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Abstract. The behavior of the Siah-Bisheh concrete face rock-fill dam in 

Mazandaran, Iran was investigated. Numerical analyses were performed before 

construction to evaluate the stability and predict the deformation of the dam. The 

material properties were chosen based on the results of geotechnical 

investigations. The amounts for deformation and settlement of the concrete 

surface were also calculated with the numerical model. The information from a 

number of geotechnical instruments was collected after construction and 

analyzed to measure settlement at different sections of the dam. The locations of 
the different deformations and their values are presented with various contours. 

The data were analyzed and used to revise the original numerical model of the 

dam. Following that, the long-term stability of the dam was evaluated, using 

parameters that were modified based on the measurement data. A comparison of 

the results from the numerical analysis and the values obtained from the dam 

settlement measurement showed that the initial results from the numerical model 

were much higher than the real values. It also showed that the number of 

construction layers used in the modeling of the dam had a significant effect on 

the obtained maximum amount of deformation. 

Keywords: back analysis; concrete-face rock-fill dam (CFRD); instrumentation; 

settlement; Siah-Bisheh Dam. 

1 Introduction 

Concrete-face rock-fill dams (CFRDs) are now constructed in considerable 

numbers throughout the world [1,2]. Over the past two decades, many CFRDs 
higher than 150 m and up to 240 m were built, such as the 233 m-high Shuibuya 

Dam and the 179 m-high Hongjiadu Dam in China [3,4]. In CFRDs, the 

concrete slab plays an important role as an impervious membrane and any 
cracks in the slab would impair the integrity of the seepage control system and 

weaken the structure or even threaten the safety of the dam [5] (e.g. the failure 

of Gouhou CFRD in China in August, 1993 [6]). However, deformation of the 

concrete face slab depends on the deformation of the rock-fill dam due to its 



            Evaluation of a CFRD Using a Back-Analysis Method        517 
 

poor resistance to deformation. Excessive deformation of rock-fill after the 

completion of the concrete face slab will cause separation between the slabs and 

the cushion layer or even cracks in the slab [7,8]. In order to reduce this 

potential risk in high CFRDs it is necessary to understand the deformation 
characteristics of rock-fill dams in order to make the rock-fill compatible with 

the concrete face to reduce the amount of cracks in the slab, and to improve the 

design of high CFRDs. In the design stage of a CFRD, various numerical 
methods, such as finite element method (FEM), are used to predict the 

deformation and stress on the basis of the geomechanical parameters obtained 

from laboratory tests [4]. However, due to the scale effect and other factors, the 

in-situ geo mechanical properties of rock-fill may differ from those determined 
by laboratory tests [9,10]. 

Therefore, in order to better understand the dam deformation property, both 

deformation monitoring analysis and back-analysis are required. Deformation 
monitoring is an effective method for analyzing the deformation characteristics 

of a dam, providing a warning system for abnormal behavior of the dam [5,11]. 

It is also helpful to understand the mechanism of deformation [12-14]. A 
comparison of the observed deformations with those obtained from FEM is 

necessary to verify the safety of a structure as well as the design parameters 

[13]. Furthermore, in-depth studies of such comparisons are highly useful to 

gain experience for future applications [12]. However, because the history of 
high CFRDs is not very long, comparisons between predicted (FEM) and 

observed deformations are rare in the literature. For this reason, it is significant 

to study the deformation characteristics of extra high CFRDs. 

This paper reports the analysis of actual measured deformations resulting from 

continuous monitoring of the Siah-Bisheh CFRD in Mazandaran, Iran. A 

displacement back-analysis for parameters was performed using FEM. The 

long-term deformation of the dam was predicted on the basis of the parameters 
obtained from the back-analysis. This analysis focuses on displacements and the 

available monitoring data over several years, covering the construction phase 

and the first stage of filling of the reservoir. The FE simulation in the back-
analysis was conducted in some two-dimensional plain-strain conditions. 

Depending on the time of deformation, the process of construction and water 

storage were simulated as realistically as possible.  

