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ABSTRACT 
The tensor of gravitation is traceless as the gravitational field of the Earth is harmonic outside the 
Earth’s surface. Therefore, summation of the 2nd-order horizontal derivatives on its diagonal 
components should be equal to the radial one but with the opposite sign. The gravity field can be 
recovered locally from either of them, or even their combination. Here, we use the in-orbit 
diagonal components of the gravitational tensor measured by the gravity field and steady state 
ocean circulation explorer (GOCE) mission for recovering gravity anomaly with a resolution of 
1°×1° at sea level in Ethiopia. In order to solve the system of equations, derived after 
discretisation of integral equations, the Tikhonov regularisation is applied and the bias of this 
regularisation is estimated and removed from the estimated gravity anomalies. The errors of the 
anomalies are estimated and their significance of recovery from these diagonal components is 
investigated. Statistically, the difference between the recovered anomalies from each scenario is 
not significant comparing to their errors. However, their joint inversion of the diagonal 
components improved the solution by about 1 mGal. Furthermore, the inversion processes are 
better stabilised when using errors of the input data compared with its exclusion, but at the 
penalty of degradation in accuracy of the estimates.  
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1. INTRODUCTION
The European Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first 
satellite mission, which measured the gravitational tensor along the orbit of its satellite (ESA, 
1999). Except the Polar Regions, the data of GOCE have very good coverage all over the Earth 
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with uniform quality. The 2nd-order derivatives of geopotential, or gravity gradients, measured by 
GOCE are more sensitive to medium wavelength component of gravity field than previous 
gravity satellites, allowing us to determine gravity anomalies with better spatial resolution. The 
GOCE data can also be used for local gravitational field recovery directly with less-processed 
data. In this case, only those orbital passes over the study area are required rather than the data 
with a global coverage. Theoretically, the tensor of gravitation has a zero trace as the gravity field 
of the Earth is harmonic outside the Earth’s surface. This property can be used to recover local 
gravity field from 2nd-order horizontal derivatives of geopotential on its diagonal components. 
Therefore, in two ways the gravity field can be recovered locally, one from the 2nd-order radial 
derivative and another from horizontal derivatives. The subject of this paper is dealing with 
comparison, errors estimation and significance analysis of gravity anomalies recovered from both 
radial and horizontal derivatives over Ethiopia.  

There are different techniques used for recovering regional gravity field from 2nd-order 
derivatives of the gravity field locally see e.g. Eicker (2008). Least-squares collocation (Krarup 
1969) is one of the famous approximating method see e.g. the works done by Arabelos and 
Tscherning (1990, 1993 and 1995), Tscherning (1988, 1989),  Tscherning et al. (1990) and Yildiz 
(2012). Also, the gravity field can be recovered using a direct integral method, which in fact  
does two separate computations in one step, integrating the satellite over the mean orbital sphere 
and  continuing them downward to sea level; see Tscherning et al. (1990), Eshagh (2011a), 
Eshagh (2012) and Sjöberg and Eshagh (2012). Another approach is to determine gravity field 
from the inversion of integral equations. Reed (1973) developed integral equations for second 
order partial derivatives of extended Stokes formula to recover the gravity anomaly. Xu (1992) 
discussed a similar issue using the Tikhonov regularisation. The truncated singular value 
decomposition was used by Xu (1998) for inversion of 2nd-order radial derivatives of 
geopotential to gravity anomalies while Kotsakis (2007) used the same method with a 
covariance-adaptive method for regularisation. Toth et al. (2004) presented the idea of 
upward/downward continuation of the satellite gradiometry data to the mean orbital sphere. Xu 
(2009) introduced an iterative generalised cross-validation method for simultaneous estimation of 
the regularisation and variance components (VCs) with an example of recovering the gravity 
anomaly from the 2nd-order derivatives of geopotential. Janak et al. (2009) investigated the 
inversion of full gravitational tensor described in a geocentric frame to recover the gravity 
anomalies at sea level. Eshagh (2011b) studied the inversion of stochastically-modified integral 
for gravity anomaly recovery from the derivatives and Eshagh (2011c) investigated the effect of 
the spatial truncation error (STE) of integral formula on recovery of gravity anomaly. Eshagh and 
Sjöberg (2011) performed a similar study for inversion and combination of the full tensor of 
gravitation using the variance component estimation process for optimal weighting. Eicker et al. 
(2013) used radial basis functions for regional gravitational field modelling, which allows for 
regional tailoring of the regularization. Eshagh and Ghorbannia (2014) presented a strategy for 
local determination of gravity anomalies from orbital and gradiometric data considering the effect 
of spatial truncation error on the estimated variance components. Šprlak et al. (2014) and Šprlak 
and Novák (2014) have investigated the issue of downward continuation of the satellite 
gradiometric data. Janak et al. (2014) recovered the quasigeoid from GOCE meanwhile 
combining them with terrestrial data in Auvergne. Sebera et al. (2015) studied the problem of 
downward continuations using Abel-Poisson’s integral inversion. Pito�ák et al. (2016a) 
performed the inversion of 2nd-order derivatives data to gravity disturbances at sea level over 
central Europe. Later, Pito�ák et al. (2017) applied the same methodology for recovering gravity 
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disturbances from the real GOCE data and they investigated the possibility of inverting the 3rd-
order derivatives of the gravity field to gravity anomalies over the same area.  Finally, Naeimi 
and Bouman (2017) studied the contribution of the GOCE gravity gradients to regional 
gravitational field solutions by employing radial basis functions. 

