management system. Goksu et al [60]
have designed a linear feedback controller to control
and to synchronize the supply chain system. Chaos
synchronization of the supply chain system is carried
out by using radial basis function in [7] to counteract

the bullwhip effect. In [61], the bullwhip effect is chal-
lenged by the linear control theory. So far, there is no
published article on adaptive-MPS synchronization of
the supply chain chaotic systems, which is the novelty
of this paper.

1.3 Approach and contribution

In the following, the supply chain system and its chaotic
behaviour are described. Then an adaptive-MPS scheme
is developed for the synchronization of the leader–
follower supply chain systems with or without unknown
internal/external distortions; and also an appropriately
designed feedback controller is proposed to track the
trajectories of the leader supply chain system by the
corresponding follower system. Then, chaos synchro-
nization of the leader–follower systems are proved by
the Lyapunov stability theorem. At the end, the validity
of the proposed method is assessed by some numerical
simulations.

The reminder of this article is as follows: In §2, a
brief introduction of the supply chain chaotic system
is provided. The proposed identical adaptive-MPS syn-
chronization of the supply chain system is investigated
in §3, for different unknown distortions such as internal
distortions, external distortions and hybrid internal–
external distortions. Section 4 includes the numerical
simulation results of the represented approaches to study
the effectiveness of their synchronization. Finally, in §5,
some conclusions are provided.

2. Problem statement

A typical supply chain system can be constructed based
on three main components: producers, distributors and
final customers. In [59], the dynamic behaviour of the
supply chain system is given by three-dimensional equa-
tions as follows:

ẋ1 = (m + δm)x2 − (n + 1 + δn)x1 + d1,

ẋ2 = (r + δr )x1 − x2 − x1x3 + d2,

ẋ3 = x1x2 + (k − 1 − δk)x3 + d3, (1)

where Ẋ = (ẋ1, ẋ2, ẋ3) is the time derivative of the
state variable vector X = (x1, x2, x3). Linear disor-
ders δm, δn, δr and δk are the amount of perturbance
of the constant parameters m, n, r and k, respectively.
And also d1, d2 and d3 are the three nonlinear external
distortions related to the states x1, x2 and x3, which cor-
respond to the three quantities as demand, inventory, and
produced quantity, respectively. The component m indi-
cates the distributor’s delivery efficiency; the constant
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Figure 1. Time series phase portrait of the chaotic supply
chain system for state values x1(t), x2(t) and x3(t), respec-
tively.

parameter n denotes the customer demand rate; the con-
stant parameter r implies the distortion coefficient and
k is the safety stock coefficient.

Chaotic behaviour of the supply chain system is
obtained with distributor values as: m = 10, δm = 0.1,

n = 9, δn = 0.1, r = 28, δr = 0.2, k = −5/3, δk =
0.3 and external perturbation values as d1 = 0.2 sin(t),
d2 = 0.1 cos(5t), d3 = 0.3 sin(t). The initial state val-
ues are considered as x1 = 0, x2 = −0.11 and x3 = 9
throughout this paper.

Time series of the supply chain system is given in
figure 1. The 2D and 3D phase plane behaviour of the
system are shown in figures 2 and 3 respectively.

The 3D chaotic supply chain system presented in (1)
can be rewritten as follows:

Ẋ = (AP + A�)X + x1 · BX + D, (2)

where D = (d1, d2, d3)
T is the nonlinear distortion vec-

tor. P = (m, n, r, k) denotes the constant parameter of
the leader system (1) and � = (δm, δn, δr , δk) is the dis-
tribution vector of the leader system (1). The coefficient
matrixes of AP , A�, B ∈ R3×3 are given as

AP =
⎡
⎣

−n − 1 m 0
r −1 0
0 0 k − 1

⎤
⎦ , A� =

⎡
⎣

−δn δm 0
δr 0 0
0 0 −δk

⎤
⎦ ,

B =
⎡
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎦ . (3)

The matrices (AP + A�) as the coefficient of vector X
in eq. (2) has three eigenvalues: λ1 = −23.0292, λ2 =
11.9292, λ3 = −2.9667. Since λ2 is positive, it can be
concluded from the Lyapunov stability theory [62] that
the supply chain attractor presented in (2) is not stable
at its origin equilibrium point E0 = (0, 0, 0).
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Figure 2. Two-dimensional phase portrait of the chaotic sup-
ply chain system.