Back-analyzed soil parameters can be used in deformation and stress analyses 

of CFRD during construction and operation, which is beneficial to CFRD safety 

operation, seismic safety assessment, and enforcement design. Because the 

mechanical properties involved are complex, soil constitutive models are 
strongly nonlinear. It is difficult to directly calculate the soil parameters by 

inverting the CFRD FEM displacement calculation. Thus, displacement back-



518 Mohammad Ali Abedian, et al. 

  

analysis is applied by optimizing the soil parameters. The deviation between the 

calculated CFRD displacements and the prototype monitoring values becomes 

an objective function. The optimal values of the soil parameters to be 

determined are progressively approximated through iteration by minimizing the 
fitness values of the objective function. During soil parameter optimization, 

time-consuming FEM calculations are frequently performed; thus, the rate of 

convergence is slow and the back-analysis fails to function effectively for 
larger-scale problems. Most previous studies concentrated on the behavior of 

CFRD posited at the end of the construction and evaluated different methods to 

predict the amount of settlement and deformation of the domain body and the 

concrete face at the end of the impounding. In this study, however, the focus 
was mainly on the appropriate implementation of the collected measurement 

data with regard to evaluation of the long-term stability of the dam. The Siah-

Bisheh concrete face rock-fill dam located in the northern part of Iran was 
investigated as a case study. At the time of writing, this study was the first of its 

kind in Iran. 

2 Introduction to Siah-Bisheh Dam 

Siah-Bisheh Dam and its pump storage power plant is located 125 km north of 

Tehran, in Mazandaran province, Iran. The dam site is located near the village 

of Siah-Bisheh, including a pump storage power plant and a high concrete face 
rock-fill dam (Figure 1). The project aimed to deliver 1040 MW of electricity 

during peak demand of the electricity network. The dam was built as a 

balancing system and a hydroelectric power plant, and consists of an upper dam 
and a lower dam. In the present study, the lower dam was selected for the case 

study. The lower dam is addressed as ‘Siah-Bisheh Dam’ in the rest of this 

paper. The general specifications of the dam are shown in Table 1. Figure 2 

shows a cross-section of the dam. 

 

Figure 1 Location of the lower Siah-Bisheh CFRD. 
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Table 1 General specifications of Siah-Bisheh Dam. 

 

 

 

 

 

Figure 2 Cross-Section of Siah-Bisheh Dam. 

3 Instrumentation  

3.1 Installation  

Various instruments were installed at different locations on the dam’s main 

body to study the behavior of the dam during construction and impounding, and 
for long-term monitoring. Among several different behaviors, the deformation 

of the concrete face and the flow of water in the dam were of the most interest. 

This was to check the integrity of the concrete face and also to monitor the 

drainage of water through the foundation of the dam. 

The instrumentation used to assist the researchers in monitoring and studying 

the dam measured the following parameters: 

1. Deformation of dam body 
2. Deformation of concrete face 

3. Movement of peripheral joints and joints between concrete slabs 

4. Piezo metric level in dam body and foundation 

5. Amount of drained water (Q) 
6. Location of drained water along the Plinth 

7. Seismic action 

Height 101.00 m 

Crest elevation 1911.50 m 

Crest length 330.00 m 

Crest width 12.00 m 

Width of dam in foundation 360.00 m 

Upstream slope 1:1.60 (V:H) 

Downstream slope 1:1.45 (V:H) 
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The main three instrument sections, placed in a perpendicular direction towards 

the axis of the dam, were respectively located at kilometers 0+192, 0+272 and 

0+352 along the dam crest. The instruments were mainly installed within the 

dam body at elevations of 1850 m, 1870 m and 1890 m above sea level. Figure 
3 shows the instruments installed in section 0+272 of the dam (main section). 

 

Figure 3 Instrumentation in section 0+272 of the dam: (a) elevation view, (b) 
plan view. 

3.2 Vertical Deformation 

The vertical deformation of the dam at different locations was measured by the 

magnetic settlement plates that were installed at 3-m intervals along the dam. 
Hydraulic settlement gauges were also installed, at elevations of 1850 m, 

1870 m and 1890 m. The recorded data showed very reasonable and acceptable 

values of settlement. Figure 4 shows data obtained by hydraulic settlement 
gauges from DHS 11 to DHS15 as well as data from magnetic settlement plate 

DISM1, as examples. The total amount of settlement one year after completion 

of the dam body is shown in Figure 5. 