So far the GOCE data has been used for local gravity field recovery over different areas, but 
no investigation was performed over Ethiopia. In most of the studies, some components of the 
gravitational tensor have been used for local gravity field recovery, but Eshagh (2011a) 
mentioned that only the diagonal components of this tensor are suitable for such a purpose. No 
attempt was made to see in what way, these diagonal components can be used and how much 
improvements can be achieve by combining them. Furthermore, error estimations of the 
recovered anomalies and the significance of the differences between the recovered anomalies 
from 2nd-order radial and horizontal derivatives are investigated as well.    

2. THEORY  
The gravitational tensor is trace-free meaning that the sum of the diagonal components of this 
tensor is zero as the Earth’s gravity field is harmonic outside the Earth’s surface. The local-north 
oriented frame is used to define the partial derivatives of the Earth’s gravity field. This frame has 
its origin at the satellite centre, its z-axis is along the geocentric distance of satellite in upward 
direction, x-axis is pointing to the north and the frame is left handed. In matrix theory, the trace 
operator is invariant, which means that the trace of the gravitational tensor does not depend on 
the type of frame. In fact, this tensor is trace-less even in gradiometer reference frame. Here, we 
use the local north-oriented frame for defining the mathematical models, as the directions of x- 
and y- axis of the frame are independent of the satellite orbit. In such a frame, it is 
straightforward to write the following equation for a trace-free tensor: 

� �zz xx yyT T T� � �    (1) 

where Tzz, Txx and Tyy are the 2nd -order partial derivatives of the disturbing potential T, along z, x 
and y-axis, respectively.  

Eq. (1) shows that the summation of the derivatives along x- and y- axis is the same as the one 
along z-axis but with opposite sign. This means that the same mathematical model, which is used 
for inverting Tzz , can be used for inversion of this summation term in the right hand side of Eq. 
(1). However, one issue is the quality of the recovered gravity anomalies and the noise level of 
the data. It is expected to see larger error in gravity anomalies obtained from this summation than 
that of Tzz.  

The gravity anomaly at sea level can be computed from Tzz by using the 2nd-order radial 
derivative of the extended Stokes formula (Reed 1973): 

� �
0

, � d
4zz zz

�

RT S r � g �
�

� ��                                                   (2) 

where R is the mean radius of the Earth, Tzz  is the gravity gradient, measured at satellite level.  �g 
is the gravity anomaly at sea level,  � is the geocentric angle between the computation and 
integration points, �0 the integration area, and  
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With 2cos21,/ ttDrRt ���� �  , and r is the geocentric distance of satellite.
The kernel Szz(r,�) is isotropic, which means that it is not a function of azimuth. This kernel is 

well-behaved function (Eshagh 2011a) with high value at the computation point and decays 
uniformly down to zero. Eshagh (2011a) mentioned such kernels are suitable for local integral 
inversion as the STE will be reducible when the inversion is performed over the study area and 
the results in the central part are selected. In other words, those recovered anomalies defected by 
the STE placed close to the marginal areas are trimmed off. Figure 1 represents the plot of this 
kernel and shows that the contribution of far-zone data for � > 10°, are considerably smaller than 
those in the near-zone area.  