3. Synchronization

Chaos synchronization of two identical and non-identical
chaotic systems is discussed in this section. Some
parameters of the leader system (2) are considered
unknown. To this end, an adaptive-MPS method is
extended to provide synchronization between the leader
and follower supply chain systems.

3.1 Identical synchronization with unknown internal
linear distortions

Chaos synchronization of the supply chain system with
internal unknown linear distortion � = (δm, δn, δk, δr )

is studied here.
Consider the 3D chaotic supply chain system pre-

sented in (2) as the leader system. Then the 3D chaotic
follower system can be presented based on the supply
chain system (2) as follows:

Ẏ = (AP + A
�̂
)Y + y1 · BY + D +U, (4)

where Y = (y1, y2, y3) is the state vector of the follower
supply chain system and U = (u1, u2, u3) implicates
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Figure 3. Three-dimensional phase portrait of the chaotic supply chain system.

the feedback control law of the closed-loop control sys-
tem, which has to be designed in such a way that the
behaviour of the follower system to track the trajecto-
ries of the leader system, would mean that two identical
chaotic systems (2) and (4) would synchronize. The con-
stant matrixes AP and B ∈ R3×3 can be defined based
on eq. (3) and matrix A

�̂
can be set as

A
�̂

=
⎡
⎣

−δ̂n δ̂m 0
δ̂r 0 0
0 0 −δ̂k

⎤
⎦ , (5)

where �̂ = (δ̂m, δ̂n, δ̂r , δ̂k) is the estimation of the dis-
tribution parameter vector � = (δm, δn, δr , δk) of the
leader system (2).

Chaos synchronization errors extracted by adaptive-
MPS synchronization between two identical leader–
follower systems (2) and (4) can be obtained as

Es = σ · (Y − λ · X), E� = �̂ − λ · �, (6)

where Es and E� represent the state error vector and
the parameter error vector, respectively. The coefficients
σ = (σ1, σ2, σ3) and the vector λ = (λ1, λ2, λ3) are
the multiple projective constant vectors. Then the error
dynamic system between the leader and the follower
systems (2) and (4) can be achieved by time derivatives
of (6) as follows:

E ′
s = σ · (Ẏ − λ · Ẋ),

E ′
� = ˙̂

� = (
˙̂
δm,

˙̂
δn,

˙̂
δr ,

˙̂
δk). (7)

Without designing an appropriate controller system,
the state variable trajectories of the follower and the
leader chaotic systems with different initial state values
will quickly depart from each other. The objective of
chaos synchronization is to design a feedback controller

that can prevent such a bifurcation problem. Now, the
control vector and the parameter estimation strategy can
be defined based on the following illustrative theorem.

Theorem 1. The trajectories of the leader chaotic sys-
tem (2) with unknown internal distortion parameter
vector � will be tracked asymptotically by an identi-
cal follower system (4); and unknown parameter vector
�will be approximated by an estimated parameter vec-
tor �̂; for any initial state values and considering the
feedback control and dynamical estimation parameters
as follows:

U = − (AP + A
�̂
)Y − y1 · BY + x1 · λ · BX

+ (λ − 1) · D + A
�̂
X + λApX − σ · Es (8)

and the elements of ˙̂
� as

˙̂
δm = −x2σ1(y1 − λ1x1) − k�1(δ̂m − λ1δm),

˙̂
δn = +x1σ1(y1 − λ1x1) − k�2(δ̂n − λ1δn),

˙̂
δr = −x1σ2(y2 − λ2x2) − k�3(δ̂r − λ2δr ),

˙̂
δk = +x3σ3(y3 − λ3x3) − k�4(δ̂k − λ3δk), (9)

where K� = (k�1, k�2, k�3, k�4) is a positive constant
vector.

