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Abstract. This study investigates the temperature and concentration gradients on the transfer of heat and mass in
the presence of Joule heating, viscous dissipation and time-dependent first-order chemical reaction in the flow of
micropolar fluid. Governing boundary value problems are solved analytically and the effects of parameters involved
are studied. The behaviour of the Nusselt number (at both disks) is noted and recorded in a tabular form. The present
results have an excellent agreement with the already published results for a special case. The rate of transport of
heat by concentration gradient and the diffusion of solute molecules by temperature gradient are increased. The
concentration field is increased by constructive chemical reaction and it decreases when the rate of destructive
chemical reaction is increased.
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1. Introduction

The study of non-Newtonian fluids is very important as
many fluids in industry are of non-Newtonian nature.
Moreover, many fluids used in the engineering pro-
cesses are non-Newtonian. Due to the diversity in the
non-Newtonian fluids, several constitutive equations for
non-Newtonian fluids have been proposed. The micro-
polar fluid model is one of them. This model predicts
microstructure which experiences rotation when the
fluid deforms. Blood, certain biological fluids and liquid
crystals with rigid molecules are well-known exam-
ples of micropolar fluids. Due to the immersion of
microstructures in fluids, the microrotation, spin iner-
tia, couple stresses, etc. are significant. Therefore, the
usual conservation laws are not sufficient to describe the
motion of micropolar fluid, i.e. one additional conserva-
tion law, the law of conservation of angular momentum,
is used to model the flow of micropolar fluids. Math-
ematically speaking, addition of one more law to the
usual conservation laws makes the problem more com-
plex. Despite this fact, several researchers have studied
the flow of micropolar fluid over different geometries.
Some latest studies are mentioned in [1–7]. Squeezing

flows occur at industry in the transport processes. Owing
to this, the squeezing flows are studied immensely. For
example, Kuzma [8] studied the effects of inertia on
squeezing film flow. Theoretical analysis for the flow
induced by the sinusoidal variation of gap between two
disks was performed by Ishizawa and Takahashi [9].
Ishizawa et al [10] studied the unsteady flow between
the parallel disks moving towards each other with time-
dependent velocity. Hamza [11] considered the effects
of magnetic field on the squeezing flow of viscous fluid
between the two parallel plates and solved the prob-
lem by regular perturbation method. Usha and Sridharan
[12] investigated the effects of time-dependent varia-
tion of gap (between two parallel elliptic gap) on the
flow and concluded that external periodic force causes
distortion in the waveform. Debaut [13] simulated the
heat transfer effects in the squeezing flow of viscoelastic
fluid using finite-element method. Khaled and Vafai [14]
examined the effects of magnetic field on heat transfer
in the flow over sensor surface. Duwairi et al [15] con-
ducted the study for heat transfer in the squeezing flow
between the parallel plates. Mahmood et al [16] studied
the heat transfer effects on the flow over a porous sur-
face. Theoretical investigations of unsteady squeezing

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-018-1612-3&domain=pdf


47 Page 2 of 11 Pramana – J. Phys. (2018) 91:47

flow of viscous fluid were carried out by Rashidi et al
[17]. Domairy and Aziz [18] studied the effects of mag-
netic fluid and variation of distance between the porous
disks analytically and compared the results obtained by
direct numerical simulations. The squeezing effects of
two parallel disks on the flow of micropolar fluid were
studied by Hayat et al [19]. The effects of magnetic field
on the squeezing flow of second grade fluid were anal-
ysed by Hayat et al [20]. The analytical treatment of the
squeezing flow of Jeffrey fluid was done by Qayyum
et al [21]. The analytical and numerical solutions for
the problem describing the heat transfer in viscous fluid
squeezed between two parallel disks were computed by
Tashtoush et al [22]. Bahadir and Abbasov [23] con-
sidered the effects of Ohmic’s heating on the squeezing
flow of an electrically conducting fluid in the presence
of magnetic field and solved the resulting problems both
analytically and numerically.