According to Eqs. (1) and (2), it will not be difficult to conclude that:  

� �
0

, � d
4xx yy zz

�

RT T S r � g �
�

� �� �� ��� ������ (4)

As we can see from Eq. (4), the same integral formula can be constructed for inverting 
� �xx yyT T� �  to gravity anomaly at sea level.  

Fig 1. Behaviour of Szz(r, �)
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3. SOLUTION OF INTEGRAL EQUATIONS 
Eq. (2) is of the Fredholm integral equation of the first kind. In order to solve this equation 
numerically, the integral should be discretised according to the desired spatial resolution of 
gravity anomalies. The discretised form of integral can be written in a matrix form of system of 
equations, or Gauss-Markov model:  

� �Ax L � , � �E 0�� and � �T 2
0E ���� Q                                              (5)

where A is the coefficient matrix, x is the vector of unknown parameters being estimated in our 
case gravity anomalies at sea level, L is the vector of measurements, either Tzz or )( yyxx TT ��   , � 
the vector of random noise, E{ . } the statistical expectation, 2

0�  a priori variance factor and Q the 
co-factor matrix of the measurements.  

The system of equations (5), derived after discretisation of the integral (2) or (4), is ill-
conditioned. This means the solution is very sensitive to noise of data and any small change in 
data leads to large variations in the solution after inversion. This problem can be solved by using 
regularisation. Tikhonov (1963) was one of the pioneers of this method and he solved the 
following optimisation problem to stabilise the solution:  

� �2
2 2

min �� �Ax L I                             (6)

where 2�  is the regularisation parameter, I the identity matrix, and 
2

·   stands for L2 norm.  

When a system of equations is ill-conditioned the least-squares solution of the system have 
very large values. In fact, Tikhonov (1963) controls these values by adding 2

2
� I  to the least-

squares optimisation problem, to find a balance between the estimated and residual values. The 
solution of Eq. (6) is: 

1 T 1
reg

� ��x N A Q L where T 1 2��� �N A Q A I .         (7)

The proper choice of 2�  is the most important issue in the inversion process. Different 
methods have been presented for estimating the regularisation parameter. Some of these include 
L-curve, generalised cross validation (GCV) and normalised cumulative periodogram (NCP) (see 
Hansen, 2010). There is no general answer regarding which choice of parameter method is 
optimal. This is because each inverse problem has its own characteristics and error model, and it 
is somewhat unpredictable. For instance, the L-curve is suitable for larger noise level.  The GCV 
is quite robust and accurate, as long as the noise is white while the NCP appears to work well for 
both noise levels (Hansen, 2010). 

In essence, adding an additional �2 parameter in the stabilisation process causes the solution 
get a bias as a stabilisation penalty. This bias has the following formula (Xu, 1992): 

� � 2 1
regbias � �� �x N x    .                                                              (8)

From Eq. (8), one can see that the bias is a function of the true values of the unknown 
parameters x. Xu et al. (2006) recommended using xreg as an approximation to x. In this case, a 
2nd -order bias comes to the solution but it is always small and negligible; see Xu et al. (2006). 
Therefore, this bias is estimable and reducible from the solution by:  
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2 1
reg regˆ � �� �x x N x .                              (9)

Furthermore, the variance-covariance matrix of the estimated parameters can be obtained by 
using the error propagation law of random errors (Eshagh and Sjöberg 2011, Eshagh 2012):  

reg

2 1 T 1 1
0

ˆ �̂ � � ��xQ N A Q AN ,             (10)

where the a posteriori variance factor can be estimated by (Xu et al. 2006):  

� �
� �22

221T4
reg

1T
req2

0 trace�rn
��

�̂ �

���

��

��
�

N
xNNx�Q�

                                        (11)

and 

reg reg� �� L Ax .       (12)