Proof. The Lyapunov candidate function for stability
analysis can be given as follows:

V = 1

2

(
E2
s + E2

�

)
(10)

which is a positive definite function organized based
on the system state variable error vector Es , and the
parameter estimation error vector E�, represented in
(6).
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Assuming that time derivative of eq. (10) exists, we
have:

V̇ = Es E
′
s + E�E ′

�

= Esσ [(AP + A
�̂
)Y + y1 · BY + D +U

− λ(AP + A�)X − x1 · λBX − λD]
+ (�̂ − λ�)E ′

�

= Esσ [(A
�̂

− λA�)X − σ Es] + (�̂ − λ�)E ′
�

= −σ 2E2
s − K�E2

�. (11)

Hence, the time derivative of V is negative definite.
As a result, from the Lyapunov stability theorem, the
dynamical error systems (7) will be stabilized at the
origin in finite time. Thus, the trajectories of the state
variables of the leader system will be tracked by the
state variables of the follower system. So the theorem is
proved.

3.2 Identical synchronization with unknown external
nonlinear distortions

The purpose of this section is to perform identical syn-
chronization of the supply chain chaotic system when
D = (d1, d2, d3)

T . The external nonlinear parameter
vector of the leader system (2) is considered unknown.

Let the chaotic system presented in (2) is the leader
system. Then the corresponding follower system with
unknown external nonlinear distortion vector D can be
represented as follows:

Ẏ = (AP + A�)Y + y1 · BY + D̂ +U, (12)

where Y = (y1, y2, y3)
T is the follower state vector.

AP , A� and B ∈ R3×3 are defined in eq. (3). D̂ =
(d̂1, d̂2, d̂3) is the estimated parameter vector of the
unknown distribution vector D. And also the feedback
controller vector is characterized byU = (u1, u2, u3)

T .
The objective is to design an appropriate feedback con-
troller U and also an efficient external vector D̂ such
that the motion trajectories of the corresponding leader
and follower state variables (2) and (12) asymptotically
synchronize along the time domain.

The synchronization error vectors can be defined sim-
ilar to eq. (6), as follows:

Es = σ(Y − λX), ED = D̂ − λD, (13)

where Es , the same as in the previous section, represents
the state error vector and ED describes the estima-
tion error of the unknown external disturbance vector
D. The coefficient vector σ = (σ1, σ2, σ3) and vector
λ = (λ1, λ2, λ3) denotes the modified projective syn-
chronization factors. Then the error dynamical system
between the leader chaotic system (2) and the follower

chaotic system (12) can be described as

E ′
s = σ(Ẏ − λẊ), E ′

D = ˙̂D = (
˙̂d1,

˙̂d2,
˙̂d3). (14)

Now, the following theorem presents an appropriate
feedback controller and also an efficient external param-
eter estimation scheme to address the synchronization
problem.

Theorem 2. The motion trajectories of the leader and
the follower chaotic systems (2) and (12) will asymp-
totically synchronize with any initial state values and
considering the feedback controller vector and the
dynamic representation of the unknown external param-
eter estimation vector as follows:

U = − (AP + A�)Y − y1 · BY + λ(AP + A�)X

+ x1 · λBX − σ Es (15)

and

˙̂D = −σ Es − Kd ED, (16)

where Kd = (kd1, kd2, kd3) is a positive constant vec-
tor.

Proof. The Lyapunov candidate function can be
described as follows:

V = 1

2

(
E2
s + E2

D

)
(17)

which is clearly positive definite. Furthermore, the time
derivative of eq. (17) can be extended as

V̇ = EsE
′
s + EDE

′
D

= σ Es
[
Ẏ − λẊ

] + ED
˙̂D

= σ Es
[
(AP + A�)Y + y1 · BY + D̂

+U − λ(AP + A�)X

− x1 · λBX − λD
] + (D̂ − λD)

˙̂D
= σ Es

[
D̂ − λD − σ Es

] + (D̂ − λD)
˙̂D

= −σ 2E2
s − Kd E

2
D < 0. (18)

Therefore, the derivative of V is negative definite.
Then according to the Lyapunov stability theorem, the
synchronization errors Es between the leader and the
follower state variables and Ed between the estimated
external disturbance and its true values converge to zero.
This completes the proof.

3.3 Identical synchronization with unknown internal
and external distortions

In the following, the identical synchronization of the
supply chain system is discussed by designing an
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adaptive-MPS synchronization method. For synchro-
nization purposes, both the internal linear distortion
and the external nonlinear distortions are considered
unknown.