(b) 

(a) 
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Figure 4 Vertical settlement of the dam: (a) data from hydraulic settlement 

gauges DHS 11 to DHS15, (b) data from DISM1 magnetic settlement gauges. 

It can be seen that there is good agreement between the hydraulic and the 

magnetic settlement gauges. It can also be seen that the maximum vertical 

settlement at the end of construction was recorded by instruments installed in 
the middle section of the dam. This settlement was about 45 cm and occurred at 

about 0.5H (H is the height of the dam). The data show that most of the 

recorded settlement occurred due to weight of the upper layers of soil added 

during construction. These observations are consistent with the researcher’s 
expectations.  
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Figure 5 Total settlement recorded one year after completion of construction 

(a) at section 0+272, (b) longitudinal section. 

3.3 Horizontal deformation 

Horizontal extensometers were mounted at three different elevations (1850 m, 

1870 m and 1890 m) along three different cross sections and one longitudinal 
section to measure the horizontal deformation of the dam body. The obtained 

values of horizontal deformation can be summarized as follows: 

1. The obtained values of horizontal deformation were mostly small (0.1 to 0.3 

percent strain). The horizontal deformation values were between 5 to 15 
percent of the vertical deformation values. 

2. Rock-fill on the left and right abutment of the dam body deformed 

horizontally toward the center of the dam’s body. The maximum horizontal 
deformation value of the valley was 6.5 cm, which occurred at 0.3H, near 

the right abutment of the dam. The obtained values of horizontal 

deformation in the middle section of the dam and along the longitudinal 

(a) 

(b) 
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dam axis are shown in Figure 6. Note that in this figure positive values 

represent disruption while negative values represent compression.  

4 Back-Analysis and Numerical Modeling 

To study the settlement of the dam and predict the long-term behavior of the 

structure, a numerical model of the dam was created using a finite element 

method. For this purpose, the dam was modeled based on rock-fill properties 

and parameters that were obtained from the site investigation report and that 
were used in the primary dam design. These parameters were then revised in 

accordance with the results of the measurements, after which the final model 

was created. 

 

Figure 6 Horizontal deformation values of the dam in mm (a) at section 0+272, 

(b) along the axis of the dam. 

The behavioral model used in the analysis for both the materials of the dam 

body and the foundation was the elasto-plastic Mohr-Coulomb model. The 
concrete surface materials were, however, modeled by solid elastic behavior 

(Jesmani, et al. [14]). The properties of the different sections of the dam that 

were used in the initial model are shown in Table 2. In this table E is the 

(a) 

(b) 
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modulus of elasticity, c is the cohesion, ϕ is the internal friction angle, γ is the 

unit weight, and ν is the Poisson ratio.  

After the first analysis was completed, the values shown in Table 2 were revised 

to obtain settlements closer to the values recorded by the instrumentation. The 
analyses were repeated a number of times until the desired values were 

obtained. 

Table 2 Initial specifications of numerical modeling. 

Zone 
Behavio

r model 

E 

(MPa) 

c 

(kPa) 
ϕ� 

γ 

(��
��) 

ν 

2A E-P* 59 0 42 22.9 0.30 

2B E-P* 45 0 45 22.2 0.30 

3A E-P* 45 0 45 22.2 0.30 

3B E-P* 45 0 45 22.2 0.30 

3C E-P* 30 0 40 21.8 0.30 

Alluvial E-P* 16 0 28 20.9 0.35 

Concrete Elastic 5000 - - 25.0 0.20 

The load that was applied to the static model was taken into account for both the 
body weight and the burden of impounding. The body weight was applied to the 

model gradually and in 15 stages, using the staged modeling technique. This 

aimed to model the construction phase of the dam in a more accurate manner. In 
the sixteenth stage, the load of the concrete surface was applied to the dam body 

and the model reached equilibrium. For the materials located under the water 

level, the saturated unit weight was considered. Then, the load from 
impounding upstream water was applied to the concrete surface as hydrostatic 

pressure. 