4. JOINT INVERSION OF DIAGONAL COMPONENTS 

Now, two systems of equations are organised, one derived from the integral (2) and the other 
from (4). Solutions of both systems will be gravity anomalies at sea level over the study area. 
Here, we have a new Gauss-Markov model: 

1

2
�

� �� �
� �� �� �

� � � �

LA
x �

A L
  ,  � �E 0� �� and � � 1T 2

0
2

E �� �

� �
� � �

� �

Q 0
� �

0 Q
    (13)

where 1L  and 2L  are, respectively, the vectors of Tzz  and –(Txx+Tyy), and 1Q  and 2Q  are their 
corresponding variance-covariance matrices. ��  is the vector of random noise of the system. Solution of 
Eq. (13) by the Tikhonov regularisation is: 

1
reg

��x M U where � �T 1 1 2
1 2 �� �� � �M A Q Q A I and T 1 T 1

1 1 2 2
� �� �U A Q L A Q L .      (14)

Similarly, we can see that the regularisation bias, variance-covariance matrix of the solution 
are, respectively:  

� � 2 1
regbias � �� �x M x                       (15)

Therefore, the bias-corrected estimates of the unknown parameters will be: 
2 1

reg regˆ � �� �x x M x           (16)

and 
� �

reg

2 1 T 1 1 1
0 1 2

ˆ �̂ � � � �� �xQ M A Q Q AM               (17)

where 2
0�̂  is a posteriori variance factor. The mathematical formula for computing 2

0�̂  is similar to 
what was presented in Eqs. (11) and (12), but it is necessary to replace N by M  and Q by the 
diagonal matrix of  1 2�Q Q   and n by 2n in Eq. (11). It also requires to replace L by � �T

1 2L L in 
Eq. (12).  

5. NUMERICAL STUDIES 
Here, we divide our numerical studies into three parts. At the first step, the study area and the 
data are introduced, after that, the downward continuation of the real GOCE data to gravity 
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anomalies are described along with estimation of their errors. At the last step, the joint 
combination and inversion of diagonal components are investigated. 

5.1. STUDY AREA AND DATA 
Our study area is Ethiopia, limited between the latitudes 3 °N and 15 °N and the longitudes 
between 33 °E and 48 °E. This area is further extended by 10° in order to reduce the effect of the 
STE of the integral formula. Therefore, the data and the recovered data is now will have a 
boundary  between latitudes -7 °N and 25 °N and the longitudes between 23 °E and 58 °E. 
Ethiopia is characterised by complex topographic and geological structures. Its landmass is 
divided by the Main Ethiopian Rift into the eastern and western plateau. The Main Ethiopian Rift 
(MER) lies between Nubia and Somalia plates. It extends from the Afar triple junction to the 
Lake Turkana depression in northern Kenya (Wolfenden et al., 2004; Keir et al., 2009). There are 
many active volcanoes in the southern, central and north sections of the MER. Afar triangle is 
one of the geologically active place on our planet where three plates Nubia-Somalia and Arabia 
plates are converging. Many geophysical studies have been conducted to understand the 
geodynamics of rifting process (Furman et al., 2006). Many recent studies indicated that the 
MER is very active in terms of volcanism, seismicity and tectonic deformation (Ebinger et al., 
2010; Bastow et al., 2008). 

Besides, the country is characterised by extremely undulating topography. Figure 2 shows the 
topographic nature of Ethiopia. Generally, the MER is formed from low lying flat plain. Some 
areas in the Afar depression are below mean sea level. In these areas, height values are negative. 
The Somalian and Nubian plates are represented by highlands and plateaus. The western plateaus 
laying on the Nubian plate reaches up to 4420 meters elevation above mean sea level. It is also 
known that the gravity field is highly variable across the study area due to complexity in 
topographic mass distribution, geology, geodynamics and tectonics.  
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Fig 2. Study area and its topographic regime [metres] 