Let the supply chain system represented in (2) is the
leader chaotic system, then the follower chaotic system
with unknown internal and external distortions can be
described as

Ẏ = (AP + A
�̂
)Y + y1 · BY + D̂ +U, (19)

where AP and B can be determined by eqs (3) and the
estimated internal and external parameter vectors �̂ and
D̂ can be determined by eqs (9) and (16) respectively.
The synchronization error vectors can be obtained based
on the error vectors given in (6) and (13) as follows:

Es = σ(Y − λX),

E� = �̂ − λ�, ED = D̂ − λD. (20)

Then the dynamical error vectors can be described as

E ′
s = σ(Ẏ − λẊ), E ′

� = ˙̂
� = (

˙̂
δm,

˙̂
δn,

˙̂
δr ,

˙̂
δk),

E ′
D = ˙̂D = (

˙̂d1,
˙̂d2,

˙̂d3). (21)

Theorem 3. The dynamical estimated internal error
vector (9), the dynamical external error vector (16),
and the adaptive-MPS feedback controller law:

U = (AP + A
�̂
)Y + y1 · BY

− λAP X − x1 · λBX − σ Es (22)

when applied to the follower chaotic system (19) guar-
antee the asymptotical synchronization of the leader and
the follower chaotic systems and also assure the conver-
gence of the synchronization errors E� and ED to zero,
as time tends to infinity.

Proof. Define the Lyapunov stability function based on
the system errors (20) as

V = 1

2

(
E2
s + E2

� + E2
D

)
. (23)

which is a positive definite function on R. Furthermore,
the time derivative of V can be simplified as

V̇ = Es E
′
s + E�E ′

� + EDE
′
D. (24)

By substituting (20) and (21) in (24), we obtained:

V̇ = σ Es
[
Ẏ − λẊ

] + (�̂ − λ�)
˙̂
� + (D̂ − λD)

˙̂D
= σ Es

[
(AP + A

�̂
)Y + y1 · BY + D̂

+U − λ(AP + A�)X − x1 · λBX − λD
]

+ (�̂ − λ�)
˙̂
� + (D̂ − λD)

˙̂D
= σ Es

[
D̂ + (A

�̂
− λA�)X − λD

]

+ (�̂ − λ�)
˙̂
� + (D̂ − λD)

˙̂D
= − σ 2E2

s − K�E2
� − Kd E

2
D (25)

which is negative definite. So the theorem is proved.

4. Numerical simulations

The objective of the numerical simulations is to val-
idate the effectiveness and feasibility of the proposed
approach for synchronization of two chaotic systems
and also identification of unknown distributions. In this
section, some numerical results related to the synchro-
nization of the identical supply chain system are given.

Numerical simulations have been carried out using
Matlab Simulink. The implementation program is writ-
ten based on fourth-order Runge–Kutta iterative method
with a fixed time-step size and a tolerance of 10−6.

For simulation purposes, the supply chain system pre-
sented in (1) is considered as the leader system. Then the
synchronization between the leader and the correspond-
ing follower systems are done based on the designed
feedback controllers and parameter estimation strate-
gies.

For chaotic behaviour of the supply chain system (1),
parameters are selected as: m = 10, δm = 0.1, n =
9, δn = 0.1, r = 28, δr = 0.2, k = −5/3, δk = 0.3 and
external perturbation values as d1 = 0.2 sin(t), d2 =
0.1 cos(5t), d3 = 0.3 sin(t).

4.1 Synchronization results with unknown internal
distortions

The initial state values are assumed typically as: X (0) =
(0, −0.11, 9)T and Y (0) = (7, 8, 2)T . The initial val-
ues of internal distortions are considered as: �̂ =
(δ̂m, δ̂n, δ̂r , δ̂k) = (0.3, 0.1, 0.5, 0.6).

The behaviour of the leader and the follower sys-
tems are given in figure 4 and antisynchronization are
presented in figure 5. Parameter estimation errors are
depicted in figure 6. It is clearly evident from figures
4–6 that the expected synchronization and antisynchro-
nization between the leader and the follower systems
are obtained; and the synchronization errors converge
to zero as time tends to infinity.