The transport of heat due to density differences caused
by solute is significant in many industrial and natural
processes. The effect of diffusion of heat due to con-
centration gradient is called diffusion thermo/Dufour
effect. Soret also observed that temperature gradient
enhances the process of diffusion of solute molecules.
This process of transportation of solute molecules by
temperature gradient is called thermal diffusion/Soret
effect. Many studies on temperature and concentration
gradient effects on transport of heat and mass are avail-
able. However, some recent studies are mentioned here.
For example, Srinivasacharya et al [24] theoretically
studied the effects of transport of heat and mass in mixed
convection flow in a porous medium and concluded that
the transport of heat and mass can be enhanced by tem-
perature and concentration gradients. Osalusi et al [25]
studied thermal diffusion and diffusion thermoeffects on
magnetohydrodynamic flow over a rotating disk in the
presence of viscous dissipation and Joule heating. The
effects of temperature and concentration differences on
the magnetohydrodynamic boundary layer flow over a
porous surface were investigated by Hamid et al [26].
Beg et al [27] explored the effects of thermal diffusion
and diffusion thermo on transfer of heat and mass in
an electrically conducting fluid between parallel plates
in the presence of sink/source. Simultaneous effects
including thermal diffusion, diffusion thermo and chem-
ical reaction on the flow of dusty viscoelastic fluid in
the presence of magnetic field are studied theoretically
by Prakash et al [28]. Thermal diffusion and diffusion
thermo effects on the transfer of heat and mass in the
Heimenz flow in a porous medium are discussed by Tsai
and Huang [29]. Similarity solutions for the problems
describing the heat and mass transfer in free convec-
tive flow over a porous stretchable surface are derived
by Afify [30]. Awais et al [31] analysed the effect of

temperature and concentration gradients on the flow of
Jeffery fluid over a radially stretching surface. The ther-
mal diffusion and diffusion thermoeffects on the flow
of partially ionised fluid are examined by Hayat and
Nawaz [32]. Seadawy and El-Rashidy [33] investigated
nonlinear Rayleigh–Taylor instability in the heat and
mass transfer in the flow in a cylinder.

The review of literature reveals that no study on
Soret and Dufour effects on the transport of heat and
mass in an axisymmetric squeezing flow of microp-
olar fluid between disks is available yet. The present
investigation fills this gap. Such flows are significant
as they occur in industry and engineering. Besides
this, the transport of heat and mass due to con-
centration and temperature gradients, respectively, is
encountered in compression and moulding processes.
Due to this reason, the transport of heat and mass in
the presence of temperature and concentration gradi-
ents is considered. This paper is organised as follows.
Mathematical modelling is done in §2. The bound-
ary value problems are solved by homotopy analysis
method (HAM). This method is a powerful technique
and has been employed by many researchers [19–
21,34]. A brief solution procedure is given in §3. The
boundary conditions are verified in §4. Validation of
results are recorded in §5 and results are discussed in
§6.

2. Modelling and conservation laws

Let us consider the effects of temperature and
concentration gradient on heat and mass transfer in the
flow induced by the disk moving towards the lower
disk subjected to the pores. The Joule heating, viscous
dissipation and first-order chemical reaction are consid-
ered. Time-dependent magnetic field is applied and the
induced magnetic field is neglected under the assump-
tion of small magnetic Reynolds number [18–20]. The
disks have constant temperatures and concentrations at
the surface of disks are also constant. Physical model is
given in figure 1.

Conservation equations for the two-dimensional axi-
symmetric flow [1–7,35,36] are as follows:
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In the above equations, d/dt is the material derivative;
u and w are the components of velocity field V along
the radial (r) and axial (z) directions, respectively; T
and C signify the temperature and concentration fields,
respectively; j denotes the microinertia per unit mass;
N2 is the azimuthal component of microrotation field �;
μ and k are the viscosity coefficients; ρ andCp represent
the fluid density and specific heat of fluid, respectively;
B0 is the magnetic field strength; Kc and σ signify the
thermal and electrical conductivities, respectively; α∗

denotes the micropolar heat conduction coefficient; D
symbolises the Brownian motion coefficient; KT denotes
the thermophoretic diffusion coefficient;Cs signifies the
concentration susceptibility; Tm denotes the mean fluid
temperature; K1 represents the chemical reaction con-
stant; Ch is the constant concentration at the upper disk;
a is the constant having dimension 1/t ; and α, β, γ1 are
the gyroviscosity coefficients. Further, μ, k, α, β and
γ1 fulfill the following conditions:

λ+2μ+k ≥ 0, k ≥ 0, 3α+β+γ1 ≥ 0, γ1 ≥ |β|.
(7)

The velocity boundary conditions are developed through
no slip assumption whereas rotation vector at the surface
of disks is proportional to the vorticity. Thus, the bound-
ary conditions for velocity, rotation vector, temperature
and concentration fields are
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in eqs (1)–(8), one obtains
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Figure 1. Schematic diagram.
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In the above derivation, we have taken γ1 = (μ +
k/2) j, j = ν(1 − at)/a [19,20]. The dimensionless
parameters in eqs (9)–(15) are the micropolar parame-
ter K = k/μ, the Reynolds number Re = aH2/ν, the
Hartmann number M = σ B2

0/ρa, the suction/injection
parameter S = W0

√
1 − at/aH (it is worth men-

tioning that S > 0 corresponds to suction, S < 0
corresponds to injection, S = 0 is the case when
there is no suction/injection at the lower disk), the
Prandtl number Pr = μCp/Kc, the Eckert number
Ec = (ar)2/Cp(Tw − Th)(1 − at)2, the dimensionless
radial length δ = r/H

√
(1 − at), the dimensionless

material parameters A = α∗/ρCpH2(1 − at) and
B = β/μH2(1 − at), the Dufour number Du =
DKT (Cw −Ch)/νCpCs(Tw −Th), the Schmidt number
Sc = ν/D, the chemical reaction parameter γ = K1/a
and the Soret number Sr = DKT (Tw − Th)/νTm
(Cw − Ch).

The Nusselt number Nu and the Sherwood number
Sh at both the disks are
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3. Analytical solutions

The boundary value problems given by eqs (10)–(17)
are solved analytically using the linear operators

£ f f (η) = d4 f

dη4 , £hh(η) = d2h

dη2 ,

£θ (θ(η)) = d2θ

dη2 , £φ(φ(η)) = d2φ
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and the initial guesses

f0(η) = S − 3

2
(2S − 1)η2 + (2S − 1)η3,

h0(η) = −n f ′′(0) − n[ f ′′(1) − f ′′(0)]η,

θ0(η) = 1 − η, φ0(η) = 1 − η. (20)

4. Verification of boundary conditions

The boundary conditions for the microrotation are
h(0) = −n f ′′(0) and h(1) = −n f ′′(1) at lower and
upper disks, respectively. Here we take n = 1/2, the
case when microrotation at the solid surface is equal
to vorticity. So, boundary conditions for n = 1/2 are:
h(0) = − f ′′(0)/2 and h(1) = − f ′′(0)/2. Numerical
values of f ′′(0), h(0), f ′′(1) and h(1) both for suction
and injection are given in tables 1 and 2, respectively.
These tables show that boundary conditions are satisfied
at each iteration. These tables also show that approxi-
mate series solutions converge at 10th order of approx-
imations for S > 0 and 15th order of approximations
for S < 0 (see tables 1 and 2). Table 3 shows that the
Nusselt and Sherwood numbers at upper and lower disks
converge at 21th order of approximations.

5. Validation of the study

Present results are verified by comparing with the
already published work by Domairy and Aziz [18]. This
comparison is represented in tables 4 and 5. Table 4 gives
the comparison of the present results with the results
obtained by homotopy perturbation method (HPM) [18]
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Table 1. Verification of the boundary conditions for the suction case (S > 0) when M = 2, Re = 2.0, K = 0.5 and
hf = hh = − 0.7.

Order of approximation − f ′′(0) − 1
2 f ′′(0) h(0) − f ′′(1) − 1

2 f ′′(1) h(1)

1 3.48214 1.74107 1.74107 2.98214 1.49107 1.49107
5 3.55545 1.77772 1.77772 2.98842 1.49421 1.49421
10 3.55494 1.77747 1.77747 2.98682 1.49341 1.49341
15 3.55494 1.77747 1.77747 2.98682 1.49341 1.49341
20 3.55494 1.77747 1.77747 2.98682 1.49341 1.49341
25 3.55494 1.77747 1.77747 2.98682 1.49341 1.49341
28 3.55494 1.77747 1.77747 2.98682 1.49341 1.49341

Table 2. Verification of the boundary conditions for the blowing case (S < 0) when M = 2, Re=2.0, K = 0.5 and
hf = hh = −0.7.