With regard to the data needed for the study, we have used good coverage of gravitational 
tensor data over the entire region of Ethiopia from various orbital tracks of GOCE satellite 
acquired for a period of 9 months from January 2013 to September 2013 with a sampling interval 
of 3-seconds (Figure 3d). The GRS80 (Moritz 2000) normal gravity field model is used and the 
diagonal components of the tensor are regenerated by this model and subtracted from the 
measured components. This gives the 2nd-order derivatives of disturbing potential (T) which is 
suitable for gravity anomaly recovery. Figures 3a,b and c show the maps of Txx, Tyy and Tzz over 
the study area. Figure 3a is the map of Txx and shows that the large values of this gradient are 
located in the southern part of the area. Figure 3b shows the structure of Tyy and negative values 
over the mountains which are isolated by positive values from east and west, due to the fact that 
this gradient can show the inflation points of the gravity field. The map of Tzz, Figure 3c, shows 
the high and positive values along the topographic features and negative values in the south-east 
of the area. The maps of the errors of Tzz , Txx and Tyy  are, respectively, presented In Figures 3d, 
3e and 3f over the area. The statistics of the data and their errors are presented in Table 1.   
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a) b) 

c)                                                                              d) 

f)
e)

Fig 3. a) Txx [E], b) Tyy [E],  c) Tzz [E], d) �zz [mE], e) �xx [mE], and f) �yy [mE] 
Table 1 represents the statistics of Txx, Tyy, and Tzz and their respective errors measured by 

GOCE. As we expected, the Tzz has the largest magnitude comparing to Txx and Tyy with a larger 
standard deviation. Also, the largest errors are related to the Tzz gradients as well.  
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Table 1. Statistics of the GOCE data (Txx, Tyy, and Tzz ) and their respective errors, �xx, �yy and �zz 
over Ethiopia 

 Max Mean Min Std 
Txx [E] 0.423 0.058 -0.498 0.145
Tyy[E] 0.538 0.015 -0.549 0.168
Tzz [E] 0.643 0.044 -0.832 0.267

�xx [mE] 8.595 8.242 8.043 0.129
�yy [mE] 10.043 8.665 7.560 0.804
� zz [mE] 11.754 11.153 10.616 0.314

In order to check the quality of the recovered gravity anomalies, the TIM-R5 (Brockmann et 
al, 2014) gravity model, which was derived from the timewise analysis of GOCE data is used. 
This gravity model contains the spherical harmonic coefficients of the gravity field and their 
errors. So there is a possibility of estimating the errors of the computed gravity anomalies from 
this model using errors propagation law. This model has been computed from all measured data 
of GOCE during the mission life. The gravity anomalies generated from this model can be a good 
source to compare our results with it. However, we mention that since the GOCE data are used 
both in solution of this model and our integral inversion method, our results will be correlated 
with those of this model. However, we have not used all data of GOCE during its life and we 
considered a step interval of 3 seconds along the satellite orbit. In addition to these two 
differences, our method is very different from the one used for solving TIM-R5 model. The 
differences between our recovered gravity anomalies and those of TIM-R5 model could be due to 
this issue as well. Figure 4 shows the map of gravity anomalies computed by this model to degree 
and order 200. The anomalies ranges from -50 to 65 mGal over the study area. The estimated 
errors ranges from 0.32 to 0.34 mGal according to this model. The high values are placed along 
the mountains and even in the Afar region. Figure 5 shows the root mean squares error (rms) 
between the recovered gravity anomalies and those computed from TIM-R5 model to different 
degrees and orders. As the figure represents, the minimum rms is achieved for the case where 
TIM-R5 is limited to degree and order 200.  

Fig 4. TIM-R5 gravity anomalies [mGal] 
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Fig 5. Rms error of differences between gravity anomalies computed from GOCE data and TIM-
R5 for degrees 135 to 250 

5.2. INVERSION OF THE GOCE DATA 
Now, the diagonal components of the tensor of gravitation measured by GOCE are used in three 
scenarios for determining the gravity anomaly at sea level. At the first step, only Tzz is inversed, 
after that Txx + Tyy and finally, all of them together. Since we have used 9 months of revolution of 
GOCE with a sampling interval of 3-seconds, we will have about 113000 values for each set of 
Tzz, and Txx + Tyy. In the case of combing these measurements the number of observations will be 
twice larger, whilst the number of unknowns remains the same for all cases according to the 
resolution of recovery which is 1° ×1°. 