4.2 Synchronization results with unknown external
nonlinear distortions

The initial condition of the leader and the follower sys-
tems are considered as: X (0) = (3, 8, 2)T and Y (0) =
(9, 0, 10)T . The initial values for the external distor-
tions are initially considered as: D = (d̂1, d̂2, d̂3) =
(0.3, 0.1, 0.5).
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Figure 4. Motion trajectories of the state variables of the
leader and the follower chaotic supply chain systems for
multiple projective coefficient λ = (1, 1, 1) or the complete
synchronization with unknown internal distortions.

-50

0

50
x
1

y
1

-50

0

50
x
2

y
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(sec)

-50

0

50
x
3

y
3

Figure 5. Motion trajectories of the state variables of the
leader and the follower chaotic supply chain systems for
multiple projective coefficient λ = (−1,−1,−1) or the anti-
synchronization with unknown internal distortions.

-5

0

5
δ̂m − δm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4
-2
0
2

δ̂n − δn

-5

0

5
δ̂r − δr

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(sec)

-5
0
5

10
δ̂m − δm

Figure 6. Estimation errors of unknown internal distortion
parameters δm, δn, δr and δk .

The time responses of the leader and the follower
systems are shown in figure 7 and also antisynchroniza-
tion are given in figure 8. Unknown external parameter
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Figure 8. Motion trajectories of the state variables of the
leader and the follower chaotic supply chain systems for
multiple projective coefficient λ = (−1,−1,−1) or the anti-
synchronization with unknown external distortions.

estimation errors are given in figure 9. It is clearly appar-
ent from figures 7–9 that the expected synchronization
between the leader and the follower systems is achieved.

4.3 Synchronization results with unknown internal
and external distortions

Let the initial state values for the leader and the fol-
lower chaotic systems are X (0) = (7, 12, 8)T and
Y (0) = (−3, 2, 1)T , respectively. The initial values
for the internal and the external distortions are consid-
ered as �̂ = (δ̂m, δ̂n, δ̂r , δ̂k) = (0.2, 0.7, 0.3, 0.7) and
D = (d̂1, d̂2, d̂3) = (0.6, 0.4, 0.6), respectively.
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Figure 9. Estimation errors of the unknown external distor-
tion parameters d1, d2 and d3.
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Figure 10. Motion trajectories of the state variables of the
leader and the follower chaotic supply chain systems for mul-
tiple projective coefficient λ = (1, 1, 1) or the complete
synchronization with unknown internal and external distor-
tions.

The time response of the leader and the follower sys-
tems are shown for synchronization in figure 10 and also
for antisynchronization in figure 11. The internal and
external parameter estimation errors are given in figures
12 and 13, respectively. It is clearly apparent from fig-
ures 10 to 13 that the expected synchronization between
the leader and the follower systems is obtained.

5. Conclusion

Nonlinear behaviour and internal/external distortions
are not desirable factors in a supply chain system. The
undesirable behaviour of the system may be caused by
the phenomenon called bullwhip effect which causes
chaos in the supply chain system. Bullwhip effect can
be detected sometimes under certain circumstances. One
of the most effective ways to reduce the bullwhip effect
is the demand driven supply chain management. Hence,
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Figure 11. Motion trajectories of the state variables of the
leader and the follower chaotic supply chain systems for
multiple projective coefficient λ = (−1,−1,−1) or the
antisynchronization with unknown internal and external dis-
tortions.
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Figure 12. Estimation errors of the unknown internal and
external distortion parameters δm, δn, δr and δk .
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Figure 13. Estimation errors of the unknown internal and
external distortion parameters d1, d2 and d3.

an appropriate synchronization method can reduce the
nonlinear behaviours and bullwhip effect of the supply
chain system.
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Chaos synchronization of the supply chain system is
addressed in this paper. An adaptive-MPS synchroniza-
tion approach is used for identifying an appropriate feed-
back controller and also an estimated unknown param-
eter vector. Investigation of synchronization method is
carried out for different types of unknown distortions:
internal, external or both of them. The performance of
the proposed feedback controller and the developed syn-
chronization is proved by Lyapunov stability theorem.
Furthermore, as we can see from the simulation results,
the synchronization errors of the two identical supply
chain systems for either internal or external unknown
parameters converges asymptotically to zero.
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