5 Preliminary Numerical Analysis – Initial Model 

To study the effects of impounding, deformation of the concrete surface was 

obtained from the numerical model before and after applying the impounding 

load. Figure 7 shows the vertical deformation contours at the end of 
construction and before impounding in the numerical analysis using the initial 

specifications of the materials. As can be seen from the figure, the maximum 

settlement at the end of the dam construction (fifteen stages of analysis) was 

predicted to be about 90 cm. 

By comparing this value with the value of the maximum deformation collected 

from the measurements (45 cm) it can be seen that the maximum amount of 

deformation obtained from the numerical model was about twice the observed 
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values. This shows that the elastic modulus values considered for the numerical 

modeling were very conservative and smaller than the real behavior of the soil. 

Figure 8 shows the amount of vertical deformation of the dam that was 

calculated by the numerical analysis presented in the originally reported design 
of the dam. The predicted maximum settlement was calculated to be equal to 

120 cm. This high value is mainly because of the fact that burden load was 

applied in only 6 stages, rather than the 15 stages that were used in the 
numerical model of this study. It can be seen that modeling the construction 

phase was very accurate and applying the burden load in a number of stages was 

critical. In the case of this study this resulted in deformations that could reach 

up to 30 cm.  

To find the most suitable number of loading stages, a separate set of analyses 

was performed. Various models with different loading stages were analyzed and 

it was found that increasing the number of layers (loading stages) to more than 
15 does not lead to a significant increase in accuracy while it does increase the 

time consumed of the analysis.  

It can also be seen in Figure 7 that the maximum settlement of the dam body 
occurs in the middle level of the dam body. This can be due to the fact that the 

settlement of each level is associated with the strain of the underlay and the 

tension of the upper layer, which are both associated with the height of the 

settlement level. Therefore, the settlement at any level will contribute to the 
settlement of the middle of the dam. 

 

Figure 7 Deformation at the end of construction obtained from numerical 

analysis using the information of the initial specification of materials (15 loading 

stages). 
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Figure 8 Deformation at the end of construction presented in the original dam 

design report (initial specification of materials and 6 loading stages). 

6 Study of Elastic Modulus 

As was shown in the previous section there are significant differences between 

the results obtained from the measurements and the results of the numerical 

analysis, where the dam was modeled with the soil properties estimated from 
the geotechnical investigation report, prepared before construction. The main 

focus of this paper is on the short-term settlement of a CFRD. CFRDs are 

generally constructed in different sections, using rock-fill materials. The main 
settlement mechanism that occurs on rock-fill materials is generally elastic 

settlement, which has a direct relationship with the modulus of elasticity. 

Therefore, it is necessary to modify the value of the elastic modulus of the soil 
to create a better numerical model. For this purpose, the deformation charts 

obtained from the measurements were considered as the main guide. The elastic 

modulus of the soil was back-calculated using the amount of deformation that 

occurred during and after the construction of the dam, and also the deformation 
occurring in one-layer construction of the dam. The mathematical relationship 

between stress and displacement was established and the values of the elastic 

modulus were then back-calculated.  

This was achieved by calculating the effect of the construction of each layer 

with specific thickness and by adding the produced stress value of each layer to 

the layers below. Due to the deformations that occur as a result of the increase 
in the amount of the stress, the equation of the elasticity modulus (Eq. (1)) 

could be established.  

   E  (1) 

In Eq. (1), σ is the stress, E is the modulus of elasticity, and ε is the strain.  



            Evaluation of a CFRD Using a Back-Analysis Method        527 
 

Assuming a linear behavior for the materials, elastic modulus E of each layer 

was calculated with very good accuracy. The value of E was then back-

calculated for every layer in the middle section of the dam and eventually, the 

average value of E was calculated. This value was then compared with the value 
of the elastic modulus that was considered in the initial design. The ratio of 

these two values is a very good approximation that can be extended to other 

parts of the rock-fill materials in the dam. To find the best value for this ratio, 
the initial moduli of elasticity of the materials were reviewed for every layer 

and the numerical analyses were repeated. The results were then compared with 

the results of the measurements.  