As explained before, our system of equations is ill-conditioned and we have to use a 
regularisation method for solving them. Here, we use the well-known Tikhonov regularisation 
(Tikhonov, 1963) and use Generalised Cross validation (GCV) for determining the regularisation 
parameter. We have used different methods for estimating this parameters, but we obtained the 
best results when we used the GCV method. The Regularisation Toolbox of Matlab (Hansen, 
2007) has been used for solving the system of equations.  

Each scenario is done in 4 cases before and after bias-correction process with and without 
considering the errors of GOCE data in inversion. The statistics of our computations are 
presented in Table 2. The gravity anomalies recovered from, Tzz, -(Txx + Tyy )and their 
combination, are shown by � zzTg , � �� xx yyT Tg � �  and � �,� zz xx yyT T Tg � � , respectively. Q = I means that an 
identity matrix (I) is considered instead of the co-factor matrix, or in other words, the precision of 
data is ignored, and Q � I, the case that the errors of data are considered.  
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During our investigation we found out that in the case of considering the errors of the data, 
and defined a weight matrix in the inversion process, the system of equations became stable and 
the regularisation parameter came out considerably close to zero. This caused that the statistics 
before and after bias-correction remains the same. As Table 2 shows, those cases in which errors 
of the data are ignored and an identity matrix is considered as the weight matrix in solving the 
system of equations, the results are closer to the gravity anomalies of the TIM-R5 model. This 
means that the weight of data, or the presented errors, do not express the quality of the GOCE 
data correctly. Some low-quality data get larger weights and high-quality ones lower in the 
inversion process. This causes that the solution deviates from what we obtain without considering 
the weights. Even bias-correction does not improve the estimates, gravity anomalies obtained 
from the inversion of Tzz and Txx + Tyy have root mean square errors in the order of 4.2 and 4.1 
mGal, respectively.   

In order to see if the differences between the recovered gravity anomalies are significant, we 
use Eqs. (10) and (16) to estimate the errors of the anomalies. The errors of recovered anomalies 
from Tzz  ( � Tzzg

� ) ranges from 2 to 2.4 mGal, see Figure 6a, those from  -(Txx + Tyy ) or � ��
T Txx yyg

�
� �

 

ranges from 2 to 2.7 mGal;  see Figure 6b. This is expected as in the second case, two sets of 
observation are used and each one has its own error. Therefore, the error of -(Txx + Tyy ) is 
expected to be larger according to the error propagation law. In addition, the same system of 
equations is used for inverting Tzz and -(Txx + Tyy ), therefore, the difference between the 
estimated errors are solely due to the errors of the data. In the case of combining Tzz and -(Txx + 
Tyy ),  � �,

�
T T Tzz xx yyg

�
� �  ranges from 1.8 to 2.1 mGal; see Figure 6c. We observe slight reduction of 

errors due to larger number of observations in our system.  We can observe that combining these 
two sets of data leads to smaller error.  

Table 2. Statistics of estimated gravity anomalies over Ethiopia determined by inverting Tzz, -(Txx 
+ Tyy ) and combination of them, before and after bias-correction. [mGal] 

Generally, by looking at the statistics we cannot say that if the differences between the gravity 
anomalies recovered from Tzz and –(Txx+Tyy) are significant or not. To have a better idea, we plot 
the map of the absolute values of the differences between the gravity anomalies in Figure 7a. In 
this map, we do not observe large errors around the area as 1) we have reduced the STE from the 
estimated gravity anomalies, 2) this error is the same in both cases of inverting Tzz and –(Txx+Tyy). 
Therefore, by subtracting them from each other the STE is eliminated. We observe that the 

 Before bias-correction After bias-correction 
 Max Mean Min Std rms Max Mean Min Std rms 