Order of approximation f ′′(0) − 1
2 f ′′(0) h(0) − f ′′(1) − 1

2 f ′′(1) h(1)

1 8.56071 −4.28035 −4.28035 10.0607 5.03035 5.03035
5 8.55695 −4.27847 −4.27847 10.1244 5.06224 5.06224
10 8.55632 −4.27816 −4.27816 10.1233 5.06167 5.06167
15 8.55632 −4.27816 −4.27816 10.1233 5.06166 5.06166
20 8.55632 −4.27816 −4.27816 10.1233 5.06166 5.06166
25 8.55632 −4.27816 −4.27816 10.1233 5.06166 5.06166
28 8.55632 −4.27816 −4.27816 10.1233 5.06166 5.06166

Table 3. The convergence of temperature and concentration fields for suction when S = 1 = Re = γ, M = 1.5 = A = B,
K = 0.5 = Pr = Ec = Du = Sr = Sc, hθ = −0.7 = hf = hh = hφ.

Approximation θ ′(1) θ ′(0) φ′(1) φ′(0)

1 1.57732 0.731849 0.943125 1.16188
5 2.01082 0.314213 0.689061 1.38653
9 2.0408 0.285116 0.666239 1.40919
13 2.04289 0.283043 0.664586 1.41087
17 2.04303 0.282901 0.664473 1.41098
21 2.04304 0.282892 0.664465 1.41099
25 2.04304 0.282892 0.664465 1.41099
27 2.04304 0.282892 0.664465 1.41099

Table 4. Comparison of the present results with the published
work [18] for the suction case when S = 0.3, K = 0 and
Re = 1.

f ′′(1)

Re/2 M2 S HPM [18] HAM (present)

0.1 1.0 0.3 −1.22089 −1.22089
0.2 1.0 0.3 −1.22198 −1.22197
0.3 1.0 0.3 −1.22311 −1.22309
0.4 1.0 0.3 −1.2243 −1.22426
0.1 0 0.3 −1.201 −1.20100
0.1 1 0.3 −1.22089 −1.22089
0.1 2 0.3 −1.27887 −1.27893
0.1 3 0.3 −1.36978 −1.37069

for different values of Reynolds and Hartmann numbers
when S = 0.3. This table reflects an excellent agreement
between the HAM (present) and HPM [18] solutions.
Table 5 also compares the values of f and f ′ for the
present case with the values of f and f ′ obtained by
HPM [18] for different values of independent variable
η. An excellent agreement is observed. Moreover, the
present results and already published work are also com-
pared graphically as shown in figure 2. This figure shows
that there is an excellent agreement between the results.

6. Results and discussion

Transport of heat and mass caused by convection, diffu-
sion, temperature and concentration differences in the
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Table 5. Comparison of the present results with the published work [18] for the suction case when S = 0.1, K = 0 and
Re = 1.

f (η) f ′(η)

η Present HPM [18] Present HPM [18]

0.0 0.100000 0.100000 0.000000 0.000000
0.1 0.111848 0.111846 0.226177 0.226146
0.2 0.143233 0.143227 0.392188 0.392141
0.3 0.188524 0.188514 0.505295 0.505257
0.4 0.242696 0.242683 0.570451 0.570439
0.5 0.301118 0.301105 0.590648 0.590666
0.6 0.359370 0.35936 0.567113 0.567150
0.7 0.413069 0.413064 0.499387 0.499425
0.8 0.457704 0.457701 0.385306 0.385332
0.9 0.488454 0.488454 0.220874 0.220885
1.0 0.500000 0.500000 0.000000 0.000000

0.2 0.4 0.6 0.8 1
η

0.1

0.2

0.3

0.4

0.5

0.6
f'(η)

M= 0.0, 2, 4

Figure 2. Comparison between the HAM solution (solid
lines) and HPM solution [18] (filled circles) when
Re = 0.5, K = 0 and S = 0.1.