To calculate the values of the elastic modulus from the results of the 
measurements a number of points were selected on the magnetic settlement 

curves and the height and the settlement of these points were recorded. Note 

that these values resulted from the construction of the upper layers. Having the 
exact values of the soil unit weight used in the dam (obtained from in-situ tests 

that were performed during implementation of the dam body) and the thickness 

of each of the constructed layers, the induced stress values were calculated. 
Dividing this by the deformations that occurred as a result of the construction of 

the upper layer, the corrected values of the elastic moduli were obtained. These 

calculations are shown in Table 3. The average modulus of elasticity was found 

to be equal to 120 MPa. By dividing this amount to the initial modulus of 
elasticity, an average rate of 2.5 was achieved as the initial ratio to revise the 

old modulus of elasticity. 

Table 3 Calculation of the revised modulus of elasticity. 

Layer  

thickness (m) 
∆� (mm) 	 (��


�) ∆� (��

�) � (���) 

5.5 4 22.6 124.3 170.91 
4.0 5 22.6 90.4 72.32 
5.0 7 22.6 113.0 80.71 
18.0 7 22.6 406.8 1046.05 
9.0 12 22.6 203.4 152.55 

The numerical model was then calculated to find the vertical displacement using 
different ratios for the elastic modulus correction. It was found that a ratio of 2.5 

resulted in a risky design, as some of the vertical deformations were calculated 

lower than the values of the measurements. Therefore, a ratio of 1.5 to 2.0 was 

considered as a more appropriate value for the correction of the elastic modulus. 
Figure 9 shows the effect of elastic modulus on the deformation. 
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Figure 9 Effect of modulus of elasticity ratio on the vertical deformation on the 

central line of dam. 

Table 4 shows the ratio between the new elasticity modulus and the initial 

modulus for different materials used in the dam’s construction. By performing 
several analyses and using trial and error, the most appropriate value of the 

modulus of elasticity was calculated for each layer. These values are presented 

in Table 5. As can be seen, the initial specifications of the material of the dam 
body (Zones 3A, 3B and 3C) in the initial analyses (before construction) were 

considered conservative while the specifications of the layers below the 

concrete surface (2A and 2B) were selected close to reality. 

Figure 10 shows the vertical deformations of the dam’s central line after 

correction of the elastic modulus as an example. As can be seen, the results of 

the numerical model are consistently close to the displacement recorded by the 

instrumentation. 

Table 4 Ratio of revised elastic modulus to initial modulus. 

Material Initial modulus (MPa) Modified modulus (MPa) Ratio 

2A 59 55 0.9 

2B 45 45 1.0 

3A 45 85 1.9 

3B 45 85 1.9 

3C 30 75 2.5 

Alluvial 16 40 2.5 

Concrete 5000 5000 1.0 
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Table 5 Revised specifications of materials. 

Zone 
Behavior 

model 

E 

(MPa) 

c 

(kPa) 
ϕ� γ(��

��) ν 

2A E-P* 55 0 42 22.9 0.30 

2B E-P* 45 0 45 22.2 0.30 

3A E-P* 85 0 45 22.2 0.30 

3B E-P* 85 0 45 22.2 0.30 

3C E-P* 75 0 40 21.8 0.30 

Alluvial E-P* 40 0 28 20.9 0.35 

Concrete Elastic 5000 NA NA 25.0 0.20 

 

Figure 10 Comparison of vertical deformation of the center line of the dam 

obtained from numerical modeling (revised material properties) and from 

measurements. 

In addition to the deformations occurring within the dam body due to the weight 

of the materials, impounding will also cause deformations in the body of the 
dam, specifically in the sections of the dam that are below the concrete surface. 