� zzTg  , Q= I 11.6 -0.4 -12.6 4.2 4.2 12.8 -0.4 -15.6 4.8 4.8 
� zzTg   Q� I 13.7 -0.4 -18.0 5.5 5.6 The same as before bias-correction
� �� xx yyT Tg � �  ,  Q= I 11.6 -0.4 -10.4 4.1 4.1 14.2 -0.3 -12.8 4.7 4.7 
� �� xx yyT Tg � �  ,  Q� I 15.8 -0.4 -14.6 5.1 5.7 The same as before bias-correction
� �,� zz xx yyT T Tg � � ,  Q= I 12.7 -0.4 -10.8 4.1 4.1 14.2 -0.4 -12.4 4.5 4.5 
� �,� zz xx yyT T Tg � � ,  Q� I 14.7 -0.4 -12.9 4.7 4.7 The same as before bias-correction
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differences reach to 9 mGal in the northern part of the area, even if the statistics do not show it. 
In order to test if these differences are significant, we estimate the errors of the recovered 
anomalies. The square root of sum of their variances, will give the propagated error for the 
differences of the gravity anomalies. Figure 7b shows the map of the estimated error of the 
differences, and we see that they reach to a maximum value of 3.7 mGal. However, the pattern of 
these errors is not similar to that of the differences. Therefore, we should check at which points 
these errors are smaller or larger than the absolute value of the differences, using: 

a)        b) 

c) 
Fig 6. Map of estimated errors of gravity anomalies a) 

� Tzzg
� , b) � ��

T Txx yyg
�

� �
and c) � �,

�
T T Tzz xx yyg

�
� �

, 

[mGal]

� �
� �

2 2
� �

� � xx yyzz
Tzz T Txx yy

T TT
g g

g g � �
� �

� ��  �                            (18)

For those points having larger differences than their corresponding errors, the improvements 
are significant. In Figure 7c, we show the ratio of the absolute differences and the estimated 
errors of the differences. Those regions showing larger values than 1, shows that significant 
differences, which are not seen well by the statistics in Table 2.  
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a)                                                                          b) 

Fig 7. a) Absolute value of differences between the gravity anomalies recovered from Tzz and –
(Txx+Tyy), b) square  root of sum of   the variances of the anomalies and c) ratio of the absolute 

values and the errors.  [mGal]

Figure 8a is the map of the absolute values of the differences between the gravity anomalies 
recovered from joint inversion of Tzz and –(Txx+Tyy) and those computed from the TIM-R5 model. 
We admit that since both computed anomalies uses the GOCE data they are correlated. However, 
we emphasise our study has the following differences comparing to the solution of TIM-R5: 

! integral inversion of in-orbit GOCE data with a local coverage has been performed. 

! only the diagonal components are used, not all components of gravitational tensor. 

! a limited period of revolution is considered from January to  September 2013, with a 
sampling rate of 3 sec.  

Considering the above issues, we observe that the differences reach to 16 mGal in some areas. 
The square root of the variance of the differences are about 2 mGal, see Figure 8b.  

� �
� �TIM5 ,

,TIM5 2 2
� �
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Again in order to see if the differences are significant we are in the significant level of 32%, 
Eq. (19) is used. This equation means that those differences, which have larger size than the errors 
of the differences, are significantly large. Figure 8c shows the ratio of the absolute differences and 
their errors. Those places shown by larger values than 1 means that the differences are significant.  

a)                             

b
c) 

Fig 8. a) Absolute values of differences between the gravity anomalies recovered from 
combined Tzz and –(Txx+Tyy) and TIM-R5 model, b) square  root of sum of   the variances of 

the anomalies and c) ratio of the absolute values and the errors.  [mGal] 
Eshagh and Sjöberg (2011) used simulated satellite gradiometry data at mean orbit of 250 km 