Figure 3. The effect of Prandtl number Pr on the dimension-
less temperature θ(η).

Figure 4. The effect of Eckert number Ec on the dimension-
less temperature θ(η).

Figure 5. The effect of Dufour number Du and Soret number
Sr on the dimensionless temperature θ(η).
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flow of micropolar fluid are modelled. The governing
problems are solved analytically. The behaviour of
emerging parameters on the transport of heat and mass
is studied graphically. The behaviour of temperature
and concentration field under the variation of physical
parameters is studied. Moreover, the Nusselt numbers
and Sherwood numbers (at both the disks) are noted
and tabulated. The effects of dimensionless parame-
ters on the dimensionless temperature θ(η) are noted in
figures 3–8. The effect of the Prandtl number on dimen-
sionless temperature θ(η) is displayed in figure 3. There
is an increase in temperature when Pr is increased. Ec
appears as a coefficient of viscous dissipation and Joule
heating terms (see eq. (14)). An increase in the Eckert
number corresponds to an increase in the dissipated heat.
Therefore, the temperature rises. Moreover, an increase
in the Eckert number enhances the effect of Joule heat-
ing and the temperature is expected to increase. This fact
is well exhibited by the present theoretical results (see
figure 4). The effect of temperature and concentration
gradients on the dimensionless temperature is shown in
figure 5. An increase in Du causes more concentration
gradient and more heat transfer from disks into the fluid
and the temperature of the fluid increases. This is what
the present results exhibit. The behaviour of temperature
by varying Sc is given in figure 6. This figure indicates
that the temperature increases as Sc is increased. An
increase in M corresponds to an increase in magnetic
intensity and dissipated heat due to increase in Joule
heating and adds to the fluid. Consequently, the temper-
ature of fluid rises. This behaviour is well supported by
the present theoretical results as shown in figure 7. The
effect of K is illustrated in figure 8. This figure reveals
that the temperature has an increasing trend when the
micropolar parameter is increased because K appears
as a coefficient of some of the viscous dissipation terms
in the energy equation (see eq. (14)) and an increase in it
causes an increase in the heat dissipated due to friction
force, and so the temperature increases.

The effects of dimensionless parameters on the
dimensionless concentration φ(η) are shown in figures
9–13. The effect of Ec on the concentration field is
given in figure 9. An increase in Ec forces the con-
centration field to decrease. The effects of Sr and Du
numbers on the dimensionless concentration φ(η) are
given in figure 10. This figure illustrates that the concen-
tration increases when Du is increased but it decreases
when Sr is increased. The dimensionless concentration
φ(η) is a decreasing function of Sc (see figure 11).
The phenomenon of diffusion of solution is greatly
affected by the chemical reaction. The chemical reac-
tion parameter γ > 0 when the reaction is a destructive
chemical reaction, whereas γ < 0 when the chemi-
cal reaction is constructive. When there is no chemical

Figure 6. The effect of Schmidt number Sc on the dimen-
sionless temperature θ(η).

Figure 7. The effect of Hartmann number M on the dimen-
sionless temperature θ(η).

Figure 8. The effect of micropolar parameter K on the
dimensionless temperature θ(η).



47 Page 8 of 11 Pramana – J. Phys. (2018) 91:47

Figure 9. The effect of Eckert number Ec on the dimension-
less concentration φ(η).

Figure 10. The effect of Soret number Sr and Dufour number
Du on the dimensionless concentration φ(η).

reaction, γ = 0. The behaviour of concentration field
under the variation of chemical reaction parameter γ is
shown in figure 12. For constructive chemical reaction,
the concentration increases but for destructive chemi-
cal reaction, the concentration is decreased. The effect
of magnetic field on the dimensionless concentration
field is shown in figure 13. This figure shows that
the concentration field is a decreasing function of M
because the Lorentz force is an opposing force and the
motion of the fluid slows down as magnetic intensity
is increased. The transport of solute particles due to
convection becomes slow and hence the concentration
decreases.

The numerical values of the Nusselt Nu1,2 and Sher-
wood Sh1,2 numbers at lower and upper disks are
computed and are recorded in table 6. The Nusselt num-
ber at the upper disk Nu1 increases with an increase

Figure 11. The effect of Schmidt number Sc on the dimen-
sionless concentration φ(η).