These deformations are perpendicular to the surface and it is important to 

consider them in the numerical modeling. Since the finite-element software 
provides the amount of deformation in the nodes in the form of horizontal and 

vertical deformations, it is necessary to calculate the resultant of these values in 

the direction perpendicular to the surface. The dam has an upstream slope of 
1V:1.6H. Thus, by dividing the values of the calculated horizontal deformation 

with the sinus of this angle and also dividing the values of the vertical 

deformation with the cosine of the angle and adding these values together, the 

deformation perpendicular to the surface was calculated. Figure 11 shows the 
deformation of the concrete surface as the effect of impounding in the direction 
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perpendicular to the surface. The results are shown for both the numerical 

model and the measurement data. It can be seen that the values of deformation 

for the sections between the heel of the dam and the middle height of the dam 

are consistently close. However, the results did not change the altitude for the 
rest of the dam’s height. The results of the numerical analysis were compared 

with some other CFRDs and a trend similar to the results of the numerical 

model for the deformations was observed. Therefore, the authors believe that 
the observed inconsistency in Figure 11 is due to errors in reading of the 

instruments measuring deformation of the concrete surface.  

The adaptation percentage of the bottom of the  two charts can be calculated as: 

 Adaptation percent =  1 − #$ %&'$(.* %&
#$ %& + × 100 = 93 

             

Figure 11 Deformation of the concrete surface of the dam in the direction 

perpendicular to the surface. 

7 Back-Analysis Based on the Elastic Modulus 

Applying the final specifications of the materials to the model, analyses were 

performed for the end of the construction, before and after impounding. Sixteen 
stages were considered for the construction phase, which means that 16 layers 

of soil were placed step by step to construct the numerical model. Figure 12 

shows the contours of the vertical and horizontal deformations, normal 

(vertical) stresses, and also the shear stresses within the dam body and after 
impounding. 
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Figure 12 Results of the numerical model with the final revised soil properties: 
(a) vertical deformations (m), (b) horizontal deformations (m), (c) normal 

(vertical) stress (kPa), (d) maximum shear stress (kPa). 

It can be seen that after impounding, the maximum deformations happen in the 

parts of the dam that are located directly underneath the concrete surface. In 

addition, the horizontal deformation will also increase at the upper levels of the 
dam body. In other words, a large part of the vertical deformations of the main 

areas of the body will occur due to impounding of the dam rather than due to 

construction. Also, it can be seen that the effects of impounding on horizontal 

(a) 

(b) 

(c) 

(d) 



532 Mohammad Ali Abedian, et al. 

  

deformations are greater than those on vertical deformations. The horizontal 

displacements would of course decrease the amount of vertical deformation. 

This can be clearly seen in Figure 12(a) and (b).   

It can also be seen in Figure 12(c) and (d) that impounding will increase the 
normal and maximum shear stresses within the sections of the dam located 

under the concrete surface. The increase in the values of these stresses is 

negligible in the middle sections of the dam body. Given that the hydrostatic 
pressure of water increases linearly with height, the lower level of the surface 

will have the greatest increase in stress. The results show that the maximum 

shear stress in the sections underneath the concrete surface will increase from 

about 100 kPa before impounding to about 1,000 kPa after impounding. The 
normal stress in the above-mentioned sections will also increase from about 100 

kPa before impounding to about 500 kPa after impounding. However, changes 

in the vertical stress and maximum shear stress in the central areas before and 
after impounding are smaller than about 50 kPa. 

8 Conclusion 

Deformation control of a rock-fill body is essential for a high CFRD. The 
settlement of the Siah-Bisheh CFRD was analyzed based on monitoring records 
and numerical modeling in this work. A back-analysis method was implemented 
based on monitored records. The following specific conclusions can be drawn 
from this study:  

1. The differences in the results of the numerical model and the measurements 
revealed that the initially considered properties of the materials of the 

primary design were very conservative. 

2. Accurately modeling the steps of construction is significantly important and 
will strongly affect the results of the numerical model. Increasing the 

number of layers (construction stages) from 5 to 16 in this paper, resulted in 

varying deformations of up to 30 cm.  
3. The results of the back-analysis suggest a considerable change in the value 

of the elasticity modulus in the middle sections of the dam body. The 

conversion ratio between the initial elastic modulus and the final elastic 

modulus of these sections of the dam body was found to be most 
appropriate at about 2.0. However, the conversion ratio for the materials in 

the sections under the concrete surface was found to be most appropriate at 

1.0. 
4. According to the result of back-analysis, for the lower half of the dam 

height, the deformations of the concrete surface due to the impounding were 

consistently close to the field measurements. 
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