contaminated by 1 mE and 10 mE to recover gravity anomaly at mean sea level using integral 
inversion. They showed that recovering gravity anomalies is possible with accuracies of 3.3 and 
6.13 mGal, respectively, for 1 mE and 10 mE noise levels in Fennoscandia. However, they have 
not considered the STE of the integral formula and solely focused on the quality of inversion and 
solving the system of equations derived after discretisation of the integral equations. Eshagh 
(2011a) discussed the relevance of the components of the gravitational tensor for local gravity 
field recovery and concluded that only the diagonal components of this tensor are suited for this 
purpose. Eshagh (2012) also tried to recover the gravity anomalies from Tzz even in the presence 
of STE and mentioned that they can be recovered with an accuracy of 6 mGal. All of these 
studies have been based on the simulated data. Yildiz (2012) applied least-square collocation 
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(LSC) for the same purpose but using real data.  He removed the long wavelength effect using 
EGM2008 and the short wavelength part by residual terrain models and recovered anomalies. 
Removing the long and short wavelength structures of the gravity field correlates the GOCE data 
with this a priori information. At the end, Yildiz (2012) estimated an error of 11 mGal for the 
anomalies. Eshagh and Ghorbannia (2014) used the real data of GOCE for the same purpose over 
Fennoscandia and could recover them with an accuracy of 6.1 mGal, which was not very 
different with those obtained by simulation studies. Later Pito�ák (2016a) uses three approach for 
recovering regional gravity disturbance at mean sea level. The first approach applies integral 
inversion of satellite gradiometry data sampled at 0.5 degree from real GOCE data at mean 
orbital height of 250 km, whilst we have used the in-orbit GOCE data as interpolating them at 
this mean height correlates the data. They considered the far zone effects by a global gravity 
model, meaning that they used some priori information. In their second approach, the 
gravitational effects of the topographic masses are removed prior to continue the data downward 
and the third one was based on the remove-compute-restore scheme, similar to what Yildiz 
(2012) did. This approach performed better and they could receive the anomalies with an 
accuracy of 2.9 mGal. Similarly, Pito�ák (2016b) recovered disturbing potential at mean sea level 
instead of gravity anomalies. Sharifi et al (2017) used simulated second and third-order 
disturbing potentials and showed that the anomalies can be estimated with an accuracy of 7.8 
mGal from integral inversion of Tzz over Fennoscandia. The presented accuracies for the 
recovered anomalies depends on duration of the GOCE data, sampling rate, resolution of 
recovery and STE. Here, we used the GOCE data with a sampling interval of 3 sec under a period 
of 9 months. No remove-compute-restore is done in our method, and the GOCE data are not 
gridded either. The STE was reduced by extending our study area further by 10 �. However, 
resolution of recovery was 1 � x 1 � and the recovered anomalies are compared with those 
obtained from TIM-R5 gravity model truncated at degree and order 200. We could recover the 
anomalies with an rms of 4 mGal comparing to TIM-R5 anomalies. Also, we have performed 
some error analysis over the recovered anomalies. 

6. CONCLUSION 
We recovered the gravity anomaly in Ethiopia from real in-orbit diagonal components of the 
gravitational tensor measured by GOCE during a 9-month period of January to September 2013, 
with a sampling interval of 3 sec.  The Tikhonov regularisation was used for solving and 
stabilising the system of equations, derived following the discretisation of the integral equations, 
and GCV method was used for estimating the regularisation parameter. Comparison of our 
recovered gravity anomalies to those derived from the TIM-R5 gravity model shows that the rms 
values of the differences are not significantly different. However, the joint inversion of Tzz and –
(Txx+Tyy) produces closer anomalies to those of TIM-R5 with an rms of about 4.1 mGal. In 
addition our numerical results show that the local recovery of the gravity anomalies are more 
successful when the data are equally weighted. This means that considering the errors of the 
GOCE data corrupts the solution, rather than improving it. This can be due to the incorrect errors 
of the data, those data having higher qualities gets lower weights and those with lower gets 
higher. This causes that the solution not to be close to that of TIM-R5, which we considered as 
the reference model. Furthermore, the system of equations was stable when the errors of the data 
are considered during the inversion as the small values of errors correspond to large values of the 
weights, which can improve the condition of the coefficients matrix of the normal system of 
equations. However, the solution is not better than the case, where the errors are ignored. The 
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comparison between the recovered anomalies from Tzz  and –(Txx+Tyy) shows that the rms values 
of the differences are not significantly different over the study area. The absolute values of the 
differences reach to about 9 mGal over the mountainous regions, showing some significant 
difference between the solutions comparing to the errors of the differences.  Joint inversion of Tzz 
and –(Txx+Tyy) delivers closer anomalies to those of TIM-R5, with an rms of about 4 mGal, and 
the estimated errors from this joint inversion is about 2 mGal. However, the differences reach to 
16 mGal over some places and they are significant comparing to the errors of the differences. The 
use of limited data over the area with a limited period of revolution, local integral inversion and 
using only diagonal components are the reason explaining the significant differences.   
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