Figure 12. The effect of chemical reaction parameter γ on
the dimensionless concentration φ(η).

Figure 13. The effect of Hartmann number M on the dimen-
sionless concentration φ(η).
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Table 6. Numerical values of Nusselt numbers Nu1 and Nu2 and Sherwood numbers Sh1 and Sh2 for different values of
dimensionless parameters.

Re M K S Ec Pr Du Sr Sc γ Nu1 Nu2 Sh1 Sh2

1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.04304 0.282892 0.664465 1.41099
1.5 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.10981 0.437506 0.612219 1.48821
2.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.27729 0.49645 0.536701 1.58943
3.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.50103 0.50421 0.449005 1.70352
1.0 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.03665 0.289379 0.666038 1.40937
1.0 2.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.04943 0.27641 0.662893 1.41261
1.0 3.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.06219 0.263465 0.659752 1.41585
1.0 4.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.07492 0.250543 0.656617 1.41908
1.0 1.5 0.1 1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.84377 0.478689 0.713813 1.36182
1.0 1.5 0.4 1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.99307 0.332325 0.67683 1.39859
1.0 1.5 0.7 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.14318 0.183361 0.639696 1.43595
1.0 1.5 0.9 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.24351 0.0831591 0.61489 1.46107
1.0 1.5 0.5 −2.0 0.5 0.5 0.5 0.5 0.5 1.0 10.5305 −5.64164 −1.26884 2.35259
1.0 1.5 0.5 −0.5 0.5 0.5 0.5 0.5 0.5 1.0 2.83365 −1.25134 0.52949 1.62615
1.0 1.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 1.0 1.45382 0.196577 0.847631 1.33424
1.0 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.03895 0.972264 0.930436 1.19176
1.0 1.5 0.5 2.0 0.5 0.5 0.5 0.5 0.5 1.0 11.7675 −10.6084 −1.77482 4.3176
1.0 1.5 0.5 1.0 0.0 0.5 0.5 0.5 0.5 1.0 1.27328 1.17059 0.853867 1.18873
1.0 1.5 0.5 1.0 1.0 0.5 0.5 0.5 0.5 1.0 2.8128 −0.604809 0.475062 1.63325
1.0 1.5 0.5 1.0 1.5 0.5 0.5 0.5 0.5 1.0 3.58256 −1.49251 0.285659 1.85551
1.0 1.5 0.5 1.0 2.0 0.5 0.5 0.5 0.5 1.0 4.35231 −2.38021 0.0962561 2.07777
1.0 1.5 0.5 1.0 0.5 0.12 0.5 0.5 0.5 1.0 1.20808 0.86252 0.870777 1.26598
1.0 1.5 0.5 1.0 0.5 0.42 0.5 0.5 0.5 1.0 1.84119 0.426692 0.714352 1.37502
1.0 1.5 0.5 1.0 0.5 0.72 0.5 0.5 0.5 1.0 2.68913 −0.190692 0.504737 1.52947
1.0 1.5 0.5 1.0 0.5 1.02 0.5 0.5 0.5 1.0 3.84858 −1.08241 0.21795 1.75255
1.0 1.5 0.5 1.0 0.5 0.5 0.0 0.5 0.5 1.0 1.94132 0.406029 0.689467 1.38016
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.04304 0.282892 0.664465 1.41099
1.0 1.5 0.5 1.0 0.5 0.5 1.0 0.5 0.5 1.0 2.16221 0.138452 0.635167 1.44716
1.0 1.5 0.5 1.0 0.5 0.5 1.5 0.5 0.5 1.0 2.30365 −0.0332204 0.600389 1.49015
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.04304 0.282892 0.664465 1.41099
1.0 1.5 0.5 1.0 0.5 0.5 0.5 1.0 0.5 1.0 2.13053 0.219226 0.363507 1.62225
1.0 1.5 0.5 1.0 0.5 0.5 0.5 1.5 0.5 1.0 2.23381 0.143465 0.007571 1.87445
1.0 1.5 0.5 1.0 0.5 0.5 0.5 2.0 0.5 1.0 2.35751 0.051908 −0.41962 2.18033
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.04304 0.282892 0.664465 1.41099
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 1.0 1.0 2.15682 0.139515 0.285664 1.8954
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 1.5 1.0 2.28489 −0.029096 −0.145186 2.47243
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 2.0 1.0 2.43011 −0.229595 −0.639461 3.16797
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 −1.0 1.98798 0.389564 0.83319 1.05481
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 −0.5 2.00311 0.361305 0.78677 1.14886
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.0 2.01728 0.334163 0.74334 1.23939
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 2.03056 0.308051 0.702647 1.32669
1.0 1.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 2.04304 0.282892 0.664465 1.41099

in Re, M, K, suction parameter (S > 0), injection
parameter (S < 0), Ec, Pr, Du, Sr, Sc and destructive
chemical reaction parameter (γ > 0), whereas it
decreases by increasing the constructive chemical reac-
tion parameter (γ < 0). Similarly, the Nusselt number
at the lower disk Nu2 is a decreasing function of M,
K, suction parameter (S > 0), injection parameter
(S < 0), Ec, Pr, Du, Sr, Sc and destructive chemi-
cal reaction parameter (γ > 0). However, Nu2 is an
increasing function of Re and the constructive chemical

reaction parameter (γ < 0). The Sherwood number
at the upper disk Sh1 decreases with an increase in
Re, M, K, suction parameter (S > 0), injection
parameter (S < 0), Ec, Pr, Du, Sr, Sc and destruc-
tive chemical reaction parameter (γ > 0), whereas
it increases by increasing the constructive chemical
reaction parameter (γ < 0). Similarly, the Sher-
wood number at the lower disk Sh2 is an increasing
function of Re, M, K, suction parameter (S > 0),

injection parameter (S < 0), Ec, Pr, Du, Sr, Sc and
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destructive chemical reaction parameter (γ > 0).
However, Sh2 is a decreasing function of the constructive
chemical reaction (γ < 0).

7. Final remarks

The Dufour and Soret effects on heat and mass transfer
in micropolar fluid in the presence of Joule heating and
first-order chemical reaction are investigated. Some of
the observations are recorded below.

1. Joule heating causes an increase in temperature
by increasing the magnetic field intensity because
more heat dissipates due to Ohmic dissipation.
This heat adds to the fluid and so its temperature
increases, but the Joule heating causes a decrease
in concentration by increasing the magnetic field
intensity.

2. Viscous dissipation (the rate at which work is done
by the viscous force) is the heat that dissipates
because of friction, the friction due to the viscous
nature of fluid which adds to the fluid and hence
its temperature increases. Further, Ec appears as
a coefficient of viscous dissipation term. Thus, an
increase in Ec corresponds to the generation of
more heat due to viscous dissipation. This is a quite
adherence with the physically realistic case.

3. The diffusion of molecules of solute is greatly
affected by both constructive and destructive che-
mical reactions.

4. The Nusselt number at both the disks increases
when the chemical reaction is increased.

5. The heat transfer rate (at the upper disk) Nu1 is
increased when Re, M, K, suction parameter (S >

0), injection parameter (S < 0), Ec, Pr, Du, Sr,
constructive chemical reaction parameter (γ < 0)

and Sc are increased. However, it decreases when
γ < 0. Heat transfer rate (at the lower disk) Nu2 is
increased when Re and γ < 0 are increased but it
is decreased by increasing M, K, suction parame-
ter (S>0), injection parameter (S<0), Ec, Pr, Du,
Sr, Sc and destructive chemical reaction parameter
(γ>0).

6. Diffusion rate of solute molecules from the upper
disk Sh1 into the flow regime is decreased by
increasing Re, M, K, suction parameter (S > 0),
injection parameter (S < 0), Ec, Pr, Du, Sr, Sc and
destructive chemical reaction parameter (γ > 0).

However, it increases when γ < 0. Diffusion rate
of the solute molecules from the lower disk Sh2 is
decreased when γ < 0 is increased but it increases
by increasing Re, M, K, suction parameter (S >

0), injection parameter (S < 0), Ec, Pr, Du, Sr,

Sc and destructive chemical reaction parameter
(γ > 0).
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